ON METRIC PROPERTIES OF COMPLEX POLYNOMIALS

Ch. Pommerenke

Let

$$f(z) = \prod_{\nu=1}^{n} (z - z_{\nu}) = z^{n} + \cdots$$

This paper deals with metric properties of the lemniscate domain

$$E = \{ |f(z)| < 1 \}$$
 .

It will give (at least partial) answers to some problems raised by Erdös, Herzog and Piranian [2]. Also, some metric properties of continua of capacity 1 will be derived.

Section 1 treats the diameters of the components of E. After some counter-examples, a lower bound for the largest diameter will be given, for the case where $|z_{\nu}| \le r \le 1$.

In Section 2 it will be proved that E contains a disk of radius const·n⁻⁴, if $z_{\nu} \in [-2, +2]$.

In Section 3 it will, for instance, be shown that $d \leq 4 \cdot 2^{-1/n}$ and $\Lambda < 74n^2$, where d is the measure of the projection of E onto the real axis and Λ is the perimeter of E.

Section 4 deals first with some necessary or sufficient conditions for the connectedness of E, and then with some consequences of connectedness.

The last section is concerned with the convexity of E and two related problems.

1. THE DIAMETERS OF THE COMPONENTS OF E

There is a close connection between lemniscate domains E and compact sets F with cap F = 1. Here cap F denotes the (logarithmic) capacity of F, also called the transfinite diameter of F. Every lemniscate domain $E = \{ |f(z)| \le 1 \}$ generated by $f(z) = z^n + \cdots$ has capacity 1 [4], and conversely the following approximation theorem holds [5]:

Let F be a closed bounded set with cap F=1. Given any $\epsilon>0$ and $\eta>0$, there exists a ρ $(1<\rho<1+\eta)$ and a polynomial $f(z)=z^n+\cdots$ such that the lemniscate $\left\{ \left| f(z) \right| = \rho^n \right\}$ contains F in its interior and is contained in an ϵ -neighborhood of F.

We shall now apply the approximation theorem to some problems of Erdös, Herzog and Piranian [2]. Let E have the components E_j , of diameters d_j . Then Problem 8 asks whether

$$\sum$$
 max (0, d_j - 1)

Received November 26, 1960.

is bounded in the class of all polynomials with highest coefficient 1. Problem 9 (revised form [2, p. 148]) asks whether the number of components with diameter greater than 1 is bounded in the same class, for l>1 and fixed. The following theorem shows that the answer to these two questions is negative, even with d_j -1 (l < 4) instead of d_i -1 in Problem 8, and with any l < 4 in Problem 9.

THEOREM 1. For each 0 < l < 4 and $k = 1, 2, \cdots$, one can find a polynomial $f(z) = z^n + \cdots$ such that $E = \{ |f(z)| \le 1 \}$ has at least k different components of diameter greater than or equal to l.

Proof. Let F be the union of the k segments $[i\mu\delta, 1+i\mu\delta]$ $(\mu=1, \cdots, k,$ and $\delta>0$). Since the capacity of a segment is 1/4<1, we have cap F<1 if $\delta>0$ is small enough (for reasons of continuity). The approximation theorem ensures the existence of a polynomial f(z) such that E contains F and is contained in a $\delta/3$ -neighborhood of F. Those k of the components of E that contain the k segments of F are therefore different and have diameters at least 1.

I want to deal again with Problem 10 b of [2]. Let z^* be a point of E that lies on a line of support of E. Erdös, Herzog and Piranian asked whether E contains a point z with $|z - z^*| \ge 2$. I have proved [9] that this is not always true. The next theorem gives the exact constant by which 2 has to be replaced.

THEOREM 2. If $z^* \in E$ lies on a line of support of E, there exists a point $z \in E$ with $|z - z^*| > 3\sqrt{3}/4 \approx 1.299$. The constant $3\sqrt{3}/4$ is best possible.

Proof. The function

$$w = \frac{e^{-\pi i/6} (1 + z^{-1})^{2/3} + e^{\pi i/6} (1 - z^{-1})^{2/3}}{(1 + z^{-1})^{2/3} - (1 - z^{-1})^{2/3}} = \frac{3}{4} \sqrt{3} z + \cdots$$

maps the exterior region of the half-disk $\{|z| \le 1, \Im z \ge 0\}$ conformally onto |w| > 1. Hence the half-disk

$$H = \{ |z| \le 3\sqrt{3}/4, \Im z \ge 0 \}$$

has capacity 1. We may assume that $z^* = 0$ and that E is contained in $\Im z \ge 0$. If the theorem were not true, it would follow that $|z| \le 3\sqrt{3}/4$ for all $z \in E$ and thus $E \subset H$. Since cap H = 1 = cap E, we have E = H. This equation can not hold, since the half-disk H is not a lemniscate domain. The approximation theorem shows that $3\sqrt{3}/4$ is the best possible constant (see [9]).

Let the zeros z_{ν} of f(z) belong to the disk $|z| \leq r$. Erdös, Herzog and Piranian [2, Problem 7] raised the question whether there is always a component of E with diameter at least 2 - r (r < 2). The answer is negative for r > 1. To show this, let $f(z) = z^n - r^n$ (r > 1). Then the set $E = \{|z^n - r^n| \leq 1\}$ has n components. If z belongs, for instance, to the component that contains the zero r and if $z^n - r^n = \omega$ ($|\omega| \leq 1$), then for $n \to \infty$

$$\begin{aligned} \left| z - r \right| &= \left| (r^{n} + \omega)^{1/n} - r \right| &= r \left| 1 + \omega n^{-1} r^{-n} + O(n^{-2} r^{-n}) + \dots - 1 \right| \\ &\leq n^{-1} r^{-n+1} (1 + O(n^{-1})) \to 0. \end{aligned}$$

Hence the (common) diameter of the components of E tends to 0 as $n \to \infty$. We shall need the following two lemmas to treat the case $r \le 1$.

LEMMA 1. Let

$$f(z) = \prod_{\nu=1}^{n} (z - z_{\nu}), \quad z_{0} = \frac{1}{n} \sum_{\nu=1}^{n} z_{\nu}, \quad \sigma^{2} = \frac{1}{n} \sum_{\nu=1}^{n} |z_{\nu}|^{2}.$$

If $\sigma^2 - |z_0|^2 \le 1$, the disk

$$|z - z_0| \le (1 - \sigma^2 + |z_0|^2)^{1/2}$$

is contained in $E = \{ |f(z)| \le 1 \}$.

Proof. Since the geometric mean is less than or equal to the arithmetic mean,

$$\begin{split} |f(z)|^{2/n} &= \left(\prod_{\nu=1}^{n} |z - z_{\nu}|^{2}\right)^{1/n} \\ &\leq \frac{1}{n} \sum_{\nu=1}^{n} |z - z_{\nu}|^{2} = \frac{1}{n} \sum_{\nu=1}^{n} (|z|^{2} - 2\Re[\bar{z}z_{\nu}] + |z_{\nu}|^{2}) \\ &= |z|^{2} - 2\Re[\bar{z}z_{0}] + \sigma^{2} \\ &= |z - z_{0}|^{2} - |z_{0}|^{2} + \sigma^{2}, \end{split}$$

and this quantity is at most 1, for $|z - z_0|^2 \le 1 - \sigma^2 + |z_0|^2$ (≥ 0).

LEMMA 2. If A is a continuum, $A \subset E$, and $z_{\nu} \in A$ for $\nu = 1, \dots, n$, then E is connected.

