ON A PROPERTY OF ORTHOGONAL POLYNOMIALS

J. J. Price

Let p(x) dx be a finite measure on the closed interval [-1, 1], and let {pn(x)};;O
be the associated orthonormal polynomials. Define

n
-1 2
ox) =y oo,
j=0
G. Freud has proved [2] that if
(1) p(x) > py > 0

almost everywhere in some open subinterval («, 8), then
(2) 0,(x) = O(1) uniformly in [@ +€, 8 - €] .

Freud used this result to prove the following theorem [2]. If condition (1) holds
almost everywhere on a proper subinterval [a, 8], then the expansion of any function
in L% (p(x)) in terms of the polynomials pn(x) is (C, @ > 0)-summable almost
everywhere in [o, B].

In his book, G. Alexits [1, p. 43] raises the question whether (2) is true without
condition (1) holding almost everywhere. He points out that if this were so, then
Freud’s theorem would be valid without the assumption that p(x) > py > 0 almost
everywhere in [a, 8].

The answer to the question is negative. This may be seen from a classical
work of G. Szegd [4, 4.1.6] and a recent work of V. P. Konoplev [3]. These authors
study, respectively, the densities p(x) = IxP' {y > -1) and

p(x) = (1 -x%@1 +xP |x - x|” (@, 8> -1, ¥y > 0, |xol < 1).

Konoplev’s results show immediately that o,(xg) ~ cn?, where ¢ is a constant. Thus
(2) fails if v > 0.

The purpose of this paper is to give a short proof of the theorem that o, (xg) — «
if p(x) is any density for which p(x) — 0 as x — X, [xol < 1, and to find estimates
for the rate of growth of o_(x().

THEOREM 1. If at some interiov point xq of the intevval [-1, 1], 1lim p(x) = 0,
X"’Xo

then

(3) lim o,(xg) = .
n— oo
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Proof. Let f(x) be a polynomial of degree n. For suitable coefficients
aj, f(x) = E}LO ajp;j(x). Suppose f(xg) = 1. By the Schwarz inequality,

n 2 n
1= £%xg) = ,anjpjoco)) < ;@Oa%) E m(x@)
J= =

Hence

n n -1 1 -1
(4) (n+ 1)o,(xg) = 2 pJZ‘(xo) > 27 a?) = (S , fZ(x) p(x) dx ) .
j=0 -

j=0

To prove the theorem, it suffices to construct a sequence of polynomials {f,(x)}n=1
such that the degree of f,(x) is 3n, f,(Xg) = 1, and

1
(5) § TP ax = o).

To see this, note that because of (4), the existence of such a sequence implies
lim _ . 05 (Xg) =. Butif r=1or 2,

3n+ 1

T3n+r(X0) 2 T

O3nx0) > 203a(x0) (> 1),

and (3) follows.
Let {q,(x)} be the normalized Legendre polynomials. Set

-1
h,(x) = ( Z qf(xg) | (Z) aj(x0)q (%)

The polynomial h,(x) is of degree n, and hp(xg) = 1. Furthermore,

1

1
(6) (" n@wax~an? @),
-1

(7) h’@x) <bn  (|x|< 1),

where the constants a and b depend on xg. To prove (6), note that because of
orthonormality, the value of the integral 1n question is (=7, =0 qz(xo)) 1 This quan-
tity can be shown to be asymptotic to an~! by using formula 9. 3 5 of [4] with
a=B=0 and 6 = ¢ = cos~! Xg. (7) follows directly from (6) and Theorem 7.71.1 of

[4].

Now define

ga®) = [ 1- 20 -x92 |, £, = ga0 ho0).
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Clearly, f (x) is of degree 3n, and f (xy) = 1. Thus, the proof of Theorem 1 reducer
to the verification of (5) for the polynomials f,(x) just defined.

Suppose 0 < a < 1/2. Let A, = {x: |x - xo|<n-®} N [-1, 1], and let A} be its
complement relative to [-1, 1]. Let

1

(8) S flzl'(x) p(x)dx = S + S =I,+ 1.
-1 Ay h

It will be shown that both I,, and I}l are o(n‘l). Obviously,

L= | e2@ni@e@ax < § hiep@ ax
AN JAVS

< [ ilf p(x)] SAnh;’;(x)dx < [sZi p(x)] _11 h2(x) dx .

From (6),

) I, < [ sw o |0
An

But p(x) —» 0 as x — xy. Therefore, I, = o(n'l).

L= SAL g2(x) h2(x) p(x) dx < [Iza;x gn(X)] [rz?lx hf;(X)] S_llp(x)dx.

From (7),

(10) =0 (n max gn(x))

But ma.xA;l gg(x) = gﬁ(xo +n %) since 1 - (1/4)(x - xo)z >0 on [-1, 1]. Thus

I = O(n[l - 4n12a] Zn) = 0(n exp[-%nl'za] ) = O(n’l)

for ¢ < 1/2. This completes the proof of Theorem 1.

