CELLULARITY OF SETS IN PRODUCTS

M. L. Curtis and D. R. McMillan

1. INTRODUCTION

There is no known factorization $R^n = X \times Y$ of euclidean n-space R^n in which neither factor is locally euclidean, although factorizations are known in which one factor fails to be locally euclidean (see [2] and [1]). There is a class of nonlocally euclidean spaces, which we call "pinched spaces" (see Section 5), and it seems likely that if X and Y are pinched spaces, then $X \times Y$ is euclidean space. We cannot show this, but, as a corollary to our main theorem, we have the conclusion that $X \times Y$ is a homotopy manifold.

The crucial question turns out to be whether certain sets are cellular (as defined by M. Brown [3]), and our main result is the following.

THEOREM 1. Let M^m and N^n be combinatorial manifolds, and let A and B be absolute retracts in Int M and Int N, respectively. If $\sup\{m-\dim A, n-\dim B\} \geq 2$, then $A\times B$ is cellular in $M\times N$. In fact, if $M\times N$ is triangulated as a combinatorial manifold, then $A\times B$ is the intersection of combinatorial (m+n)-cells in $M\times N$.

In the above context, $A \times B$ will be said to be *combinatorially cellular* in $M \times N$.

2. NESTED SEQUENCES OF MANIFOLDS

We collect here some results needed in proving Theorem 1.

(i) Let A be an absolute retract in Int M, and let U be an open neighborhood of A. Then there exists a finite combinatorial manifold H, with nonempty boundary, such that

$A \subset Int H \subset H \subset U$.

Such an H may be obtained as a small regular neighborhood of the closed simplicial neighborhood of A in a sufficiently fine subdivision of M.

(ii) Let $A \subset Int \ H$ as in (i). Then there exists a neighborhood V of A such that $V \subset Int \ H$ and the inclusion i: $V \to H$ is null-homotopic.

Since H is an absolute neighborhood retract, there exists an $\epsilon > 0$ with the property that if f and g are maps of a space K into H such that $\rho(f(k), g(k)) < \epsilon$ for each $k \in K$, then f and g are homotopic in H. Let r be a retraction of H onto A, and choose V to be an open set such that $A \subset V \subset \text{Int H}$ and $\rho(x, r(x)) < \epsilon$ for each x in V. Since A is contractible, V is the required neighborhood of A.

(iii) There exists a sequence $\left\{\,H_{i}\right\}$ of finite combinatorial $\,m\text{-manifolds}$, with nonempty boundaries, such that $\,H_{i+1}\subset\,\operatorname{Int}\,H_{i},\,\,A=\bigcap_{\cdot}H_{i},$ and each inclusion

 $H_{i+1} \rightarrow H_i$ is homotopically trivial. This follows immediately from (i) and (ii).

The following result is proved in [8].

Received May 17, 1962.

LEMMA 1. Suppose $M_1, M_2, \cdots, M_{k-r+1}$ is a sequence of finite combinatorial k-manifolds such that each M_i is a combinatorial subspace of M_{i+1} and each inclusion $M_i \to M_{i+1}$ is homotopically trivial. If Y is a subcomplex of M_i such that $\dim Y \le k - r - 1$ and $r \ge 2$, then Y lies in a combinatorial k-cell in M_{k-r+1} .

Returning to an absolute retract A in the interior of a combinatorial manifold M^{rn} , we define a sequence $\{H_i\}$ as in (iii) to be a special sequence for A (relative to M) if it satisfies the following additional condition: if Y is a subcomplex of H_{i+1} and dim Y \leq m - 3, then Y lies in a combinatorial m-cell in H_i . Using this terminology, we have established the following result.

LEMMA 2. If A is an absolute retract in the interior of a combinatorial manifold M^m, then special sequences for A exist. Indeed, each nested sequence of m-manifolds closing down on A contains a special subsequence.

For example, let $\{H_i\}$ be chosen as in (iii), and let $H_i' = H_{1+i(m-2)}$. By Lemma 1, $\{H_i'\}$ is a special sequence for A.