Proof. It follows from the maximum principle that each component of E contains at least one zero. Because $z_{\nu} \in A \subset E$, the zeros z_{ν} can be connected within E, and E is itself connected.

THEOREM 3. Let $f(z)=\Pi\,(z-z_{\nu}),\ |z_{\nu}|\leq r\leq 1$, and let d_0 be the diameter of the component E_0 of E that contains 0. Then

$$\begin{array}{lll} d_0 \geq 2 & & \text{for} & 0 \leq r \leq 1/2 \; , \\ \\ d_0 > 1/r & & \text{for} & 1/2 < r \leq (\sqrt{5} \; \text{--} \; 1)/2 \; , \\ \\ d_0 > 2 \; \text{--} \; r^2 & & \text{for} \; (\sqrt{5} \; \text{--} \; 1)/2 \leq r \leq 1 \; . \end{array}$$

Remarks. 1. Since $|f(0)| = \Pi |z_{\nu}| \le 1$, the point 0 belongs to E. Therefore it is meaningful to speak of the component E_0 of E containing 0. Lemma 1 shows that the centroid z_0 lies in E_0 (compare Theorem 1 of [2]).

2. The inequality $d_0 \ge 2$ for $r \le 1/2$ cannot be improved, as the example $f(z) \equiv z^n$ shows. Also, the polynomial

$$(z^{n} + 1)(z - 1)^{2} (z - e^{i\pi/n})^{-1} (z - e^{-i\pi/n})^{-1}$$

has $d_0 < 1 + \epsilon$ for sufficiently large n (see the proof of Theorem 7 in [2]). Hence the inequality $d_0 > 1$ is best possible, for r = 1.

3. Since all three bounds 2, r⁻¹, and 2 - r² are greater than or equal to 2 - r, Theorem 3 answers Problem 7 of Erdös, Herzog and Piranian affirmatively, for $0 < r \le 1$.

Proof. Let $|z_{\nu}| \le 1$ and $f(z) \ne z^n$. We shall first prove that E_0 contains a point in |z| > 1. This assertion is trival if a zero z_{ν} with $|z_{\nu}| = 1$ belongs to E_0 . Since E_0 contains at least one zero (by the maximum principle), we may therefore assume that at least one of the z_{ν} lies in |z| < 1, so that |f(0)| < 1. The polynomial

$$g(z) = \prod_{\nu=1}^{n} (1 - \bar{z}_{\nu} z)$$

is not constant and satisfies |g(z)| > |f(z)| for |z| < 1 and |g(z)| = |f(z)| for |z| = 1. Suppose that E_0 is contained in $|z| \le 1$. Then $|g(z)| \ge |f(z)| = 1$ holds for the boundary points of E_0 . Since $g(z) \ne 0$ in |z| < 1 and $|g(z)| = |f(z)| \ne 0$ on $\{|z| = 1\} \cap E_0$, the function g(z) has no zeros in E_0 . Therefore the minimum principle implies that |g(z)| > 1 for all interior points of E_0 . But g(0) = 1, and 0 is an interior point of E_0 , since |f(0)| < 1.

- 2. Let $0 \le r \le 1/2$. Then it is obvious that $|f(z)| \le 1$ for $|z| \le 1/2$. Hence Lemma 2 shows that E is connected. Thus $E_0 = E$, cap $E_0 = 1$, and the inequality $d_0 \ge 2$ follows from the fact that every continuum of capacity 1 has a diameter at least 2.
- 3. Let $1/2 < r \le (\sqrt{5}-1)/2$ and $z_0 = n^{-1} \Sigma z_\nu$. Since $\sigma^2 = n^{-1} \Sigma \left|z_\nu\right|^2 \le r^2$, Lemma 1 implies that the disk

(1)
$$|z - z_0| \le (1 - r^2 + |z_0|^2)^{1/2}$$

lies in E_0 . If $|z_0| \le (1 - 2r^2)/(2r)$ (>0), then E_0 contains the disk of center 0 and radius $(1 - r^2 + |z_0|^2)^{1/2} - |z_0|$. Since this radius is a monotone decreasing function of $|z_0|$, it is not less than

$$\left(1-r^2+\frac{1-4r^2+4r^4}{4r^2}\right)^{1/2}-\frac{1-2r^2}{2r}=\frac{1}{2r}-\frac{1-2r^2}{2r}=r.$$

Hence the disk $|z| \le r$ is contained in E_0 , and it follows again (by Lemma 2) that $d_0 \ge 2 > 1/r$. If on the other hand $|z_0| \ge (1 - 2r^2)/(2r)$, then the radius of the disk (1) is monotone increasing, hence at least 1/(2r). Thus E_0 contains a disk of diameter 1/r. Since clearly E_0 cannot be identical with this disk, it follows that $d_0 > 1/r$.

4. Finally, let $(\sqrt{5} - 1)/2 \le r \le 1$. It was proved in the first part that E_0 contains a point in |z| > 1 (except if $f(z) = z^n$, in which case $d_0 = 2$). Also, the disk $|z| \le (1 - r^2 + |z_0|^2)^{1/2} - |z_0|$ lies in E_0 . Hence, for $|z_0| \le r^2/2$,

$$\begin{split} d_0 &> 1 + (1 - r^2 + \left| z_0 \right|^2)^{1/2} - \left| z_0 \right| \\ &\geq 1 + (1 - r^2 + r^4/4)^{1/2} - r^2/2 = 2 - r^2 \,. \end{split}$$

On the other hand, E_0 contains the disk (1), whose radius is at least $1-r^2/2$ for $\left|z_0\right| \geq r^2/2$. Hence E_0 contains the disk $\left|z-z_0\right| \leq 1-r^2/2$, but is not contained in it. Therefore $d_0 > 2-r^2$.

2. THE LARGEST DISK CONTAINED IN E

Let A be a given compact set, let $z_{\nu} \in A$ ($\nu = 1, \cdots, n$), and let ρ denote the radius of the largest disk contained in E. If cap A < 1, there exists a positive number $\rho_0 = \rho_0(A)$ such that $\rho \geq \rho_0$ [2, Theorem 6]. If A is a disk of radius 1 or a segment of length 4 (in both cases, cap A = 1), there does not exist any positive lower bound for ρ that is independent of the degree n of f(z). Erdös, Herzog and Piranian put the question whether $\rho \geq \operatorname{const} \cdot n^{-1}$ if $|z_{\nu}| \leq 1$ [2, Problem 3]. I shall only prove a weaker estimate (see also [2, Problem 2]).

THEOREM 4. If $|z_{\nu}| \leq 1$, the lemniscate domain E contains a disk of radius $(2e)^{-1} n^{-2}$.

Proof. Let again E_0 denote the component of E that contains the point 0. Theorem 3 (for r=1) shows that the diameter of E_0 is $d_0>1$. Since E_0 is connected, we have $d_0\leq 4$ cap E_0 (see for instance [6, p. 42]), and therefore cap $E_0>1/4$. Since $|f(z)|\leq 1$ for $z\in E_0$, this inequality implies (see [11]) that

$$\left|\,f^{\,\prime}(z)\,\right| \leq \frac{en^2}{2~cap~E_0} < 2en^2 \qquad (z~\varepsilon~E_0)\,. \label{eq:final_energy}$$

Let z_{μ} be a zero of f(z) that lies in E_0 , and let z^* be the boundary point of E_0 nearest to z_{μ} . Taking the segment between z_{μ} and z^* as path of integration, we obtain

$$1 = \left| f(z^*) \right| = \left| \int_{z_{\mu}}^{z^*} f'(z) dz \right| < \left| z^* - z_{\mu} \right| \cdot 2en^2$$

and $|z^*-z_\mu|>1/2en^2$, and therefore the disk $|z-z_\mu|\leq 1/2en^2$ is contained in $E_0\subset E$.

