ON THE MODULUS OF SMOOTHNESS AND
DIVERGENT SERIES IN BANACH SPACES

Joram Lindenstrauss

1. INTRODUCTION

The notions of uniform smoothness and of the modulus of smoothness were intro-
duced by Day [4]. He proved that a Banach space X is uniformly smooth if and only
if X* is uniformly convex and gave estimations of the modulus of smoothness of X
in terms of the modulus of convexity of X*. Later other, but equivalent, moduli of
smoothness were introduced; see, for example, Kothe {13, pp. 366-367]. In Section
2 we evaluate the exact value of such a modulus of smoothness of a Banach space in
terms of the modulus of convexity of its conjugate, and we apply this result to show
that inner product spaces are characterized by being the “smoothest” spaces. In
Section 3 we prove a result on divergent series in uniformly smooth Banach spaces,
which is in a certain sense dual to a result of Kadec [11].

In Section 4 we apply the result of Section 3 to prove that if the moduli of con-
vexity and smoothness of X behave asymptotically like those of ¢, and if X has an
unconditional basis, then X is isomorphic but, in general, not isometric to £;.
Geometrically, this result has the following, rather surprising, formulation (ignoring
for the moment the requirement concerning the basis): If the unit cell S of a Banach
space is sufficiently smooth and convex (smoothness and convexity are measured by
the respective moduli), then there is in the space a convex body S;, whose smooth-
ness and convexity are the greatest possible, such that Sc S; c kS for some k > 1.
However, this S; cannot in general be chosen to be very close to S (for example,
the best possible k may be arbitrarily large for suitable S).

In the last section we introduce two indices which classify Banach spaces in
terms of convergent or divergent series in them.

I wish to thank Professor A. Dvoretzky for many valuable discussions concern-
ing the subject of this paper.

Notations. We consider only Banach spaces of dimension at least 2. Let X be a
Banach space. Its modulus of convexity is defined by

Gx(e)z—;- inf (2 - "x+y”) 0<e<2).
= ll=lly I=1
|-y |=¢

X is called uniformly convex if 6 x(€) > 0 for every € > 0. The modulus of smooth-
ness of a space X is defined by

px(1) =5 sip  (|x+yl+lx-y[]-20 >0.
< fl=1, I yll=r

Received October 9, 1962,
Presented to the American Mathematical Society February 19, 1962,

241



242 JORAM LINDENSTRAUSS

X is called uniformly smooth if px(7) = o(7) as 7 — 0. That this notion coincides
with the one introduced by Day is shown, for example, by Kéthe [13, p. 366]. It is
clear that py(7) is, for every X, a convex, increasing function of 7 which satisfies
the inequality px(7) < 7. If 6x(€) > 0y (e) for every €, we say that X is more con-
vex than Y, and if py(7) < py(7) for every 7, we say that X is smoother than Y.

2. EVALUATION OF THE MODULUS OF SMOOTHNESS

We pass to our first theorem, whose proof is a quantitative version of the usual
proof to the fact that X is uniformly convex if and only if X* is uniformly smooth.

THEOREM 1. For every Banach space X

(1) px*(T) = sup (7e/2 - 6,(¢)) (> 0).
0<e<L2

Proof. We show first that for every positive € and 7
(2) 0y (€) + px*(r) > Te/2.
Let x,y € X with ||x||= |ly|=1, ||x- y| =€, and let £, g € X* satisfy the conditions

l2ll = llell = 1, e+ y) = lx+yl, ex - ) = Ix - y]-

Then
20 4() > |1+ 7g]| + [I£ - 7g] - 2
> f(x) + 78(x) + £(y) - 78(y) - 2
=ix+y) +Tgx-y) - 2= [[x+y[+ e -2,
that is,

2 - ||x+ y” >TE - 2pX*(T),

and (2) follows.

