INEQUALITIES FOR MONOTONIC ENTIRE FUNCTIONS
R. P. Boas, Jr. and Q. I. Rahman

1. Let f(z) be an entire function of exponential type 7 with |f(x)| < 1 for real x.
Our object is to fill the gaps in the following table, where the entries under |f' (x)l
are due to S. N. Bernstein (for proofs see, for example, [1, Chapter 11] and [3]), and
the others are consequences of a Phragmén-Lindeldf argument; see, for example |1,
Chapter 6].

Hypothesis | lf(x + iy) | < |£'@x) | < |£'(x + iy) | <

|f(x){S1 eTIYI T TeTlY|

[fx)| < 1 and f(x) is

. : T/
monotone increasing /

THEOREM 1. If |£(x)|< 1 and f'(x)> 0, then

sinh 7y 'r)

(1.1) |f‘(x+iy)|§2—];T( >

The bound in (1.1) is best possible (for eackh y).

[ve)
COROLLARY 1. If £(x) > 0 and S f(x)dx < 1, then
00

. 1 (sinh TY )
(1.2) If(x+ 1y)|_<_47T — +7];

in particular, £(x) < -%T/ﬂ.
O()It is interesting to compare Corollary 1 with Korevaar’s result [4] that if
S If(x) Idx < 1, then |f(x + iy) l < (wy)~! sinh 7y, and in particular lf(x) I < 7/m.

-C0

Here the bound is not known to be best possible.

[>e]
COROLLARY 2. If f(x) is real and 5 {£x)}2dx < 1, then

. l_( sinh 27y )
lf(X+ly),S4ﬂ_ — +27) .

THEOREM 2. If |i(x)| < 1 and £'(x) > 0, then
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(1.3) [f(x+ 1y)|<(——+ (1))-811]%-37-, |y|-—><>o.

The constant (21r)'1 is best possible.

We may compare (1.3) with Duffin and Schaeffer’s inequality (see [2])
|f (x + iy) | < cosh 1y, which holds if f(x) is real and |f(x)| < 1. Not only does (1.3)
say more for large |y but more for large 7: in other words, the larger the type
T, the more restrictive is the hypothesis that f(x) is monotonic.

If we apply Bernstein’s two theorems successwely to f and f' - -17'/ 7 under the
hypotheses of Theorem 2, we find that |f"(x)| < —TZ/ 7. Something is lost in this
process, however, since the inequality is not sharp. We prove the following result.

THEOREM 3. Under the hypotheses of Theovem 2,

T2
(1.4) |fr(x)| < "l

The constant is best possible.

2. The proofs of our theorems all depend on the analogue for entire functions of
the Fejér-Riesz theorem on the representation of a nonnegative trigonometric poly-
nomial as a square; see [1, p. 124]. We begin with Theorem 3, in which the details
are the simplest.

Since f'(x) > 0 and f(X) is bounded, f'(x) is integrable. Hence

(2.1) f'(x) = |g®)|?,
where
/2.
(2.2) o(z) = ST eizt g(pat,
-7/2

and where
(2.3) ST/ la®Pat=o (7 |ee P ax<l,

_T/Z —00 N
since

Sm lg@) P dx = Sm £1(x)dx = £(e0) - £(-0) < 2.

-00

From (2.1) and (2.2), it follows that

2 2
(2.4) £1(x) = jT/ ST/ ei*(t-1) G(t) G(u)dt du,
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and so

7/2 T/2
f(x) = ix(t-u) (¢ - v) G(t) G(u)dtdu.
(x) = 57/2 § it - w GO watan

The maximum of

.31 i S S i(t - u) H(t) H(u)dtdu
-t/2 Y-1/2

for
1/2

7/2
f 5_7/2 [HOP e <1

is the largest eigenvalue p of the Hermitian kernel i(t - u); hence, by (2.3), for
each x, the maximum of |f" (x)l under our conditions is 1/7 t1mes this number.
This largest eigenvalue can be found either by calculating the first zero of the Fred-
holm determinant (¢ is the reciprocal of this number) or by solving the integral
equation with kernel i(t - u). The calculations are elementary and will be omitted.