Let now the given set A be the segment [-2, +2], that is, let the zeros $z_{\nu} = \xi_{\nu}$ be real, with $-2 \le \xi_{\nu} \le 2$. I want to establish the conjecture of Erdös, Herzog and Piranian [2, p. 132] that $\rho \ge n^{-\gamma}$, where γ denotes an absolute constant. We shall need

LEMMA 3. If $\xi = z + z^{-1}$, $\xi' = z' + z'^{-1}$, z = x + iy, z' = x' + iy', |z| = |z'| = 1, $y \ge 0$, $y' \ge 0$, then $|\xi - \xi'| \ge |z - z'|^2$.

Proof.
$$|\xi - \xi'| = |z - z'| |1 - (zz')^{-1}| = |z - z'| |z - \tilde{z}'| \ge |z - z'|^2$$
, because $|z - \tilde{z}'|^2 = (x - x')^2 + (y + y')^2 \ge (x - x')^2 + (y - y')^2 = |z - z'|^2$.

THEOREM 5. Let $-2 \le z_{\nu} = \xi_{\nu} \le 2$. Then the set $E \cap X$ contains a segment of length $1/8e^2 n^4$ (X denotes the real axis).

Proof. Let

$$g(z) = z^n f(z + z^{-1}) = \prod_{\nu=1}^n (z^2 - \xi_{\nu} z + 1),$$

which is a polynomial of degree 2n. The zeros $\xi_{\nu}/2 \pm i(1 - \xi_{\nu}^2/4)^{1/2}$ of g(z) have absolute value 1. The proof of Theorem 4 shows that the set $\{|g(z)| \le 1\}$ contains a disk of radius $1/2en^2$ and center on |z| = 1. We can thus choose an arc B on

|z|=1, of diameter $1/4\text{en}^2$, such that $|g(z)|\leq 1$ on B, and such that $\Im z$ has always the same sign on B, say $\Im z\geq 0$. The segment $B^*=\left\{\xi=z+z^{-1}\colon z\in B\right\}$ has length at least $(4\text{en}^2)^{-2}$, by Lemma 3, and we have

$$|f(\xi)| = |z^n f(z + z^{-1})| \leq 1$$

for $\xi \in B^*$, hence $B^* \subset E \cap X$.

3. UPPER BOUNDS FOR GEOMETRIC QUANTITIES ASSOCIATED WITH E

Pólya [8] has proved that the linear measure d of the projection of a compact set with cap F=1 onto a straight line satisfies $d \le 4$. I want to give the exact upper bound of d for lemniscate domains $E=\left\{\left|f(z)\right|\le 1\right\}$ of polynomials of degree n.

THEOREM 6. Let $f(z) = \prod_{\nu=1}^{n} (z - z_{\nu})$, let P be the projection of E onto the real axis X, and let d be the linear measure of P. Then

cap
$$P \le 2^{-1/n}$$
, $d \le 4 \cdot 2^{-1/n}$,

with cap $P = 2^{-1/n}$ exactly if all z_{ν} lie on a parallel to X and if $\mathring{E} = \{|f(z)| < 1\}$ has n components. (The result concerning d was already known to P. Erdös and Bl. Sendov; see the remark after Problem 102, Wisk. Opgaven 20/3 (1957), p. 22.)

Remark. The equation $d=4\cdot 2^{-1/n}$ holds exactly if cap $P=2^{-1/n}$ and P is one segment. Then \mathring{E} consists of n components whose boundaries meet in pairs at the n-1 zeros of f'(z). It can be shown that these conditions are satisfied if and only if $f(z)=T_n(2^{-1+1/n}z+c)$, where $T_n(\zeta)$ is the n-th Tchebycheff polynomial and c is a complex constant.

Proof. 1. Let $z_{\nu} = x_{\nu} + iy_{\nu}$ and

$$f^*(z) = \prod_{\nu=1}^n (z - x_{\nu}), \quad E^* = \{ |f^*(z)| \le 1 \}.$$

If x is a point of the projection P, then $z = x + iy \in E$ for a certain y, hence

$$|f^*(x)| = \prod |x - x_{\nu}| \le \prod |z - z_{\nu}| = |f(z)| \le 1$$
.

Therefore we have

$$P \subset E^* \cap X.$$

Suppose that $P = E^* \cap X$. If x' is the greatest value in $E^* \cap X = P$, then, for a certain y' and for z' = x' + iy', $1 = |f^*(x')| \le |f(z')| \le 1$, hence $|f^*(x')| = |f(z')|$ and

$$\prod ((x' - x_{\nu})^2 + (y' - y_{\nu})^2) = \prod (x' - x_{\nu})^2,$$

and therefore $y' - y_{\nu} = 0$ for $\nu = 1, \dots, n$.

2. Let $R = \{z: f^*(z) \text{ real}, |f^*(z)| \le 1\}$. Since the segment [-1, +1] has capacity 1/2, a theorem of Fekete [4] (see for instance [6, p. 259]) shows that cap $R = 2^{-1/n}$. Since $f^*(x)$ is real for real x, $E^* \cap X \subset R$. Therefore, by (2),

(3)
$$\operatorname{cap} P \leq \operatorname{cap} (E^* \cap X) \leq \operatorname{cap} R = 2^{-1/n}$$

and [8]

$$d \leq 4$$
 cap $P \leq 4 \cdot 2^{-1/n}$.

3. We have cap $P=2^{-1/n}$ exactly if the sign of equality stands in all inequalities (3), hence if and only if $P=E^*\cap X=R$. Part 1 of this proof shows that $P=E^*\cap X$ holds exactly if the zeros $z_{\mathcal{V}}$ lie on a parallel to X, which we may assume to be X itself. Then this means $f^*(z)\equiv f(z)$. Suppose that \mathring{E} has the maximal number n of components. Each component is mapped by w=f(z) onto |w|<1. Because f(z) assumes every value only n times, f(z) is real in \mathring{E} only for real z. Hence $E^*\cap X=E\cap X=R$. On the other hand, suppose that \mathring{E} has fewer than n components. Then there exists a real $\xi\in \mathring{E}$ with $f'(\xi)=0$. A certain small curve that begins in ξ and goes into $\Im z>0$ is consequently mapped by w=f(z) into the real axis. Hence $E\cap X$ is properly contained in R, and cap $P<2^{-1/n}$. Thus Theorem 6 is proved.

The inequality $d \le 4$ implies that the maximum of the measures of the different projections of E is at most 4. Let b be the minimum of the measures of the projections of E. By applying the approximation theorem to the "5-Stern" [10, p. 73] we obtain a lemniscate domain with b > 2.386 (compare [2, Problem 10a]). I shall give an upper bound for b.

THEOREM 7. Let F be a closed bounded set with cap F = 1. Then the projection of F onto a certain straight line has measure less than 3.30.