Let now f, g € X* satisfy the conditions ”f” =1, Hg” =T, and let n > 0. There
exist x, y € X such that

Ixll = lIyll =1, £x) + gx) > £+ gl - n, #) - e > |£- g - n.
Therefore,
£+ gl + [If- gl < £x) + gx) + £3) - g(y) + 2n
—ixry) rex-y) +2m< [xeyl+r]x-y]+ 2

<2+2 sup (e7/2- Gx(a)) + 27.
OS.sSZ

Since n may be any positive number, (1) follows from (2) and the last inequality.
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Remarks. 1. Theorem 1 remains meaningful for spaces that are not uniformly
convex or smooth. Therefore we did not assume that X is reflexive.
2. By arguing as in the proof of Theorem 1 it can be shown that
p (1) = sup (18/2 -0 ,(g)).
X 0<eL2 X
It follows that, even if X is not reflexive, pX(T) = pX**(T) for every 7. This latter

result and a similar one concerning 6 also follow immediately from the fact that X
is w*-dense in X**,

COROLLARY. For every Banach space X and every T 2> 0,
(3) P> @+ 7HY2 1,
If the equality sign holds in (3) for every T (0 < 7< 1), then X is an innev product

Space.

Proof. Let H be an inner product space. From the parallelogram equality it
follows that py(7) = (1 + 72)1/2 _ 1 for every 7> 0. It is known that the inner
product spaces are the most convex, that is, that for every Banach space X and
every € > 0, 8¢ ()< Oy (€) (see Day [5], Nordlander [14]). Hence (see Remark 2)

Py (7) = sup (7/2 - O 4(€)) > sup (e7/2 - 84(€)) = py(7) .
If equality holds in (3) for every 7 < 1, then it follows easily that for every x,y € X
2 2\1/2
=+ yll+ lx - vl < 20l + [y [H1/2.
It is well known that this inequality implies that X is an inner product space (see

Day [6, p. 116]).

For the Lp(u) spaces the modulus of smoothness can be easily evaluated by
using the same inequalities which were used by Hanner [10, Theorem 1] for the
evaluation of the modulus of convexity; the theorem and its proof are valid for gen-
eral measure spaces. We obtain for X = LP(u)

(@+DP+ |1-7P)/2YP 1= (p-1)7%/2+ 0, if 2<p<e
'OX(T) = 1/ 2
1+ )P _1=7P/p+0(=°P), if1<p<2.

3. A THEOREM ON SERIES THAT DIVERGE FOR
EVERY CHOICE OF SIGNS
Kadec [11] has proved that if X is uniformly convex and if
Z} Xi (Xi € X’ i= 1, 2’ .--)

converges unconditionally, that is Z +X; converges for every choice of signs (see
Day [6, p. 89]), then Z6y (| x;[|) <. Our result is dual to that of Kadec.

THEOREM 2. Let X be a uniformly smooth Banach space, and suppose that
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(4) liTm_)%up px(27)/ pg(T) < o0,

Let {x,}7 | C X be a sequence such that T +x; divevges for every choice of signs.
Then

(5) pr(”xi”)=oo.
i=1

We prove a lemma first.

LEMMA 1. Let X be a Banach space, and suppose {Xi L1 X. Let A and 7
be positive numbers with n such that n> ||x;|| (i =1, .-+, n). Then there are signs
€;, that is, €; = +1, i=1, .-, n, such that

k

Lo I+ py ] )
i=1

() <

k

27 € X,
ii

i=1

Sfor k=1, -+, n.

Proof. For k =1 (6) holds for every choice of €;. Suppose we have chosen €;
for i <h such that (6) holds for k < h. Put S, =Zl g x;. If ||Sp]|< A~L, then for
every choice of €t (6) holds for k = h+ 1 since

ISy + pe1 Xnpa 1 < A,

Suppose now that || Sh” > A '1, then

Ispllspll™ + Axppr [+ SulSull™t - Axnpr 1 < 201 + o[l xpn 1)),

and hence there is a sign €4 ,, such that

ISullSull™ + enp1 Axpin | < 1+ o=y D,

that is,

ISh + ener MSp I 1 < ISu 1@+ ol x4 1) -

Since Sy + €1 X4 is on the segment joining S;, with Sy + €4, A”Sh"xh“, we ob-
tain the conclusion

I8n+1 Il = 1Sn + €1 2 [ < lISull 1+ oIz 41 D)

and hence (6) holds in this case also for k = h + 1. This concludes the proof of the
lemma.

