APPROXIMATION OF ALGEBRAIC NUMBERS BY
ALGEBRAIC NUMBERS

R. Giiting

Let P(x) = Z]-¢ a;x"* be a polynomial with arbitrary complex coefficients whose
leading coefficient an is not 0. We call n the degree, h = max<, |ai| the height,
and s = Zf, |a1| the size of the polynomial P(x). To every algebraic number «
there corresponds a polynomial P(x) of lowest degree with P(a) = 0 and such that
its coefficients are rational integers without a common divisor. The degree, the
height, and the size of this polynomial are called the degree, the height, and the size
of o, respectively. We denote the set of all polynomials with rational integral co-
efficients whose degrees, heights, and sizes are n > 0, h > 0, and s > 0, respec-
tively, by $(n, h, s), and the set of all algebraic numbers satisfying the same condi-
tions by % (n, h, s). By $*(n, h, s) we denote the corresponding set of polynomials
with arbitrary complex coefficients. In order to have a simple way of stating the
theorems, we shall make use of these symbols even if not all of the numbers n, h,
and s are actually needed.

It is well known that, for an algebraic number a € UA(m, h, s), the value of a
polynomial P(x) € $(n, k, t) for which P(a) # 0 cannot be arbitrarily small. In T.
Schneider’s Einfiihvung in die transzendenten Zahlen we find the proof of the follow-
ing theorem [10, Theorem 3]:

Let o € A(m, h, s) be an algebraic number whose leading coefficient is a, and
let P(x) € P(n, k, t) be a polynomial for which P(a) # 0. Then

(1) |P(@)| > |al®m @+ 1)-2(m-1) (4 4 1)-n(m-1)g-(m-1),

. A similar theorem holds for polynomials in several variables. N. I. Feldman
([3], Lemma 6; [4], Lemma 2) proved the following result:

Let
Ny N N
i; i i
A(xy, *+0, X)) = 2 X L 2iigeeein X fx2..x™
il=0 5.2:0 im=0
be a polynomial in m vavriables xj, of degrees N; in x; (i=1, 2, ---, m), with ra-

tional integral coefficients satisfying the inequality ailiz"‘im| < h. Let

o; € Ay, hy, s;) (i=1,2, -, m) be m algebraic numbers for which
A(al’ Q2, -, am) #0;

and let q be the degree of the field R(ay, ay, *++, @y,) over the field R of rational
numbers. Then

Nj+Np4ese+N N;/n; N N )
2) |Alay, az, -, am)|> (8 e ™hh, 1/ 1hz 2/nz-.. hmm/nm) 1,
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(I proved Theorem 6 of the present paper in November, 1960, without knowing of
the papers [3] and [4] of Feldman.)

Related to the problem of finding lower bounds for the values of polynomials at
algebraic points is the following question: If o, € %(n,, h,, s;) and a, € A(n,, h,, s,)
are different algebraic numbers, what can be said about their difference in terms of
their degrees, heights and sizes? Clearly, an inequality of the type (2) can be ap-
plied to this problem (one need only consider the polynomial A(x,, x,) = X, - X,). E.
Bombieri [1] found, for such pairs of numbers, the bound

-3nn, -ny -ny

(3) |a1 - azl > (41’11 nz) hl hz

While Bombieri considered only algebraic numbers, K. Mahler [7] generalized these
theorems to the zeros of two polynomials with arbitrary complex coefficients. He
proved the following theorem:

Let y be any zevo of the polynomial P(x) € $*(m, h, s), let & be any zevo of the
polynomial Q(x) € B*(n, k, t), and let R denote the vesultant of P(x) and Q(x). Then
either

@ |y-8/>1 or |y-5]> {m+ 1% @+ 1)2™4™0¢(@, Q¥ k™}! |R|,

where c(P, Q) is 1 when at least one of the polynomials has only veal zevos, and
wheve otherwise ¢c(P, Q) = min(m + 1, n+ 1).