Proof. The set F can be enclosed by a system of closed curves L_{μ} (μ = 1, ..., m) whose lengths Λ_{μ} satisfy

$$\sum_{\mu=1}^{\mathrm{m}} \Lambda_{\mu} < 10.36$$

[12, Theorem 2]. We may assume that these curves are convex (otherwise we take instead the boundaries of their convex hulls; if these intersect, we take them as one curve, and so forth). Let $b_{\mu}(\theta)$ be the width of L_{μ} in the direction θ , that is, the width of the narrowest strip containing L_{μ} that forms the angle θ with the real axis. Then [1, p. 48]

$$\Lambda_{\mu} = \frac{1}{2} \int_0^{2\pi} b_{\mu}(\theta) d\theta,$$

and therefore

$$\frac{1}{2} \int_0^{2\pi} \sum_{\mu=1}^m b_{\mu}(\theta) d\theta = \sum_{\mu=1}^m \Lambda_{\mu} < 10.36.$$

This inequality implies that

$$\sum_{\mu=1}^{m} b_{\mu}(\theta_{0}) = \min_{\theta} \sum_{\mu=1}^{m} b_{\mu}(\theta) < 10.36/\pi < 3.30.$$

The projection of F onto the straight line of direction $\theta_0 + \pi/2$ has measure at most $\sum b_{\mu}(\theta_0) < 3.30$.

We shall now consider the linear measure λ of the intersection of E with the unit circle |z|=1. The equation $\lambda=2\pi$ holds if and only if $f(z)=z^n$. Even if the zeros z_{ν} satisfy $|z_{\nu}|=1$, the measure λ can come arbitrarily near to 2π . I shall give an upper estimate for λ that depends only on the degree n. This estimate shows that λ does not depend continuously on the set $\{z_1, \dots, z_{\nu}\}$.

THEOREM 8. Let $f(z) \neq z^n$. Then

$$\operatorname{meas}\big[\mathrm{E}\cap\big\{\,\big|\,\mathrm{z}\,\big|=1\big\}\,\big]\leq 2\pi\,\frac{n}{n+1}\,.$$

Proof. We write $f(z) = \sum_{k=0}^{n} a_k z^k$ and $\alpha = 2\pi/(n+1)$. Then

$$\frac{1}{n+1} \sum_{\nu=0}^{n} |f(e^{i\theta+i\alpha\nu})|^2 = \frac{1}{n+1} \sum_{k=0}^{n} \sum_{\ell=0}^{n} \sum_{\nu=0}^{n} a_k \bar{a}_{\ell} e^{i(k-\ell)} e^{i\alpha\nu(k-\ell)}$$
$$= 1 + |a_{n-1}|^2 + \dots + |a_0|^2.$$

Since $f(z) \neq z^n$, this quantity is greater than 1. Hence there exists, for each θ in $0 \leq \theta < \alpha$, an integer μ $(0 \leq \mu \leq n)$ such that $|f(e^{i\theta+i\mu\alpha})| > 1$. Let $\mu(\theta)$ be the least of these integers, and let M denote the set of values ϕ in $[0, 2\pi)$ which have the form $\phi = \theta + \alpha \mu(\theta)$ $(0 \leq \theta < \alpha)$. Then M has measure $\alpha = 2\pi/(n+1)$, and the theorem follows from the fact that the set $M \cap E$ is empty.

Finally, I shall obtain an upper bound for the length Λ of the lemniscate $\{|f(z)|=1\}$. Problem 12a in [2] asks whether Λ is greatest for $f(z)=z^n-1$. An affirmative answer would imply that $\Lambda \leq 2n+o(n)$.

THEOREM 9. If $f(z) = z^n + \cdots$ and Λ is the length of $C = \{ |f(z)| = 1 \}$, then $\Lambda < 74n^2$.

Proof. The lemniscate C is given by the algebraic equation

$$f(z) \overline{f(z)} = 1$$
 (z = x + iy, x and y real)

with real coefficients. Hence C is the "real" part of a plane algebraic curve of order 2n, "real" in the sense of algebraic geometry, that is with real x and y. We may assume, for reasons of continuity, that this curve has only simple singularities and no "real" double points. Then C has at most 2n(2n-2) "real" points of inflection [7], because C does not have any "real" cusps and isolated points. At the points at which C has a tangent parallel to the real axis X, an algebraic equation of degree 2n-1 is satisfied. Since it is easily seen that there are only finitely many such points, the theorem of Bézout shows that C has at most 2n(2n-1) points with a tangent parallel to X.

We mark on C all points of inflection and all points with a tangent parallel to X. The number of these points together is less than $8n^2$. They divide the lemniscate C into simple arcs C_k ($k = 1, \dots, m$) on each of which the curvature has constant sign,

and which have no interior points with a tangent parallel to X. It is easy to see that joining the endpoints of an arc C_k by a segment gives a closed convex curve C_k^* . The endpoints of every arc C_k belong to one of the two categories just described. The number m of arcs therefore satisfies the condition $m < 8n^2$. Because $C_k \subset C$, we have cap $C_k \leq$ cap C = 1, and the convex hull of C_k has a perimeter less than 9.2 [10, Theorem 5]. Therefore the length Λ_k of C_k is

$$\Lambda_k \leq length of C_k^* < 9.2$$

and

$$\Lambda = \sum_{k=1}^{m} \Lambda_k < 9.2m < 9.2 \cdot 8n^2 < 74n^2.$$

4. THE CONNECTEDNESS OF E

Let $f(z) = \Pi_{\nu=1}^n$ $(z-z_{\nu})$. We shall first obtain some relations between the connectedness of the set $E = \big\{ \big| f(z) \big| \le 1 \big\}$ and the distribution of the zeros z_{ν} . We shall need

LEMMA 4. Let $C(r) = \{z: |f(z)| = r^n\}$ $(r \ge 0)$ and

(4)
$$\lambda(\mathbf{r}) = \frac{1}{2\pi r^n} \int_{C(\mathbf{r})} |\mathbf{z}|^2 |\mathbf{f}'(\mathbf{z})| |d\mathbf{z}|.$$

Then

$$\lambda(\mathbf{r}) > \sum_{\nu=1}^{n} |\mathbf{z}_{\nu}|^2$$

for r > 0.

Proof. 1. Let r>0 be a value for which C(r) does not contain any zero of the derivative f'(z). Then there exist integers m and p_k such that C(r) consists of m closed analytic curves each of which is mapped p_k times $(k=1, \cdots, m; p_1 + \cdots + p_m = n)$ onto the circle $|w| = r^n$, by the function w = f(z). Each function $w_k = f(z)^{1/p_k}$ is therefore regular on one of these curves and maps it one-to-one ont onto $|w| = r^{n/p_k}$. Let $z = \phi_k(w_k)$ $(k = 1, \cdots, m)$ denote the inverse function. Then

$$w_k^{Pk} = f(\phi_k(w_k)), \qquad p_k w_k^{Pk-1} = f'(z) \phi_k'(w_k),$$

and therefore, by (4),

(5)
$$\lambda(\mathbf{r}) = \sum_{k=1}^{m} \frac{p_{k}}{2\pi \mathbf{r}^{n}} \int_{|\mathbf{w}_{k}| = \mathbf{r}^{n/p_{k}}} |\phi_{k}(\mathbf{w}_{k})|^{2} |\mathbf{w}_{k}|^{p_{k}-1} |d\mathbf{w}_{k}|$$

$$= \sum_{k=1}^{m} \frac{p_{k}}{2\pi} \int_{0}^{2\pi} |\phi_{k}(\mathbf{r}^{n/p_{k}} e^{i\theta})|^{2} d\theta.$$