Proof of Theovem 2. We prove that if E?__l px(”Xi”) < «, then there are signs
€; such that =%-1&; x; converges. Let =2 px(]|x;||) < . Then px(llx;I}) — 0, and
hence, by the corollary to Theorem 1, {|x;]| — 0. Also, by (4), Zi%; px(2k | x;][) <
for every integer k. Consequently, there is an increasing sequence of integers n;
such that
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IT 1+ py2X|x;) < 2

i=nj

and ||x; || < 2% for i> n,. By Lemma 1, it is possible to choose signs €; such that
for every k and h with n) < h < nyyg,

h
E € X3 S 22-k.
i=nyp
The series Z%.;€;x;, with these &;, converges.
i=18iXy, 19

Remarks. 1. We do not know whether the assumption (4) is really necessary.
Without assuming (4) we only have been able to prove that if, for every choice of
signs ¢g;, the partial sums Sy = El_lal x;i k=1, 2, ) form an unbounded set, then
(5) holds. Indeed, we may restrict ourselves to the case for which || x;| g1 for
every i, and for tms case the assertion above follows from Lemma 1 by taking
A=n=1.

2. It is clear that we may replace the function p(7) in Theorem 2 by any function
p'(7) which satisfies (4) and for which p'(t) > p(7) for every 7 < 1. We shall use
this fact in the sequel, taking as p'(r) functions of the form n7P.

4. A CHARACTERIZATION OF SPACES ISOMORPHIC TO
INNER PRODUCT SPACES

As mentioned in Section 2, the inner product spaces are the ¥most convex”
spaces. For these, and only these spaces 6() = 1 - (1 - €2/4)1/27[5], [14]. But the
inner product spaces are not the only ones (even up to isomorphism) for which
6(€) = xe% + o(e?) with some A> 0. Indeed, the Ly(p) spaces with 1 < p < 2 also
have such a modulus of convexity (see Hanner [10] and the references given there).
Similar remarks hold with respect to the modulus of smoothness. However, if we
assume that both 6(t) and p(t) behave for small t as a multiple of t2, or even only
that, for some A > 0 and every € > 0,

(7) 6X (8) Z }LSZ
and, for some 1 and every 0 <7< 1,

(8) px(1) < 772

then the situation is different. We do not know whether (7) and (8) alone are suffi-
cient to imply that X is isomorphic to an inner product space, but it is an almost
immediate consequence of the results of Section 3 that if, in addition, X is separable
and has an unconditional basis, then X is indeed isomorphic to £;,.

LEMMA 2. Let X be a separable Banach space that has an unconditional basis
and for which (7) and (8) ave satisfied. Then X is isomorphic to £2.

Proof. Let {e;}7., be an unconditional basis of X with [e;]| =1 for every i.
By the result of Kadec cited in the beginning of Section 3, it follows that if
Tie1 A e converges (and hence converges uncondltlonally), then Z5- 1A <, Con-
versely, if Zl 1 )\ < e, it follows from Theorem 2 that there is a choice of signs ¢;
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such that E‘f 1€ije; converges. Using again the fact that the basis is unconditional,
we conclude that Z} A;e; converges. Thus Z?°-1°=1 A;e; converges if and only if
El 1 A?- < oo, Hence by a standard argument, the mapping

E)\iei i ()t]_, )LZ, "')

of X onto £, is an isomorphism.

Remark. From the proof of Lemma 2 it follows also that all the unconditional
bases {ei}‘f: in ¢,, with ”e ” =1 for every i, are equivalent. This is a result of
Bari [2] and Gelfand [9]. A proof, similar to our proof, of this result was given re-
cently in a different context by Kadec and Pelczynski [12].

The result of Lemma 2 can be easily extended to nonseparable spaces by using
the next lemma.

LEMMA 3. Let X be a Banach space all whose separable subspaces are iso-
movphic to an innev product space. Then X is also isomorphic to an inner product
Space.

Proof. Let ||-|| be the norm in X. For every separable subspace Y of X, let
k(Y) be defined by

k(Y) = inf{ k; there is an inner product norm || |lo in Y with

Ivli < vl <kllyll, v e Y}.