Mahler derived also a lower bound for the difference of distinct zeros y; and v,
of a single polynomial. His result is as follows:

Let v, and vy, be two diffevent zevos of the polynomial P(x) € $*(m, h, s) with
discviminant D. Then

(5) Iy - 75| > {(m + )%™ 2% o(py™* p2m-11-1 |ap)|

where a is the leading coefficient of P(x) and wheve c(P) is 1 when all zevos of
P(x) are real, while othevwise c(P) has the value m + 1. (Prof. Mahler told me the
estimates (4), (5) and (6) on July 8, 1960. At that time I had proved weaker theorems
than these stated here, because I had used, instead of the inequality (6) of Mahler,
the inequality |7117iz'"‘)’im| <2"(m+1) h/] a] of N. 1. Feldman [2, Lemma 2],)

Inequalities of the type (1), (2), (3), (4), and (5) are important in the theory of
transcendental numbers (see, besides the references mentioned above, the book by
A. O. Gelfond [5, Section 2, Lemmas 2 and 3]). Clearly, an inequality such as (1)
can be used to construct transcendental numbers. It was the idea of Mahler [6] to
use the accuracy with which polynomials in transcendental numbers v approximate
the number 0 as a means of classifying the transcendental numbers. Similarly, J.
F. Koksma [9] subdivided the transcendental numbers into different classes accord-
ing to the accuracy with which they can be approximated by algebraic numbers.

The purpose of this note is to give new proofs for these inequalities and to sharp-
en them. The first four theorems deal with polynomials with arbitrary complex co-
efficients and their zeros. The last four theorems are applications of the first four
theorems to polynomials with rational integral coefficients and to algebraic numbers.
The improvement of the inequality (1) is contained in Theorem 5. Theorem 6 is a
generalization of Theorem 5 to polynomials in m variables, and it represents an
improvement of Feldman’s inequality (2). The improvements of Mahler’s inequali-
ties are given in Theorem 3 and Theorem 4.
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We use in an essential way the following result of Mahler [8], which is a sharp-
ening of a lemma of Feldman [2, Lemma 2]

LEMMA 1. Let P(x) € $*(n, h, s) have the leading coefficient a and the zeros
Y1, Y25 ***s Yn- Then, if the subscripts i1, iz, ***, im arve distinct,

(6) v, vi, - 7i | < /]2l <+ Dh/al.

The following is an immediate consequence.
LEMMA 2. Under the conditions of Lemma 1,

(7 max (1, l-yill) max (1, |-yizl) -..max (1, ]yiml) < s/|la] < (n+ 1h/]|al.

LEMMA 3. Lety be a voot of the polynomial P(x) = a(x - y) (X - ¥2) > (X - )
in B*(n, h, s), and let 6 be any complex number (| 6| <1). Then

| P©®)]
-0 .
(8) |Y IZ zn...ls

Proof. We establish first the inequality

lal [ (6 - %) (6 - 3) =+ (6 - )| < 2™ s,

When we write out the product on the left side, we get a sum of -1 terms. By
Lemma 1, the products of numbers y; in each of these terms are bounded by s/ | a.I .
Since |8]| < 1, each term is bounded by |a|(s/|a|)-1=s. This implies that

| P(5)] 5 12O
lal [ (6 - ¥2)(6 - ¥3)++- (6 - yn)| = 27-15
LEMMA 4. Lety be a zevo of the polynomial P(x) € $*(n, h, s), and let a be
the leading coefficient of P(x). Then |-y| < 2h/ l al .

Proof. The proof of the first lemma of Schneider’s book [10] can be used. One
has only to replace @ by y and a, by a. From Schneider’s result, |y| < h/|a] + 1,
Lemma 4 follows since h > [a|.

ly - 6] =

We are now ready to prove

THEOREM 1. Let P(x) € $*(n,, h,, s,) and Q(x) € $*(n,, h,, s,) be fwo poly-
nomials, and let v be one of the zeros of Q(x). Then

IRl IR|

-1 = -1 ?
s];l2 521 {(n; + 1)h1}nz {(n, + 1)h?_}nl

(9) | PG| >

where R denotes the resultant of the polynomials P(x) and Q(x). For n, = 2,

R R
Rl =

(2h2)n1 Sy - (2hz)n1 (n]_ + l)hl

(10) |Pe)| >

Proof. Let y =v1, 72, ***, ¥n, be the zeros of Q(x). Let the absolute value of the
leading coefficient of Q(x) be denoted by c¢. Then
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ny
|R| = c™II |PGy)]|.
i=1
Hence
(11) | Pey)| = Rl

nl anZ lP('yl)I
For i =2, 3, .-+, n,, we have
|P@y)| < sy max(1, |r[™).