Differentiation gives

$$\begin{split} \lambda^{\dagger}(\mathbf{r}) &= \sum_{k=1}^{m} \frac{p_{k}}{2\pi} \int_{0}^{2\pi} \frac{\partial}{\partial \mathbf{r}} \left[\phi_{k}(\mathbf{r}^{n/p_{k}} e^{i\theta}) \, \overline{\phi}_{k} \right] d\theta \\ &= \sum_{k=1}^{m} \frac{p_{k}}{2\pi} \int_{0}^{2\pi} \frac{n}{p_{k}} \mathbf{r}^{n/p_{k}-1} \, 2 \, \Re \left[e^{i\theta} \phi_{k}^{\dagger}(\mathbf{r}^{n/p_{k}} e^{i\theta}) \cdot \overline{\phi}_{k} \right] d\theta \\ &= \sum_{k=1}^{m} \frac{n}{\pi \mathbf{r}} \int_{0}^{2\pi} \Re \left[\frac{1}{i} \frac{\partial}{\partial \theta} \phi(\mathbf{r}^{n/p_{k}} e^{i\theta}) \cdot \overline{\phi}_{k} \right] d\theta \,. \end{split}$$

We write $\phi_k(r^{n/p_k}e^{i\theta}) = u_k(\theta) + iv_k(\theta)$ and obtain

$$\lambda'(\mathbf{r}) = \sum_{k=1}^{m} \frac{n}{\pi \mathbf{r}} \int_{0}^{2\pi} (\mathbf{v}_{k}' \mathbf{u}_{k} - \mathbf{u}_{k}' \mathbf{v}_{k}) d\theta.$$

Since $u_k + iv_i$ represents a positively orientated simple closed curve, the value of the integral is twice the area enclosed by this curve, and is therefore positive. Hence $\lambda'(r) > 0$ for all r, except possibly for a finite number of values. Since $\lambda(r)$ is continuous, this function is strictly increasing.

2. If r>0 is sufficiently small, then $f'(z)\neq 0$ within C(r), except at the multiple zeros of f(z). We now denote the multiplicities of the zeros by p_k . Temporarily, we may relabel the zeros in such a way that f(z) has m different p_k -fold zeros z_k $(k=1,\cdots,m)$. Let again $z=\phi_k(w_k)$ be the inverse function of

$$w_k = f(z)^{1/p_k} = c_k(z - z_k) + \cdots \qquad (c_k \neq 0).$$

Then $\phi_k(0) = z_k$, equation (5) is again applicable, and it follows that

$$\lim_{\rho \to 0} \lambda(\rho) = \sum_{k=1}^{m} p_k |\phi_k(0)|^2 = \sum_{k=1}^{m} p_k |z_k|^2 = \sum_{\nu=1}^{n} |z_{\nu}|^2.$$

Since $\lambda(\rho)$ is strictly increasing,

$$\lambda(\mathbf{r}) > \lim_{\rho \to 0} \lambda(\rho) = \sum_{\nu=1}^{n} |\mathbf{z}_{\nu}|^{2}.$$

THEOREM 10. Let

$$z_0 = \frac{1}{n} \sum_{\nu=1}^{n} z_{\nu} = 0$$
 and $\sigma^2 = \frac{1}{n} \sum_{\nu=1}^{n} |z_{\nu}|^2$.

Then the following best possible results hold:

(a) If $|z_{\nu}| \leq \sqrt{2}/2$ or if $z_{\nu} \in [-1, +1]$, then E is connected.

(b) If E is connected, then $|z_{\nu}| < 2$ and $\sigma < \sqrt{2}$.

Proof. (a) Let $|z_{\nu}| \leq \sqrt{2}/2$. Because $z_0 = 0$, Lemma 1 implies that the disk $|z| \leq \sqrt{2}/2$ is contained in E. Hence E is connected, by Lemma 2. The polynomial $(z^2 - 1/2)^m (z^2 + a^2)$ with $a > \sqrt{2}/2$ has three distinct components, if m is sufficiently large. Hence the bound $\sqrt{2}/2$ cannot be improved.

Let z_{ν} be contained in the segment [-1, +1]. Then both halves [-1, 0] and [0, 1] lie in E [2, Theorem 1], and Lemma 2 shows again that E is connected. The polynomial $z^2 - a^2$ with a > 1 has two components.

(b) Let E be connected. Then (because $z_0 = 0$)

(6)
$$w = f(z)^{1/n} = (z^n + a_{n-2}z^{n-2} + \cdots)^{1/n} = z + a_2^*z^{-1} + \cdots.$$

Since this function is univalent in the exterior region $\{\,\big|\,f(z)\,\big|>1\}\,$ of E, the inverse function

(7)
$$z = \phi(w) = w + \sum_{\mu=1}^{\infty} b_{\mu} w^{-\mu}$$

is meromorphic and univalent in |w|>1. Hence E is contained in $|z|\leq 2$ (see for instance [6, p. 42]), and it follows that $|z_{\nu}|<2$ because z_{ν} is an interior point of E. Using (5) (with m = 1, p_1 = n) and (7), we obtain for r>1

$$\frac{\lambda(r)}{n} = \frac{1}{2\pi} \int_0^{2\pi} |\phi(re^{i\theta})|^2 d\theta = r^2 + \sum_{\mu=1}^{\infty} |b_{\mu}|^2 r^{-2\mu},$$

and therefore, by Lemma 4,

$$\sigma^2 = \frac{1}{n} \sum_{\nu=1}^{n} |z_{\nu}|^2 < \frac{\lambda(1)}{n} = 1 + \sum_{\mu=1}^{\infty} |b_{\mu}|^2.$$

Since $\phi(w)$ is univalent in |w| > 1, the area theorem [6, p. 39]

$$\sum_{\mu=1}^{\infty} \mu |\mathfrak{b}_{\mu}|^2 \leq 1$$

gives $\sigma^2 < 2$.

The lemniscate domain E of the polynomial

$$T_n(2^{1/n-1}z) = \cos[n \arccos(2^{1/n-1}z)] = z^n + \cdots$$

is connected, and the zeros are

$$x_{\nu}^{(n)} = 2^{1-1/n} \cos \frac{\pi}{2n} (2\nu - 1)$$
 $(\nu = 1, \dots, n)$.

The zero $x_1^{(n)} = 2^{1-1/n} \cos \frac{\pi}{2n}$ tends to 2 as $n \to \infty$, and

$$\frac{1}{n} \sum_{\nu=1}^{n} x_{\nu}^{(n)^{2}} = 2^{2-2/n} \cdot \frac{1}{n} \sum_{\nu=1}^{n} \cos^{2} \frac{\pi}{2n} (2\nu - 1)$$

$$\rightarrow \frac{4}{\pi} \int_{0}^{\pi} \cos^{2} t \, dt = \frac{4}{\pi} \frac{\pi}{2} = 2.$$

Hence the bounds in (b) cannot be improved.

The last sufficient condition in Theorem 10a is $z_0 = 0$ and $z_{\nu} \in [-1, +1]$. The segment [-1, +1] has capacity 1/2. To generalize the condition on the z_{ν} , we need the following lemma.

LEMMA 5. If K is the convex hull of the zeros z, then

$$g(z) = f(z)^{1/n} = z + \cdots$$

is univalent in the exterior region of K.