3. SPINES OF MANIFOLDS

By a *spine* of a combinatorial manifold M with boundary we mean a subcomplex K of M such that $M \downarrow K$, that is, such that M may be changed into K by a finite sequence of Whitehead elementary collapsings [9]. Thus M is a regular neighborhood of any spine of M. It is easy to see that an n-manifold with nonempty boundary has an (n-1)-dimensional spine. Our next lemma concerns n-manifolds that have (n-2)-dimensional spines.

LEMMA 3. Let A be an absolute retract of dimension at most n-2 in the interior of a combinatorial n-manifold Q^n , with Bd $Q^n \neq \emptyset$. Then there exists a combinatorial n-manifold N such that $A \subset Int \ N \subset Q^n$ and N has a spine of dimension n-2.

Proof. The result is obvious for $n \le 2$. Suppose $n \ge 3$. Now Q^n has a spine that lies in its (n-1)-skeleton and contains its (n-2)-skeleton. A small regular neighborhood T of this spine will consist of a regular neighborhood of the (n-2)-skeleton with an n-cell attached for each (n-1)-simplex. The n-cell can be considered to be the (n-1)-simplex, slightly thickened. It follows that, in some subdivision of Q^n , T contains a disjoint collection of arcs $\alpha_1, \cdots, \alpha_k$ such that each α_i has its end-points in Bd T and Int $\alpha_i \subset Int$ T, and such that if the interior of a small regular neighborhood of each α_i is removed, then the resulting manifold has an (n-2)-dimensional spine. By Whitehead's theorem [9] on uniqueness of regular neighborhoods, it follows that Q^n contains such a collection of arcs (here, and later, we permit ourselves to use the same notation for Q^n after subdivision).

The proof will be completed by showing that for $i=1,\cdots,k$, there exists a piecewise linear homeomorphism h_i of Q^n onto Q^n which is the identity on Bd Q^n and outside an arbitrarily small neighborhood of α_i , and which has the property that $A\cap h_i(\alpha_i)=\emptyset$. For then the h_i can be pieced together in the obvious manner to obtain a piecewise linear homeomorphism h of Q^n onto Q^n which is fixed on Bd Q^n and has the property that

$$A \cap \bigcup_{i=1}^k h(\alpha_i) = \emptyset.$$

We then choose N to be Q^n minus the interior of a small regular neighborhood of each $h(\alpha_i)$.

Recall a special case of a definition in [10]. If β_1 , β_2 are 1-cells contained as subcomplexes in Int M^n , we say that β_1 and β_2 differ by a *cellular move* across the 2-cell D if (Int D) \cap ($\beta_1 \cup \beta_2$) = \emptyset and Bd D has $\overline{\beta_1} - \overline{\beta_2}$, $\overline{\beta_2} - \overline{\beta_1}$ as an equatorial decomposition. The proof of Lemma 3 of [10] reveals that if such a D exists, then there exists a piecewise linear homeomorphism of M^n onto M^n that throws β_1 onto β_2 and is fixed on $\overline{\beta_1} - \overline{D}$ and outside an arbitrarily small neighborhood of D. We now use this result to obtain h_i .

Subdivide Q^n so that a 1-cell β_i in Int Q^n contains $\alpha_i \cap A$ and $\beta_i \subset \operatorname{Int} \alpha_i$. Let C_i be the closed star of α_i in the second barycentric subdivision of Q^n . Then C_i is an n-cell. Subdivide Q^n twice more barycentrically, and let C_i' be the closed star of β_i . Then C_i' is an n-cell, and

$$\alpha_i \cap A \subset Int C'_i \subset C'_i \subset Int C_i$$
.

Now $\alpha_i \cap C_i^!$ is a 1-cell that differs from a 1-cell γ_i in Bd $C_i^!$ by a move across a 2-cell in $C_i^!$. The ends of γ_i may be joined by a 1-cell δ_i in Bd $C_i^!$ - A, since Bd $C_i^!$ is (n-1)-dimensional and $H_{n-2}(A \cap Bd C_i^!; Z) = 0$. Note that, since γ_i and δ_i both lie in Bd $C_i^!$, they differ by a move across a 2-cell of $C_i^!$. Hence α_i and $[\alpha_i$ - Int $C_i^!] \cup \delta_i$ differ by two cellular moves. Thus, we can find the desired homeomorphism h_i throwing α_i onto $[\alpha_i$ - Int $C_i^!] \cup \delta_i$, where $h_i(\alpha_i) \cap A = \emptyset$. This completes the proof.