It follows that

ny 1n2 ng ny
n,- n

II Pl < sl2 II max(, lys| ) = s H max (1, ['yll))

i=2 i=2

By applying Lemma 2 to the last product, we get

n,
-1
I Py)| <8P (s2/c)
i=2
Hence, by (11), we obtain
|R| |R|
|P(Y)|Z n, -1 Y | n,

(/0™ 877 83

The inequality (10) is obtained in the following way: By Lemma 4, |'y2| < 2hy/c.
Thus

|P@,)| < s1(2hy/c) .

Since |R|=c |PO)|]| Ply)|, we get

1 P0)| > R __IRl |R] .
T c™s; (2hy/cf’t (2hy) sy (2hz) t(np + 1h)

This completes the proof of Theorem 1.
We now prove the following generalization of Theorem 1:
THEOREM 2. Let
N; N, Ny

= Z Z: oo E as; XIIXZZ'“le

C(xl’ XZJ ree, X 1112‘ -1
i]_=0 iz=0 im

m)

be a polynomial with arbitrary complex coefficients in m wvariables xj, of degrees
N; in x; (i=1, 2, ---, m), and of size
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N; N, Np

s = E E"' E Ia

$igenipgl?
1120 i,=0 ig=0 2T

and let s = max (1, s). Let P;(x) € P*(n;, h;, s;) be m polynomials which have the
Zeros i = Vi1, Yiz,» **'s Yin., @nd let b; denole the absolute value of the highest co-
1

efficient of Pyx). If Clyy, v2, ***s Ym) # 0, then

'C(YI » 'yz’ *ty Ym)l

Ny/n,

N n -nin seen
e (Srn/bm) m/ m) 172 l

> 3(er/m0™ ™ (s2/b2) s,

where
n; =np 2
S = H H oo I-{ C(')’lila 72i2’ ) Ymim) .

ip=liy=1 i =1

S can be veplaced by any product of factors Cly, i’ 7212’ . ) that contains at
m

*» Vmi
least the factor Clyy, vz, ***, Vo) @nd in which any two factors differ in at least one
subscript. In particular, all vanishing factors can be omitted.

Proof. Let S be any product of factors C('ylil, 7’212’ Y Ymi ) with the men-
m
tioned properties. For brevity, put C = C(y1, ¥2, ***, ¥;n)- Then evidently

(12) S/c<T/C,

where T arises from S on replacement of each factor C(y Lip ¥ 2ip s Ymipy) Of S
by max{1, |C(, 115 Y2iys s Ymiyy,) |}. Since the subscripts of two factors of the
product S differ in at least one subscript, it is evident that
ni nz Dm
T

(13) o< Il I - II max{1, |Cl1s, vai,, = Yemi )| T -

i1=1 i,=1  ip=1

(il,too'im)#l’-o-’l)
We now use the inequality

m

. N.
b J
ma'x{l’ Ic(ylil, YZiz’ ) ymim)l} S SJI—II max(l, IYJlJl ),
which holds for each factor in (13). It follows that
ng nj N m N
-n] 1 .n
II ma.x{l, IC(’)’lil, ) Ymim)l} <s I1 max (1, |7’111| )H max (1, lyjij] J 1)
il=1 i1=1 j=2

m
-nj Nj N:n;
<s (sy/by II {max(1, |inj|)}J ,
j=2
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where the last inequality is obtained by Lemma 2. In the same way, we find that

nj] nz
II II max{1, |Clriiy, v2ip = Ymi )|}
iz=1 ip=1
n1n2 Ninp nlnz
<5 (5 /0y) Tepby) H{maxa lvsi; )} K
j=3
and finally
ni na Im
II II - II max{1, lC(th, Y2i, "‘,‘}’mim)l}
i1=1 iz=1 im=1
(14) (ilt".!im):#(l vee,1)
_njnzesen -1 Nl/nl Nz/nz Nm/n nynpeesn,,
<3 ™ (s1/by) (s2/b2) e (Sm/br) )

The theorem now follows from the inequalities (12), (13) and (14).

