CELLULARITY OF SETS IN PRODUCTS

M. L. Curtis and D. R. McMillan

1. INTRODUCTION

There is no known factorization R™ = X X Y of euclidean n-space R"™ in which
neither factor is locally euclidean, although factorizations are known in which one
factor fails to be locally euclidean (see [2] and [1]). There is a class of nonlocally
euclidean spaces, which we call “pinched spaces” (see Section 5), and it seems
likely that if X and Y are pinched spaces, then X X Y is euclidean space. We can-
not show this, but, as a corollary to our main theorem, we have the conclusion that
X XY is a homotopy manifold.

The crucial question turns out to be whether certain sets are cellular (as defined
by M. Brown [3]), and our main result is the following.

THEOREM 1. Lef M™ and N be combinatorial manifolds, and let A and B be
absolute retvacts in Int M and Int N, vespectively. If sup{m-dim A, n-dim B} > 2,
then A X B is cellular in M X N. In fact, if M X N is triangulated as a combinatorial
manifold, then A X B is the intersection of combinatovial (m + n)-cells in M X N,

In the above context, A X B will be said to be combinatorially cellular in M X N.

2. NESTED SEQUENCES OF MANIFOLDS

We collect here some results needed in proving Theorem 1.

(i) Let A be an absolute retract in Int M, and let U be an open neighborhood of
A. Then therve exists a finite combinatorial manifold H, with nonempty boundary,
such that

AcIntHCc Hc U.

Such an H may be obtained as a small regular neighborhood of the closed simplicial
neighborhood of A in a sufficiently fine subdivision of M.

(ii) Let A C Int H as in (i). Then theve exists a neighborhood V of A such that
V C Int H and the inclusion i: V — H is null-homotopic.

Since H is an absolute neighborhood retract, there exists an € > 0 with the
property that if f and g are maps of a space K into H such that p(f(k), g(k)) < ¢
for each k € K, then f and g are homotopic in H. Let r be a retraction of H onto
A, and choose V to be an open set such that A ¢ V < Int H and p(x, r(x)) < ¢ for
each x in V. Since A is contractible, V is the required neighborhood of A.

(iii) There exists a sequence {H;} of finite combinatorial m-manifolds, with
nonemply boundavies, such that H;,; C Int H;, A = n H;, and each inclusion
i

H;,, — H; is homolopically trivial. This follows immediately from (i) and (ii).

The following result is proved in [8].
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LEMMA 1. Suppose Mj, My, -+, Mx_r+1 iS a Sequence of finite combinatorial
k-manifolds such that each M; is a combinatorial subspace of M1 and each inclu-
sion Mj — M;+1 is homotlopically trivial. If Y is a subcomplex of M, such that
dimY<k-r-1and r> 2, then Y lies in a combinatorial k-cell in My _,,1-

Returning to an absolute retract A in the interior of a combinatorial manifold
M™, we define a sequence {Hl} as in (iii) to be a special sequence for A (relative
to M) if it satisfies the following additional condition: if Y is a subcomplex of H;,;
and dim Y < m - 3, then Y lies in a combinatorial m-cell in H;. Using this termi-
nology, we have established the following result.

LEMMA 2. If A is an absolute vetract in the intervior of a combinatorial mani-
Jfold M™, then special sequences for A exist. Indeed, each nested sequence of m-
manifolds closing down on A contains a special subsequence.

For example, let {H;} be chosen as in (iii), and let H{ = H}4;(;.2). By Lemma
1, {Hj} is a special sequence for A.

3. SPINES OF MANIFOLDS

By a spine of a combinatorial manifold M with boundary we mean a subcomplex
K of M such that M | K, that is, such that M may be changed into K by a finite se-
quence of Whitehead elementary collapsings [9]. Thus M is a regular neighborhood
of any spine of M. It is easy to see that an n-manifold with nonempty boundary has
an (n - 1)-dimensional spine. Our next lemma concerns n-manifolds that have
(n - 2)-dimensional spines.

LEMMA 3. Let A be an absolute vetract of dimension at most n - 2 in the in-
tevior of a combinalorial n-manifold Q™, with Bd Q™+ §. Then there exists a com-
binatorial n-manifold N such that A C Int NC N c Q™ and N has a spine of dimen-
sion n - 2.

Proof. The result is obvious for n < 2. Suppose n> 3. Now Q" has a spine
that lies in its (n - 1)-skeleton and contains its (n - 2)-skeleton. A small regular
neighborhood T of this spine will consist of a regular neighborhood of the (n - 2)-
skeleton with an n-cell attached for each (n - 1)-simplex. The n-cell can be con-
sidered to be the (n - 1)-simplex, slightly thickened. It follows that, in some sub-
division of Q”, T contains a disjoint collection of arcs @y, ---, @k such that each
@ ; has its end-points in Bd T and Int @; C Int T, and such that if the interior of a
small regular neighborhood of each «; is removed, then the resulting manifold has
an (n - 2)-dimensional spine. By Whitehead’s theorem [9] on uniqueness of regular
neighborhoods, it follows that Q™ contains such a collection of arcs (here, and later,
we permit ourselves to use the same notation for Q™ after subdivision).