There exists a finite K such that k(Y) < K for every separable Y ¢ X. Indeed, sup-
pose that k(Y,) — «; then the separable subspace Y of X generated by IJYn is not

isomorphic to an inner product space.

If X is separable there is nothing to prove. Assume now that X has a dense
subset of cardinality ¥;. Then X = iJaeQ Xa, Where @ is the set of all the
ordinal numbers smaller than the first uncountable ordinal, X, C Xg for a < 8, and
Xy is a separable subspace of X for every a. Let |+]q be an inner product norm
in X which satisfies the inequalities Ix]l < IIx]la < Kl|x|| (x € X). Let Z be the
Stone-Cech compactification of the discrete space 2, and let

e M ce{g;p>el,

aesy

where the closures are taken in 2. For each x € X define a function f (o) on Q
by

0 if x££ Xy,
() =
%], if x € X, .
Extend f, to a continuous function fyx on Z, and let |]|x”l = £:(0) for x € X. The
norm |” |” is an inner product norm on X since for every x,y € X

(@) + to_(@) = 2(t5(@) + £(@))

x+y

and

fx.,_)“,(ae) < f(a) + fy(a)
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for sufficiently large o. Further [ x| < [[x]| < K||x| for every x, and this proves
the lemma if X has a dense set of cardinality X ;. For a general X, the lemma is
proved in the same manner by using transfinite induction.

In Lemma 2 we assumed that the norm in X satisfies (7) and (8). It is clear that
these conditions on the norm are not in general satisfied by spaces isomorphic to £;.
Our next aim is to modify slightly these requirements on the norm so that they will
be satisfied by any space isomorphic to an inner product space. To this end we
prove first two lemmas.

LEMMA 4. A Banach space X satisfies (7) if and only if X* satisfies (8).
Hence,X satisfies (7) and (8) if and only if X* satisfies (7) and (8).

Proof. It is clear that if X or X* satisfy either (7) or (8) then they are reflex-
ive. Further it is clear by Theorem 1 that if, X satisfies (7), then X* satisfies (8).
Also, by Theorem 1,

6 _,(€)> sup (e7/2 -p (7)) (> 0),
x* —OSTSI Px

and hence, if X satisfies (8), then X* satisfies (7); and this concludes the proof.

In the next lemma we consider several norms in the same space X. We say that
anorm .| in X satisfies (7) [respectively, (8)] if X with this norm satisfies (7)
[respectively, (8)].

LEMMA 5. Let X be a linear space, and let "”1 and ||”2 be two equivalent
novms in it. Suppose that ||-|, satisfies (8) and that |-||, satisfies (1) and (8).
Then ||-||= |-y + |I-1l, is @ norm which satisfies (1) and (8).

Pyroof. Let a and b be positive numbers such that
H=ll, <allxl,, lxl, <vl=l, &ex.

We show first that ||.|| satisties (7). Let [|x||= [|y||=1 and llx-yl|=¢. we
may assume that | x|, > Ivll,. Put a= ”y”z/”x”_z and z = ax. Then
llz - y|l > /2. Indeeq, if @ <1 - £/2, then

Iz -y ll> Myl - Mzl =1 - a>er2;
and if @ > 1 - ¢/2, then
Wz -yll> Uy - =l - llx-zll=¢-1+a>e/2.
Hence, ||z - y|, > ¢/(2a+ 2). Since ||z|, = ||y, and |||, satisfies (7),

lx+ vyl <lx- 2], + llz+yl,
<@-a)|xl + 2yl @ -2? @+ Dyl ™
< =l + Iyl - 2?72+ 1%,
Therefore

lx+ vl < 2 - 2e?/2(a+ 1),
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and this proves (7). We show now that also (8) holds. Let ||x||=1, [|y]l|= =. Then
| x{l; > 1/(®+ 1) and | x|, > 1/(a + 1); and hence,

M=+ yll+ M= -yl = llx+ vl + [x-ylly + lIx+vllz + [=-vl;
< 2lxlly @+ ay 907 Ix07%) + 2=, @+, v l3 =l ?)
< 2+2(b+1)np + (a+ 1)172)72,

and this concludes the proof.