THEOREM 3. Let P(x) € $*(ny, hy, s,) and Q(x) € P *(n,, h,, s,) have zeros y
and 0, vespectively. Then

IR|
zma»X(npnz)-l Sriz Sr;} ’

(15) lv - 6] >

where R denotes the vesultant of P(x) and Q(x).
Proof. We distinguish three cases.
1) If I'yl < 1, then, according to Lemma 3,

ly - o] > QW) |
2-1_°
S2
By Theorem 1 it follows that
|R| |R|
-8 .
‘7 |_>_ 9Pz -1 55 Sr112 Sl;;jl -1= 2max(n1,n2)—l Sl{llz sléll

2) If |¥|> 1 and |6| < 1, we find, as in part 1, that

|R| |R|

n; -1 nz n; = ,max(n,n,) -1 g 2 1'11
2 sz 2 ’ Sy 82

ly - 8] >

3) If |'y| > 1 and Ibl > 1, we consider 1/y and 1/8. Let P(x) =x 1p(1/%).
Then P(1/y) = 0. Since the degree the height and the size of P(x) are the same as
those of P(x), we see that P(x) € $*(n,, h,, s,). Similarly,

) = x 2 Q(1/x) € P*(ny, hy, ;).
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Since Il/'yl < 1, the inequality (15) holds when ¥ and 0 are replaced by 1/y and
1/6. But

e 424

This concludes the proof of Theorem 3.

Theorem 3 does not give an estimate for the difference of zeros of one poly-
nomial, since in this case R = 0. Therefore we prove

THEOREM 4. Let P(x) € B*(n, h, s) rave zeros vy, Y2, ***, Yn- Then, for any
subscripts iy and i, (i, # i,),
by -7 |> |aD|'/2
Vig = Yil Z (4n)(m-2)/2 g(2n-1)/2

where a denotes the leading coefficient and D the discriminant of P(X).
Proof. From

n
- 2
D=a”"21l ;- )" and Ph=all tri-r0,
i<k k=1
et

where P'(x) stands for the derivative of P(x) with respect to x, it follows that

n
D=a"21l py).
i=1
Without loss of generality, we can assume that i, =1 and i; = 2. Since
P'y1) =aly1 - v201-v3) - 1 - vn)
and
Pi(yy) =aly, - v, -v3) -7,
we obtain
| P! P'(r2)]

Y1 - 72'2 = >
a1 -7 - v4) 01 - V)2 - ¥3) - ly2 - va)]

_ |D|
|a™ @1 - ¥3)01 - 4) o () - Y)Wz - ¥3) s (rp - vo) I3 P's)|

For the factors in the denominator we have the bounds
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|y - v3) @1 - Y2 -¥3) 2 - ¥

n
< 47 2max (L, |y, P2 max (1, |y, [*2) I max(, |yl
i=3

and

< (08)® 2 IT max(1, )™~ .

n
IT Py
i=3 i=3

The last inequality holds because P'(x) € $*(n - 1, nh, ns). Therefore we get

| D]
~ |al® (4ns*-% o e {max (1, lyll)}n+1

|71 'Yzl

It follows from Lemma 2 that
|D| __lap|
- Ialn (4ns)n 2 (S /Ial)n'i'l (4n)n—2 SZn—l

|71 '7’2|'2

By taking square roots, we obtain Theorem 4.

We now apply these theorems to algebraic numbers and polynomials with rational
integral coefficients.

THEOREM 5. Let a € %(m, h, s) and P(x) € B(n, k, t) be such that P(a) + 0.
Then

1 1
(16) [P@)]> gnim-1 2 {(m+ Dh}™ {(n + Dk}™-1"
If m=2 then
(17) |p(a)] > > L

(2h)™*t— (2h)*(n + 1)k

Proof. Let Q(x) € $(m, h, s) be the polynomial for which Q(a) = 0, and let
a1, az, -+, &m be the conjugates of . Q(x) is irreducible, since according to the
definition of %A(m, h, s), it is the polynomial of lowest degree that vanishes for «.
Hence it follows from P(a) # 0 that P(a;) # 0 for i=2, 3, ---, m. This implies that
the resultant R of P(x) and Q(x) does not vanish, and since R is an integer, |R| > 1.
From Theorem 1 we now obtain the inequalities (16) and (17).