Proof. Let L be an arbitrary convex analytic curve that contains K in its interior and is positively orientated. We assert that

$$arg g(z) = n^{-1} arg f(z)$$

increases monotonically on L. It is enough to prove that arg f(z) increases on each orientated straight line that leaves all z_{ν} on its left side. We may assume this line to be the imaginary axis. Then

$$\arg f(iy) = \sum_{\nu=1}^{n} \Im [\log (iy - x_{\nu} - iy_{\nu})],$$

where $z_{\nu} = x_{\nu} + iy_{\nu}$ and $x_{\nu} < 0$, and therefore

$$\frac{d}{dy} \arg f(iy) = \sum_{\nu=1}^{n} \Im \left[\frac{i}{i(y - y_{\nu}) - x_{\nu}} \right]$$

$$= \sum_{\nu=1}^{n} \frac{-x_{\nu}}{(y - y_{\nu})^{2} + x_{\nu}^{2}} > 0,$$

which was to be proved. The variation of arg f(z) on L is $2\pi n$, by the argument principle. Hence the variation of arg g(z) is 2π , and arg g(z) increases monotonically by 2π on L. Therefore g(z) is univalent on L and consequently in the entire exterior region of K.

THEOREM 11. Let A be a closed bounded convex set with cap $A = \kappa \le 1/2$ and conformal center 0. This means that the function $\psi(w)$ that maps |w| > 1 conformally onto the exterior region of A has the development

$$\psi(\mathbf{w}) = \kappa \mathbf{w} + \mathbf{c_1} \mathbf{w}^{-1} + \cdots.$$

If the zeros z_{ν} of f(z) belong to A and if their centroid z_0 is 0, then E is connected and contains A.

Proof. Since the convex set, A contains the zeros z_{ν} and therefore their convex hull K, the function $g(z) = f(z)^{1/n}$ is univalent in the exterior region of A (Lemma 5). Hence, by equation (6),

$$g(\psi(w)) = \kappa w + c_1^* w^{-1} + \cdots,$$

and $g(\psi(w))$ is univalent in |w| > 1. Therefore

$$\max_{\begin{subarray}{c} |\mathbf{g}(\psi(\mathbf{w}))| \leq 2\kappa \leq 1 \\ |\mathbf{w}| = 1 \end{subarray}}$$

[6, p. 32], and it follows that

$$\max_{z \in A} |f(z)| = \max_{z \in A} |g(z)|^n \le 1.$$

This inequality means that $A \subset E$, and Lemma 2 shows that E is connected.

We shall now derive some metric properties of E for the case where E is connected. More generally, we shall consider a continuum F of capacity 1. Let b and d be the width and the diameter of F. Erdös, Herzog and Piranian put the problem to find bounds for b, d, bd and related quantities [2, Problem 15]. I have proved the (not best possible) inequality b < 2.920 [10, Theorem 6].

In another note [9], I asserted that $b^2 + d^2 \le 63/3$; but the proof was not correctly formulated, as Prof. Herzog kindly pointed out to me. I want to complete the proof here: Inequalities (3) and (4) of [9] imply

$$b^2 \leq -rac{32}{3} - 16eta + rac{64}{3}\left(1 + rac{3}{4}eta
ight)^{1/2}$$

$$\mathrm{d}^2 \leq -\,rac{32}{3} +\, 16eta + rac{64}{3}\,\left(\,1\,-rac{3}{4}eta\,
ight)^{\,1\!/2}$$
 ,

where $0 \le \beta \le 1$. Hence

$$b^2 + d^2 \leq \frac{64}{3} \left[\left(1 + \frac{3}{4}\beta \right)^{1/2} + \left(1 - \frac{3}{4}\beta \right)^{1/2} - 1 \right] \leq \frac{64}{3},$$

which is the asserted inequality.

Probably $b^2 + d^2 \le 16$ holds (with equality for a segment of length 4). For the case where F is convex or contains at least a segment of length d, the inequality $b^2 + d^2 \le 16$ has been proved [10, Theorem 9].

THEOREM 12. Let F be a continuum, of capacity 1 and symmetric with respect to the point 0. Then either

(I)
$$b \le 2\sqrt{2}$$
, $b^2 + d^2 \le 16$ and $bd \le 8$, or
(II) $b \le 2$, $b^2 + d^2 \le 18$ and $bd \le 4\sqrt{3}$.

(II)
$$b \le 2$$
, $b^2 + d^2 \le 18$ and $bd \le 4\sqrt{3}$

Remarks. 1. There exists a symmetric continuum of capacity 1 with b > 2.18, and one with bd > 6.15 [9].

2. Let $z^* \in F$ be a point with the maximal distance d/2 from 0, and let b^* be the width of the narrowest strip that contains F and is parallel to the diameter [-z*, z*] of F. Using the method of the proof which follows, one can show that

(8)
$$b^* < 2\sqrt{2}$$
, $b^*d < 8$.

The example $F = [-\sqrt{2}, \sqrt{2}] \cup [-i\sqrt{2}, i\sqrt{2}]$ and $z^* = \sqrt{2}$ has $b^* = 2\sqrt{2}$, $b^*d = 8$. Hence the inequalities (8) are best possible.

Proof. Let $h(w) = w + \beta w^{-1} + \cdots$ be the odd function that maps |w| > 1 conformally onto the exterior region of F. We may assume that β is real and nonnegative. Then $0 \le \beta \le 1$. The function

$$h(w^{1/2})^2 = w + 2\beta + \cdots$$

is meromorphic and univalent in |w| > 1. If z is a point of F, then $h(w) \neq \pm z$ and $h(w^{1/2})^2 \neq z^2$, in |w| > 1. Therefore $|z^2 - 2\beta| \leq 2$ [6, p. 42]. Hence F is contained in

$$\left| (z/\sqrt{2})^2 - \beta \right| < 1.$$

Elementary computations show that this inequality implies

$$b \le egin{cases} 2\sqrt{2}(1-eta)^{1/2} & ext{ for } 0 \le eta \le 1/2 \,, \\ \sqrt{2}eta^{-1/2} & ext{ for } 1/2 \le eta \le 1 \,, \end{cases}$$

and

$$d < 2\sqrt{2}(1 + \beta)^{1/2}$$
.

In the case (I) where $0 \le \beta \le 1/2$, we have therefore $b^2 + d^2 \le 16$, $bd \le 8$, $b \le 2\sqrt{2}$, and in the case (II) where $1/2 \le \beta \le 1$, we have $b \le 2$ and

$$b^2 + d^2 \le 2\beta^{-1} + 8(1+\beta) \le 18$$
, $bd \le 4(1+\beta^{-1})^{1/2} \le 4\sqrt{3}$.

5. CONVEXITY

Let $f(z) = \Pi(z - z_{\nu})$, and let $z_0 = \frac{1}{n} \sum z_{\nu}$. Erdös, Herzog and Piranian [2, Theorem 11] have proved that the set $E = \{ |f(z)| < 1 \}$ is convex if

$$|z_{\nu}| \leq \frac{\sin \pi/8}{1 + \sin \pi/8} \approx 0.277$$
.

The following theorem improves this result slightly.

THEOREM 13. If one of the conditions

(a)
$$\left|\mathbf{z}_{\nu}\right| \leq 0.320$$
, (b) $\left|\mathbf{z}_{\nu}\right| \leq 0.424$ and $\mathbf{z}_{0} = 0$

is satisfied, then E is convex.