Remark. From the first part of the proof it follows also that if a norm

satisfies (7), then for every equivalent norm ||-||;, the norm [|-[| = ||-|l1 +
also satisfies (7).

COROLLARY. Let X be a Banach space with novm ||| o that satisfies (1) and
(8). Then arbitrarily close to any novm ” || in X that is equivalent to there
ave norms satisfying (1) and (8).

2
I

2

I
I-

lo

By “arbitrarily close” we mean that for every € > 0 there is a suitable norm
Il fox which ||| < JIl-ll < @+ &)||-].

Proof. By the remark after Lemma 5, the norms || . " + € ” . ”o (€ > 0), all
satisfy (7). Hence arbitrarily close to ” ” there are norms satisfying (7), and thus,
by duality (Lemma 4), there are also norms that satisfy (8) and are arbitrarily close
to H ” . By Lemma 5, there are norms satisfying (7) and (8) arbitrarily close to any
norm in X that satisfies (8) and that is equivalent to ” . Ho This concludes the
proof.

We remark that another method for obtaining spaces satisfying (7) and (8) is to
take direct sums. Let {X,}%=] be a sequence of Banach spaces, all satisfying (7)
and (8) with common (that is, independent from n) A and 75; then the space
X=X1® X2@® )¢, of all the sequences x = (X1, X2, ***) with x, € X, and
Ix]|= = ]|xrj|2)1/ 2 < = also satisfies (7) and (8). We shall not need this result in
the squle]l and so we omit its proof, which is similar to ths proof of the main result
in Day {3].

We now summarize the results of this section in

THEOREM 3. Let X be an infinite-dimensional Banach space. X is isomovphic
to an inner product space if and only if it has the following two properties

(i) Every separable infinite-dimensional subspace of X has an unconditional
basis.

(ii) Arbitrarily close to the norm given in X theve exist noyms satisfying (1) and

(8).
Condition (i) may be clearly replaced by

(i) For every separvable infinite-dimensional subspace Y of X there exists a Z
with an unconditional basis satisfying Y C Z C X.
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5. INDICES OF CONVERGENCE AND DIVERGENCE

In view of the results of Section 3, it is perhaps interesting to study the following
two indices of a given Banach space X.

ax =inf{p||Z +x; (x; € X,i=1, 2, ---) converges for every choice of signs
=2 %P <}

Bx = sup {pHZ +%; (x;€X, i=1,2, ) diverges for every choice of signs
=> 2 X1”p - °°}

The following results concerning ayx and Bx are immediate consequences of known
results.

(a) For a finite-dimensional X, ay =1 and By = .
(b) For an infinite-dimensional X, ©« > ax > 2> p8x > 1.

Indeed, (a) follows from the fact that in finite-dimensional spaces unconditional con-
vergence implies absolute convergence, and that for every sequence x; converging
to 0 there are signs g; such that El 1€;X; converges (Dvoretzky and Hanani [8]).
Assertion (b) is contained in the following theorem due to Dvoretzky [7, Theorem 8]

Let X be an infinite-dimensional Banach space, and let {ci i°°;1 and {di}?ﬂ
be two sequences of positive numbers such that Z5-, ciz‘ < o and Eio.;l di =, Then
there exists a sequence {x; } -1 € X such that ”x || =1 for every i, and Z +c; X;
conveyvges for every choice of signs while Z +d; x; divevges fov every choice of
signs.

From the result of Kadec [11] cited in Section 3 it follows that

(e) o, < lim sup log 6, (€)/log € .
€—0

Similarly, by Theorem 2,

(d) Bx > lim inf log p(7)/log 7.
T—0

For the evaluation of the indices the following simple remarks are useful.
(e) If Y is a subspace of X, then o, > 0y, By < By -
(£) If Y is a quotient space of X, then 8, <8, .