Some estimates of the size of o,(xp) can be obtained from the preceding proof
For example, take the density p(x) = lx - XOP’ (y > 0). For a fixed a < 1/2, I
negligible compared to I,,, and one obtains the inequality

o, (x5) > ¢ (sup p(x)) -l eno,
A

n

In other words

1
an(xo) # 0( nzly_8 )
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for € > 0. Since in fact, o,(xg) ~ cn?, the estimate is very crude.

Better estimates are proved by Theorem 2 below. Roughly speaking, this
theorem is obtained by using the proof of Theorem 1, replacing g,(x) by a poly-
nomial more sharply peaked at x.

As a matter of terminology, a “constant” will always mean a quantity independent
of n, the symbol used exclusively to index orthogonal polynomials. Some constants
will depend on certain parameters. These will sometimes be indicated, but not al-
ways. In general cg,, CB5 C, Cp,y Cy, *°* will denote constants whose exact values are
not needed.

For brevity, the following notation will be used.

s(y) = sup p(x).
x—xoL<y

THEOREM 2. Suppose, as in Theorvem 1, limx_,xo p(x) = 0. Let p be any given

positive numberv. Then, for any a < 1,

[
11 > %P .
a1 7x{¥0) sm %) + n°P

Proof. For simplicity, let x5 = 0. It will suffice to prove that given any positive
numbers r and a (a < 1), there exists a sequence of polynomials {gn(x)}ﬁﬂ, with
g (%) of degree 2n, g,(0) = 1, and |g,(x)| < 1 on [-1, 1], such that

Ca,r

(12) gl(x) < (% < |x| < 1).

nI‘

Assuming for a moment the existence of such sequences, choose one corresponding
to the given @ and r = p + 2. As in the proof of Theorem 1, define f,(x) = g (x)h ().
Consider the analogue of (8), this time allowing « < 1. Since the estimates (9) and
(10) are quite general,

L+ < [sAup p(x)] O(n'l) + O[n nia'x gﬁ(x)] .

n n

Using (12), we see that

1
(13) S 123 p(x) dx = I, + I} < s(n™®) o@m™}) + om~P1).
-1

The assertion of Theorem 2 now follows from (4) and (13).

To construct the polynomials g, (x), let k be a positive integer and Pflk’o) (x) be

the Jacobi polynomial of degree n, (for definitions, see [3, Chapter IV]). According
to a result of Szeg6 [3, 8.21.18],

1 1
= k-—
2 2
P(k’o)(cos 6) = (wn cos g) (sin -g—) [cos{(n + c1)0 + ¢} + O(1)(n sin 6)—1},

n
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for n-1< 6 < 7 -n-1, If 6 is restricted to the range n-! < 6 < 7/2, then

(cos g) 2 and (n sin 8) -1 are bounded. Hence,

-— k=
(14) lelk’o)(cos 9)| <c3n 2 (sin-g) 2 (n'1 <6< 7/2).

Now make the substitution 1 - x% = cos 6, where |x|< 1 and 0< 6 < /2. Then
1

ing =2 7 |x|, and (14) takes the form

1 1
2, k2
IXI ’

(15) 1250 - xP) < e, n

which is valid for 0< 1 - x%= cos 0 < cos ?11 It is easy to see that this condition is

satisfied if [xl 2 n-!

Define
Pglk,O)(l _ XZ)
(x) = -
gn P(kxo)(l)
n
The polynomial g, (x) is of degree 2n, and g (0) = 1. Since P(k 0) (n + k)

follows from [3; (7.32.2)] that |g_ (x)| <1 in [-1, 1], and from (15) that

1
“k-—

@< s nxl % (Ix[20™).
In particular, if |x| >n® and @ < 1,

(16) gn(x) < cg 2 -(2kt1)(1-a)

Now let r be any given positive number. Since 1 - ¢ > 0, k may be chosen so large
that, by (16), g%(x) < ¢y n°T for le > n~%, Thus (12) holds for the sequence
{gn(x) ]

If x, # 0, the same arguments apply with gn(—;-[x - XO]) in place of g_(x). This
completes the proof of Theorem 2.

The following corollary lists certain special cases of Theorem 2 which seem
worthy of mention.

COROLLARY. Suppose limy . p(x) =0 and |xo| < 1.
@) If px)<c Ix - xol'y as X — x for some positive vy, then

o, (%) > ¢ n’~
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for every positive €.

(b) If p(x) = o(|x - x4|Y) for every positive v, then
on(xg) > cyyn?.
(¢ If px)> ¢ ]x - xOP’ Jor some positive y, then

Ca

s(n~%)

o, (%) >

for every a < 1.
Proof. (a) s(n~®) < e¢n~®Y. Applying Theorem 2 with p = @y, we find that

on(xg) > ¢, Y (@<1).
For a =1 - g/fy,
on(xg) > cgn? €.

(b) Follows directly from (a).

(c) Since p can be taken arbitrarily large in (11), the assumption on p(x)
guarantees that s(n-®) is the dominant term in the denominator if p > y.
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