Proof. Let $\rho > 1$, and write $\zeta_{\nu} = \rho z_{\nu}$ and

(9)
$$g(\zeta) = \prod_{\nu=1}^{n} (\zeta - \zeta_{\nu}) = \prod_{\nu=1}^{n} (\zeta - \rho z_{\nu}) = \rho^{n} f(\rho^{-1} \zeta).$$

(a) Let $|\zeta_{\nu}| \le 1/2$. Then $|g(\zeta)| \le 1$ for $|\zeta| \le 1/2$, and Lemma 2 shows that $F = \{|g(\zeta)| \le 1\}$ is connected. Lemma 1 implies that the disk

$$\left|\zeta-\zeta_{0}\right|\leq\left(1-\frac{1}{4}\right)^{1/2}=\frac{1}{2}\sqrt{3}$$

(with $\zeta_0 = \rho z_0$) is contained in F. The area of F is therefore at least $3\pi/4$. Let

$$\zeta = \psi(\omega) = \omega + \sum_{\mu=0}^{\infty} b_{\mu} \omega^{-\mu}$$

be the inverse function to $\omega = g(\zeta)^{1/n}$. Since $\psi(\omega)$ is univalent in $|\omega| > 1$, the area of F is

$$\pi\left(1-\sum_{\mu=1}^{\infty}\mu|b_{\mu}|^{2}\right),$$

hence $\Sigma \, \mu \, | \, {\bf b}_{\mu} \, |^2 \leq 1/4$. Applying the Schwarz inequality, we obtain for ho > 1

$$\left(\sum_{\mu=1}^{\infty} \mu^{2} |b_{\mu}| \rho^{-(\mu+1)}\right)^{2} \leq \sum_{\mu=1}^{\infty} \mu |b_{\mu}|^{2} \cdot \sum_{\mu=1}^{\infty} \mu^{3} \rho^{-2(\mu+1)}$$
$$\leq \frac{1}{4} \rho^{-4} \frac{1 + 4\rho^{-2} + \rho^{-4}}{(1 - \rho^{-2})^{4}}.$$

If we put $\rho^{-2} = 0.41$, the last term is less than 1, and therefore

$$\sum_{\mu=1}^{\infty} \mu^2 |b_{\mu}| \rho^{-(\mu+1)} < 1.$$

This inequality implies that the curve $\left\{\zeta=\psi(\omega)\colon \left|\omega\right|=\rho\right\}$ $(\rho^{-2}=0.41)$ is convex (see Hilfssatz 4b in [13]). The curve can be written $\left\{\left|\operatorname{g}(\zeta)\right|=\rho^n\right\}$, or, by (9), $\left\{\zeta\colon \left|\operatorname{f}(\rho^{-1}\zeta)\right|=1\right\}$. Therefore the set $E=\left\{z\colon \left|\operatorname{f}(z)\right|\leq 1\right\}$ is convex if

$$|z_{\nu}| = \rho^{-1} |\zeta_{\nu}| \le 0.41^{1/2} \cdot 0.5 > 0.32$$
.

(b) Let $|\zeta_{\nu}| \leq \sqrt{2}/2$. Then $\zeta_0 = \rho z_0 = 0$, and the set $F = \{ |g(\zeta)| \leq 1 \}$ contains the disk $|\zeta| \leq \sqrt{2}/2$ (Lemma 1). Hence F is connected, and its area is at least $\pi/2$. Therefore

$$\left(\sum_{\mu=1}^{\infty} \mu^{2} |b_{\mu}| \rho^{-(\mu+1)}\right)^{2} \leq \frac{1}{2} \cdot \rho^{-4} \frac{1 + 4\rho^{-2} + \rho^{-4}}{(1 - \rho^{-2})^{4}},$$

and this quantity is less than 1 for $\rho^{-2} = 0.36$. Hence E is convex if

$$|z_{\nu}| = \rho^{-1} |\zeta_{\nu}| \le 0.6 \cdot \sqrt{2}/2 > 0.424$$
.

Let $f(z) = \prod_{k=1}^{m} (z - z_k)^{p_k}$ (z_k distinct, p_k positive integers), and let

 $E = \{ |f(z)| \le 1 \}$ have the maximal number m of components. H. Grunsky (see [2, Problem 16]) raised the question whether all components must be convex. I shall give a counter-example.

THEOREM 14. Let $f(z) = z^p(z-a)$. If $a-(1+p^{-1})\cdot p^{1/(p+1)}$ is positive and sufficiently small, and p is sufficiently large, then the set $E = \{ |f(z)| \le 1 \}$ has two components, one of which is not convex.

Proof. We put $\xi = p^{1/(p+1)}$ and $f_p(z) = z^p(z - (1 + p^{-1})\xi)$. Then

$$\frac{f_p'(z)}{f_p(z)} = \frac{p}{z} + \frac{1}{z - (1 + p^{-1})\xi},$$

$$f_p(\xi) = - \xi^p \cdot p^{-1} \xi = -1$$
,

and therefore

$$\mathbf{f}_{\mathbf{p}}^{\dagger}(\xi) = -\frac{\mathbf{p}}{\xi} + \frac{\mathbf{p}}{\xi} = 0.$$

Thus ξ is a double-point of the curve $C_p = \{ \big| f_p(z) \big| = 1 \}$, and $E_p = \{ \big| f_p(z) \big| \leq 1 \}$ consists of two parts which have only the one common point ξ . The two branches of C_p in ξ have the tangents $y = \pm (x - \xi)$. Hence $E_p \cap \{ \big| z - \xi \big| \leq \delta \}$ is contained in the set

$$S = \{x + iy: |y| \le 1.1 \cdot |\xi - x|\}$$
,

for some small $\delta>0$. The point $z^*=0.5+i\cdot 0.6$ ($\left|z^*\right|<1$) satisfies $f_p(z^*)\to 0$ as $p\to\infty$. It follows that $z^*\in E_p$ for large p. Also, $z^*\notin S$ for large p, since $\xi\to 1$ as $p\to\infty$. Thus the segment connecting z^* and ξ contains a point that does not belong to E_p , and therefore the part of E_p containing 0 is not convex for large p. If $a-(1+p^{-1})\xi$ is positive and sufficiently small, then $E=\left\{\left|f(z)\right|\le 1\right\}$ has two components, and the component that contains the point 0 is not convex.

Finally I shall deal with the following problem of Erdös, Herzog and Piranian [2, Problem 13]. Let z_{ν} be n complex numbers which satisfy $\left|z_{\mu}-z_{\nu}\right|\leq 2$ $(\mu,\,\nu=1,\,\cdots,\,n).$ Is $\Pi_{\nu=1}\,\Pi_{\mu\neq\nu}\left|z_{\mu}-z_{\nu}\right|$ maximal if the z_{ν} are the vertices of a regular n-gon of diameter 2? We denote the maximum by \triangle_{n} :

(10)
$$\Delta_{\mathbf{n}} = \max_{\substack{\mathbf{z}_1, \dots, \mathbf{z}_n \\ |\mathbf{z}_{\mu} - \mathbf{z}_{\nu}| \leq 2}} \prod_{\nu=1}^{\mathbf{n}} \|\mathbf{z}_{\mu} - \mathbf{z}_{\nu}\|.$$

The conjecture implies that $\triangle_n = n^n$ for even n and $\triangle_n = n^n(\cos \pi/2n)^{-n(n-1)}$ for odd n. The last quantity is

$$n^{n}\left(1-\frac{\pi^{2}}{8n^{2}}+\cdots\right)^{-n(n-1)}\sim n^{n}e^{\pi^{2}/8}.$$

In order to obtain an estimate for Δ_n , we need a result on convex sets.