For X = L,(p) of infinite dimension it is known (Orlicz [15]) that

2, if1<p<2
o =
X

p, if 2<p< oo,

Clearly Qg =, and hence, by (e), if X = Lo (1), ax =. Since every separable

Banach space is a quotient space of £, (Banach and Mazur [1]), it follows that in
assertion (f) above we cannot claim that oy < ayx. If, however, X = L (u) for

1 < p <=, then the inequality ay < ax holds for every quotlent space Y of X.
This follows from assertion (c) and the easily verified fact that 6y (€) > 6x(¢) for
every .
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Again, for X an infinite-dimensional Lp(,u)—space,

2, if 2<p< =

6X=
P, if 1<p<2.

For 2 < p < = this result follows from assertions (b) and (d) (px(7) is given in
Section 2). For 1< p< 2 itis clear that Bg < p and that Bg = 1. Since every

infinite-dimensional L (u) -space has a subspace isomorphic to !Z it follows (by
using assertions (d) and (e)) that BL =p for 1<p<L 2.

Finally we show that 3c0 = 1. To this end, let X be the space
1 2
(0 @ £1@ @ L] @ ),

that is, the space of the sequences

X = (Xl’ XZ’ ---’ Xll’--o)

with x_ € ¢] and ||x, | — 0, where |x]| = max |x_|l. The space X is isometric to a

subspace of cy. For any sequence of positive numbers {di};ozl tending to 0 and

such that =d; = «, there is a sequence {y;}$x; C X such that |y;| = d;and = +y;
diverges for every choice of signs. Indeed, let iy be a sequence of integers such
that

iy
27 d; > k.
i=ik+1

Put ny =1y, - iy, and let

y; = (Yi’p Yi,20 =" Vi, ) eX

be as follows: y; , # 0 only if 1k < i< ik4+1 and n = ny. For these i and n,
Yin = di€5_5 , where €, ey, ", denote the canonical basis of ¢ k. We see
that ||y;| = d; and

el

27 1Y

>k

for every choice of signs.

By (e), it follows that 'BCo = 1, and hence also for every infinite-dimensional
C(K)-space (in particular, L, (u)-space) X, Bx = 1.

Problem. Let Z = X @® Y. Is it true that 8> = min(8x, By)?

It is trivial that @, = max(ay, @y) and that 8, < min (Bx, By).
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Added in proof. Since this paper was written there has appeared a paper by G.
Nordlander, O sign-independent and almost sign-independent convevgence in novmed
linear spaces, Ark. Mat. 4 (1962), 287-296. In this paper a stronger version of
Theorem 2 is proved for the particular case X = Ly. Nordlander’s methods are
different from ours.

Added in proof. We are now able to show that hypothesis (4) in the statement of
Theorem 2 is satisfied by every Banach space.

LEMMA. Let X be a Banach space, and let px(7) be its modulus of smoothness.
Put

Yx = lim sup p(27)/px (7).
T—0

Then 2 < yyw< 4. For every y with 2 <y < 4 therve exists a Banach space X with
YX=7.
Proof. By convexity of p, px(7) < px{(27)/2 for every 7; and thus yx > 2.

Let x, y € X with ||x” =1, |lyll=7<1/2, and set a = Hx+y", b=|x- yl-
Then

I+ 2y) - 1= flx+y+yl+ fx+y-y]-2

(g2l - 2) e
a a a a

< 2apy(r/a) + 2a - 2.
Similarly, |[x - 2y” - 1< 2bpx(7/b) + 2b - 2. Hence,

(9) (”x+ 2y”+ ”x - 2y|| - 2)/2 < apx(t/a) + bpx(r/b) + 2px(7) .

Clearly,a,b< 1+ 7 and a-1, b-1< 1+ 27, Taking the supremum of the left hand
side of (1) and using the convexity of p, we see that

px(27) < (4 + 27)py (7(1 + 27))
< (4 +27)((1 - 27)px(7) + 27px(27)).

It follows that px(27) < (4 + O(7))px(7), and thus yx < 4.

For X = Lp(p) with 1 <p <2, yx=2P (compare this with the value of p y(7)
for these X, given at the end of Section 2). This concludes the proof of the lemma.

We can now state Theorem 2 as follows.

THEOREM. Let X be a Banach space and let {x 2, C X. If Z, + x, diverges
Jor every choice of signs, then Z; px (|| x;|]) = .
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