THEOREM 6. Let

Nl NZ Nm .
iy i im
A(xy, x5, *0, X)) = 2 2 Aiyi,emeig, X1 X2 "Xy
i1=0 iz=0 im=0
be a polynomial in m variables x;, of degrees N; in x; (i=1, ---, m), of size s,

and with vational integral coefficients. Let a; € %(nj, hy, s;) (i=1,2, -, m) be m
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algebraic numbers for which Alay, az, *+, &) # 0, and let q be the degree of the
finite algebraic extension which is obtained by the adjunction of the algebraic num-
bers ai, ap, -+, 0y to the vational number field. Then

Nj/ny; Np/np  Np/ng -q
|A(Ol1, Ao, -, O m)|> ( S2 "Smm m) :

Proof. Let aj1, aj2, -, @jq be the field conjugates of «;. Since
A= A(a].’ az, -, am)

is a nonzero algebraic number, we know that its norm N(A) does not vanish, and we
have

q
(18) N(A) = II Aoy, @, o0, api).

i=1
From this it follows that

N(A)

(19) A(a].’ 012.; ."’ am) = q .
Oy, Alay;, oy, =0y Qi)

For each i=2, 3, ---, q, we have the inequality

m

N.

Alay, oy, =y 00) < sH a < s I max(, Iajil) J,
j=1 j=1

Hence we obtain
q q m N
H A(ali, O, **°, aml _<_ H H max(l, IOEJII) J.
i=2 i=1 j=1

Now the set of the q field conjugates of a; consists of q/ nj sets of the conjugates of
o ;. Hence, by applying Lemma 2 separately to each set of conjugates of a; j» we get
the mequahty

q Q/n
(20) I Aty ay;, -, i) < 897 ! H (—l) J
i=2 j=1

where aj is the absolute value of the leading coefficient of the polynomial
Pj(x) € $(nj, hj, sj) for which P(aj) = 0.

We now prove the inequality

m N.q/n;
(21) Nay>I (L) 777
j=1 - 2j

From (18) we have
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q Ny N N, i i ;
2 m
(22) NO=II T T2 ay,_oilaZoa
i=1 i1=0 i2=0 i,,=0

As i assumes the values 1, 2, -+, q, every conjugate aji of a; (j=1,2, ---, m) is
assumed q/n j times. Therefore the exponent of o ji in each term of (22) is not
greater than Njq /nj. This means that

N(a) IT 2™/
j=1

is an algebraic integer, and since N(A) is a rational number, it follows that it is a
rational integer. From N(A) # 0 we finally deduce the inequality (21). Now the in-
equality of the theorem follows immediately from (19), (20) and (21).

COROLLARY. Let a; € %(n;, h;, s;) be different algebraic numbers for i=1, 2.
Then

|a1 - o, !Z 21—q(si/n1 S;/nz)-q’

wheve q is the degree of the field R(a,, o,).
Proof. Take A(x,, X,) = X; - X, in Theorem 6.
‘In the case q = n, n,, the following theorem gives a sharpening of this corollary.

THEOREM 7. Lel a € %(ny, h,, s,) and B € A(n,, h,, s,) be nonconjugate alge-
braic numbers. Then

|e - B| > gl -max(ny,ny) sinz sinlz g1-max(ny,n;) {(n; + 1)h1|}-n2 {(n, + l)h‘-_,-}—nl .

Proof. The suppositions about @ and g8 imply that the resultant R in Theorem
3 is a nonvanishing integer. '

For conjugate algebraic numbers we find the following result:

THEOREM 8. If a, € %(n, h, s) and a, € %(n, h, s) are conjugate algebraic
numbers, then
@3) oy - ap|> @y (B2 g-@n-1/2 5 (4 y-(0-2)/2 1) | gypy-(2n-1)/2

Proof. Let P(x) € $(n, h, s) be the polynomial for which P(a,) = P(a,) = 0.
Then P(x) is irreducible. Hence the discriminant D of P(x) does not vanish. Since
the coefficients of P(x) are integers, it follows that |D| > 1 and that |a|> 1. By
using Theorem 4, we obtain the inequality (23). o
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