LEMMA 6. Let K be a convex continuum of capacity 1. Then there exist polynomials

$$f_n(z) = z^n + \cdots \quad (n = 1, 2, \cdots)$$

with zeros in K such that $\max_{\mathbf{z} \in K} \big| f_n(\mathbf{z}) \big| \leq 4.$

Proof. Let $\psi(w) = w + \cdots$ be the function that maps |w| > 1 conformally onto the exterior region of K. We shall prove that

$$f_n(z) = \prod_{\nu=1}^{n} (z - \psi(e^{2\pi i \nu/n}))$$

satisfies $|f_n(z)| \le 4$ for $z \in K$. Let z be a fixed point of K, and let

$$\Phi(w) = e^{-\pi i(n+1)/n} \prod_{\nu=1}^{n} (\psi(e^{2\pi i\nu/n} w) - z)^{1/n} = w + \cdots,$$

for |w| > 1. Then

(11)
$$\Re\left(w\frac{\Phi'(w)}{\Phi(w)}\right) = \frac{1}{n}\sum_{\nu=1}^{n} \Re\left(e^{2\pi i\nu/n}w\frac{\psi'(e^{2\pi i\nu/n}w)}{\psi(e^{2\pi i\nu/n}w) - z}\right).$$

A convex set is star-like with respect to each point in it. Hence $\psi(e^{2\pi i \nu/n}w)$ - z maps |w| > 1 onto the complement of a continuum which is star-like with respect to the point 0, so that every term of the sum in (11) is positive. Therefore $\Phi(w)$ is also a star-like univalent function that does not vanish. Furthermore,

$$\Phi(e^{2\pi i/n} w) = e^{-\pi i(n+1)/n} \prod_{\nu=1}^{n} (\psi(e^{2\pi i(\nu+1)/n} w) - z)^{1/n} = e^{2\pi i/n} \Phi(w).$$

It follows that the function

$$\Psi(\mathbf{w}) = \Phi(\mathbf{w}^{1/n})^n = \mathbf{w} + \cdots$$

is again meromorphic, univalent, and different from 0 in |w|>1. Hence $\max_{|w|=1} |\Psi(w)| \leq 4$, and

$$|f_n(z)| = \prod_{\nu=1}^n |\psi(e^{2\pi i \nu/n}) - z| = |\Psi(1)| \le 4.$$

THEOREM 15. Let K be a convex continuum of capacity 1. Then, for $z_{\nu} \in K$ $(\nu = 1, \dots, n)$,

$$\prod_{
u=1}^{n} \prod_{\mu \neq
u} |z_{\mu} - z_{
u}| \leq 2^{4(n-1)} n^{n}.$$

Proof. Using well-known properties of determinants, we obtain

$$\prod_{\nu=1}^{n} \prod_{\mu \neq \nu} |z_{\mu} - z_{\nu}| = \left| \begin{vmatrix} 1 & z_{1} & \cdots & z_{1}^{n-1} \\ \vdots & \vdots & & \vdots \\ 1 & z_{2} & \cdots & z_{n}^{n-1} \end{vmatrix} \right|^{2}$$

$$= \left| \begin{vmatrix} 1 & f_{1}(z_{1}) & \cdots & f_{n-1}(z_{1}) \\ \vdots & \vdots & & \vdots \\ 1 & f_{1}(z_{n}) & \cdots & f_{n-1}(z_{n}) \end{vmatrix} \right|^{2},$$

and, by the Hadamard determinant theorem,

$$\prod_{\nu=1}^{n} \prod_{\mu\neq\nu} |z_{\mu} - z_{\nu}| \leq n^{n} \max_{z\in K} |f_{1}(z)|^{2} \cdots \max_{z\in K} |f_{n-1}(z)|^{2}.$$

(This inequality is due to Szegö; see Footnote 7 on p. 236 of [3]). Therefore, by Lemma 6,

$$\prod_{\nu=1}^{n} \prod_{\mu \neq \nu} |z_{\mu} - z_{\nu}| \leq 4^{2(n-1)} \cdot n^{n}.$$

THEOREM 16. If \triangle_n is defined by (10), then

$$\Delta_n < 2^{4(n-1)} \cdot n^n$$
.

Proof. Let $\{z_1, \dots, z_n\}$ be a system of points with $|z_{\mu} - z_{\nu}| \leq 2$ such that

$$\Delta_{\mathbf{n}} = \prod_{\nu=1}^{\mathbf{n}} \prod_{\mu \neq \nu} |\mathbf{z}_{\mu} - \mathbf{z}_{\nu}|.$$

Let K be the convex hull of the points z_{ν} . It follows from Theorem 15 that

Since 2 cap $K \le \text{diam } K$ and diam $K \le 2$, we see that cap $K \le 1$. Therefore inequality (12) yields

$$\Delta_n < 2^{4(n-1)} n^n.$$

Remark. We can make the following observation in favor of the conjecture of Erdös, Herzog and Piranian about Δ_n . The convex hull K_n of a maximal system $\{z_n^{(n)}, \cdots, z_n^{(n)}\}$ is nearly a disk, for large n. For if this assertion were not true, there would exist a sequence n_k such that the convex sets K_{n_k} converge to a convex set K_0 , of diameter at most 2, that is not a disk (for the concept of convergence of convex sets, see for instance [1, p. 34]). Then $2 \text{ cap } K_0 < \text{diam } K_0 \le 2$, $\text{cap } K_0 < 1$, and $\text{cap } K_{n_k} \le 1 - \delta < 1$ for k sufficiently large. But then, by inequality (12),

$$\triangle_{n_k} \le 2^{4(n_k-1)} n_k^{n_k} (1 - \delta)^{n_k(n_k-1)} < 1$$

for large k, contrary to $\triangle_{n_k} \ge n_k^{n_k}$.

REFERENCES

- 1. T. Bonnesen and W. Fenchel, *Theorie der konvexen Körper*, Ergebnisse der Mathematik und ihrer Grenzgebiete 3, Heft 1, Berlin 1934.
- 2. P. Erdös, F. Herzog and G. Piranian, Metric properties of polynomials, J. Analyse Math. 6 (1958), 125-148.
- 3. M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z. 17 (1923), 228-249.
- 4. ——, Über den transfiniten Durchmesser ebener Punktmengen II, Math. Z. 32 (1930), 215-221.
- 5. ——, Über den transfiniten Durchmesser ebener Punktmengen III, Math. Z. 37 (1933), 635-646.
- 6. G. M. Golusin, Geometrische Funktionentheorie, Berlin 1957.
- 7. J. Klein, Eine neue Relation zwischen den Singularitaten einer algebraischen Kurve, Math. Ann. 10 (1876), 199-209.
- 8. G. Pólya, Beitrag zur Verallgemeinerung des Verzerrungssatzes auf mehrfach zusammenhängende Gebiete, S.-B. Preuss. Akad. Wiss. Berlin. Kl. Math. Phys. Tech. (1928), 228-232.
- 9. Ch. Pommerenke, On some problems by Erdös, Herzog and Piranian, Michigan Math. J. 6 (1959), 221-225.
- 10. ——, Über die Kapazität ebener Kontinuen, Math. Ann. 139 (1959/60), 64-75.
- 11. ——, On the derivative of a polynomial, Michigan Math. J. 6 (1959), 373-375.
- 12. ——, Einige Sätze über die Kapazität ebener Mengen, Math. Ann. 141 (1960), 143-152.
- 13. ——, Über einige Klassen meromorpher schlichter Funktionen, Math. Z. (to appear).

University of Göttingen