The result is u = -;—TZ/ V3; consequently

I"x| <
"] < r
3. We next turn to Theorem 1. From (2.4), we see that
/2 eT/2 —
(3.1) fi(x + iy) = S eix(t-u) e-y(t-u) G(t)G(u)dt du.
-1/2 “-1/2

In this case the kernel is not Hermitian. However,

[£'(x + iy) [ < ST/ ST/ e-v(t-v) |G(t) | | G(u)dt du

-T 2 -T
= ST/Z ST/Z cosh(y(t - w][G)| |G |dtdu
-1/2

(to get the second form, write the first integral again with t and u interchanged,
and add it to the first). The maximum of the last integral is now 1/7 times the
largest eigenvalue of the symmetric kernel coshy(t - u).

Let us first observe that the value so obtained is actually an attained maximum
for [f'(x +iy)|. There will exist for each y, a real function H(t) such that
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(3.2) ST/Z ST/Z cosh[y(t - u)] H(t)H(u)dt du
-1/2 Y-1/2

is maximized for S |H(t) IZ dt = 1/7. We may assume g(t) is nonnegative, since re-
placing H(t) and H(u) by |H(t)| and IH(u)I, respectively, does not change

S | H(t) '2‘ dt and cannot decrease (3.2). The function for which
T/2 T/2 .

(3.3) p@ =" 7" ettt mHWAtdu
-1/2 VY -1/2

has the required form, and
) 7/2 T/2
f'(iy) = S S cosh[y(t - w)] H{t)H(u)dtdu = u/7.
-1/2 Y -1/2

In the present case it appears to be simplest to calculate p by solving the inte-
gral equation

T/2

/
(3.4) uo(u) = S /2 cosh[y(t - u)]¢(t)dtdu.
-,

The details are elementary. The result is

_sinh71y 1
(3.5) =3y +35T.
Consequently,

|£'(x + iy){sziﬂ (____sinl; LA ) .

For y = 0, this reduces to Bernstein’s second theorem.

4. The upper bound in Theorem 2 can be obtained from Theorem 1 by direct
integration as follows:

y
(4.1) f(x+iy)=f(x)+i‘g f'(x + it)dt,
0
If(x+iy)l<1+—1—SY(SinhTt+T)dt
— 27 0 t
(4.2)
_ 7Y _1_Sysinh1't _ 1 sinh 71y e
_1+277+21r o ¢ dt 27 y IYI ’

by L’HG6pital’s rule.
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To show that the constant in Theorem 2 is correct, we can use the following
theorem of Widom [5] on the eigenvalues of rapidly increasing kernels.

WIDOM’S THEOREM. Assume y(x,y) = log K(x, y) is veal and symmetric, be-
longs to C2 and satisfies the conditions

(i) vy >0,
(i) Um yyy(x,y) =<,
X,y >
(ii) 7y, = 0(7}7;) and vy, = 0lYyvy) as X,y — .

Then the largest eigenvalue of K(x, y) on (0, t) is asymptotic to K(t, t)2/K'(t, t) as
t — w. The eigenvalue is simple and its covvesponding eigenfunction is asymptotic
to K(x, x)1/2. All other eigenvalues are o(K(t, t)2/K!(t, t)).

In fact, from (4.1) and (2.4) the following estimate is obtained:

et*(t-1) G()G(u) 1‘—8:—?—-? dtdu .

t

[f(x+iy)|_<_1+ ST/Z T/Z

-t/2 Y-T/2

Then, arguing as in Section 3, we see that the maximum of the double integral is, for
a given y, the maximum of

2 2 s
ST/ ST/ Stoh y(E- W | o) | o) |dtau,
_7/2 T/Z -u

and so is 1/7 times the largest eigenvalue of the integral equation with kernel
(t - w)~! sinh y(t - u), an equation to which Widom’s Theorem is applicable.

However, the following procedure is more direct and more elementary. It is
easily seen that the integral equation (3.4) has cosh yu as an eigenfunction. Hence,
(3.2) is maximized by H(t) = A cosh yt where

. -1
A2‘=E(-———Slnh7y+'r) .
m y

Consider the entire function f, defined by (3.3) with this H. Then

2
sinh%’r(y - 8) sinh%'r(y +8)
£ (is) = A? + ;
y -8 y+ S

and, as y — oo,

sinh2l 7(y + 8)
i]fy(iy) - fy(o)I = S: fy(is)ds ~ G SY 2 ds

Y (y + 8)®

" wsinh7y - t2 dt 21y

o1
2y SZY sinh 5 Tt _ sinhry
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by L’H6pital’s rule. Hence, (1.3) cannot hold with a smaller constant, since for
each y there exists an fy such that, as y — «, (1.3) becomes an asymptotic
equality.
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