4. PROOF OF THEOREM 1

Let K_1 , K_2 , \cdots be a special sequence for B (see Lemma 2) and H_1 , H_2 , \cdots a special sequence for A. We may assume that dim $A \leq m-2$, so that, by Lemma 3, each H_i collapses to an (m-2)-dimensional subcomplex H_i of H_i . By Lemma 2 there is no loss in generality if we assume that $H_1 \times K_1$, $H_2 \times K_2$, \cdots is a special sequence for $A \times B$ relative to $M \times N$.

Let $M \times N$ be triangulated as a combinatorial (m + n)-manifold. We show that there exists a combinatorial (m + n)-cell \triangle such that $A \times B \subset \triangle \subset H_i \times K_i$.

Since K_{i+1} has nonempty boundary, it collapses onto an (n-1)-dimensional complex $K_{i+1}^!$. Hence $H_{i+1} \times K_{i+1}$ collapses onto $H_{i+1}^! \times K_{i+1}^!$, which has dimension m+n-3. By Lemma 1 there exists a combinatorial (m+n)-cell \triangle' such that $H_{i+1}^! \times K_{i+1}^! \subset \triangle' \subset H_i \times K_i$. As was shown in Lemma 1 of [8], there exists a piecewise linear homeomorphism h of $M \times N$ onto itself, fixed outside of $H_i \times K_i$, such that $H_{i+1} \times K_{i+1} \subset h(\triangle') = \triangle$. This completes the proof.

5. AN APPLICATION

If A is a compact absolute retract in euclidean n-space R^n , then the quotient space R^n/A will be called a *pinched space*. If dim A = k, we shall call R^n/A an (n-k)-pinched space.

THEOREM 2. If X and Y are p-pinched and q-pinched spaces, respectively, then $X \times Y$ is a homotopy manifold provided that either p or q is at least 2.

Proof. If a set K of \mathbb{R}^n is combinatorially cellular, then its complement is homeomorphic to the complement of a point. For we see that in the one-point compactification \mathbb{S}^n of \mathbb{R}^n , the complement of K is the union of open n-cells. Hence the complement is an open n-cell, by a theorem due to Brown [4]. Thus the complement of K in \mathbb{R}^n is an open n-cell with one point removed.

Hence we may apply a theorem due to Kwun [7]. Kwun proved that if $f: S^n \to L$ is such that each $f^{-1}(x)$ has a complement homeomorphic to the complement of a point, then L is a homotopy manifold. By Theorem 1, the quotient space map of $R^n \times R^m$ onto $X \times Y$ has this property. (Note that the sets $A \times y$ and $x \times B$ are cellular by Theorem 1, since a point is an absolute retract.) Theorem 2 is proved.

REFERENCES

- 1. J. J. Andrews and M. L. Curtis, n-space modulo an arc, Ann. of Math. (2) 75 (1962), 1-7.
- 2. R. H. Bing, The cartesian product of a certain nonmanifold and a line of E⁴, Ann. of Math. (2) 70 (1959), 399-412.
- 3. M. Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960), 74-76.
- 4. ———, The monotone union of open n-cells is an open n-cell, Proc. Amer. Math. Soc. 12 (1961), 812-814.
- 5. M. L. Curtis, Shrinking continua in 3-space, Proc. Cambridge Philos. Soc. 57 (1961), 432-433.
- 6. V. L. Klee, Jr., Some topological properties of convex sets, Trans. Amer. Math. Soc. 78 (1955), 30-45.
- 7. K. W. Kwun, A fundamental theorem on decompositions of the sphere into points and tame arcs, Proc. Amer. Math. Soc. 12 (1961), 47-50.
- 8. D. R. McMillan and E. C. Zeeman, On contractible open manifolds, Proc. Cambridge Philos Soc. 58 (1962), 221-224.
- 9. J. H. C. Whitehead, Simplicial spaces, nuclei and m-groups, Proc. London Math. Soc. (2) 45 (1939), 243-327.
- 10. E. C. Zeeman, Unknotting spheres, Ann. of Math. (2) 72 (1960), 350-361.

The Florida State University