The proof will be completed by showing that for i = 1, -+, k, there exists a
piecewise linear homeomorphism h; of Q™ onto Q™ which is the identity on Bd Q"
and outside an arbitrarily small neighborhood of «a;, and which has the property that
A N hij(a;) = f. For then the h; can be pieced together in the obvious manner to ob-
tain a piecewise linear homeomorphism h of Q™ onto Q™ which is fixed on Bd Q"
and has the property that
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We then choose N to be Q minus the interior of a small regular neighborhood of
each h{g;).

Recall a special case of a definition in [10). If 8,, 8, are 1-cells contained as
subcomplexes in Int M™, we say that 8, and B, differ by a cellular move across the
2-cell D if (IntD) N (8, U B,) =P and Bd D has B, - B,, 8, - 8, as an equatorial de-
composition. The proof of Lemma 3 of [10] reveals that if such a D exists, then
there exists a piecewise linear homeomorphism of M™ onto M that throws $; onto
B, and is fixed on B, - D and outside an arbitrarily small neighborhood of D. We
now use this result to obtain hj.

Subdivide Q™ so that a 1-cell g; in Int Q™ contains @; N A and B; C Int @;. Let
C; be the closed star of @; in the second barycentric subdivision of Q™ Then Cj is
an n-cell. Subdivide Q™ twice more barycentrically, and let Ci' be the closed star
of Bi. Then C{ is an n-cell, and

@; NAcIntC;c Cjc Int C,.

Now a; N Cj is a 1-cell that differs from a 1-cell y; in Bd C} by a move across a
2-cell in C;. The ends of y; may be joined by a 1-cell 6; in Bd Cj - A, since

Bd Ci is (n - 1)- dimensional and H,_»(A N Bd Ci; Z) = 0. Note that since y; and

0; both lie in Bd Cl, they differ by a move across a 2-cell of Cl. Hence a; and
[a1 Int Cji] U 8; differ by two cellular moves. Thus, we can find the desired homeo-
morphism h; throwing «; onto [a; - Int C;] U 8, where hij(@;) N A =@. This com-
pletes the proof. '

4. PROOF OF THEOREM 1

Let K,, K,, *-* be a special sequence for B (see Lemma 2) and H,, H,, --- a
special sequence for A, We may assume that dim A < m - 2 so that, by Lemma 3,
each H; collapses to an (m - 2)-dimensional subcomplex H of H;. By Lemma 2
there 1s no loss in generality if we assume that H; X K,, H, X K,, - is a special
sequence for A X B relative to M X N,

Let M X N be triangulated as a combinatorial (m + n)-manifold. We show that
there exists a combinatorial (m + n)-cell A such that A X Bc A c H; X K;.

Since K;;, has nonempty boundary, it collapses onto an (n - 1)-dimensional com-
plex K1+1 Hence Hjy) X Kj41 collapses onto Hjyj X Kl+1, which has dimension
m + n - 3. By Lemma 1 there exists a combinatorial (m + n)-cell A' such that
Hi;1X Kit1C A' € H; X K;. As was shown in Lemma 1 of [8], there exists a piece-
wise linear homeomorphism h of M X N onto itself, fixed outside of H; X Kj, such
that H; y X K;;; € h(A') =A. This completes the proof.

5. AN APPLICATION

If A is a compact absolute retract in euclidean n-space R™, then the quotient
space R"/A will be called a pinched space. If dim A = k, we shall call R"/A an
(n - K)-pinched space.

THEOREM 2. If X and Y ave p-pinched and q-pinched spaces, respectively,
then X XY is a homotopy manifold provided that either p ov q is at least 2.
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Proof. If a set K of R™ is combinatorially cellular, then its complement is
homeomorphic to the complement of a point. For we see that in the one-point com-
pactification S™ of R™, the complement of K is the union of open n-cells. Hence the
complement is an open n-cell, by a theorem due to Brown [4]. Thus the complement
of K in R™ is an open n-cell with one point removed.

Hence we may apply a theorem due to Kwun [7]. Kwun proved that if f: s - L
is such that each f-*(x) has a complement homeomorphic to the complement of a
point, then L is a homotopy manifold. By Theorem 1, the quotient space map of
R™ x R™ onto X X Y has this property. (Note that the sets A Xy and xX B are
cellular by Theorem 1, since a point is an absolute retract.) Theorem 2 is proved.
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