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ON METRIC PROPERTIES OF COMPLEX POLYNOMIALS

Ch. Pommerenke

Let

f(z)= H (Z —Zu)=zn+...'
. v=1

This paper deals with metric properties of the lemniscate domain
E={|i=)|<1}.

It will give (at least partial) answers to some problems raised by Erdds, Herzog and
Piranian [2]. Also, some metric properties of continua of capacity 1 will be derived.

Section 1 treats the diameters of the components of E. After some counter-
elexainples, a lower bound for the largest diameter will be given, for the case where
zy|<r<1.

In Section 2 it will be proved that E contains a disk of radius const-n™4, if
Zy € [—2, +2].

In Section 3 it will, for instance, be shown that d < 4. 2'1/ "and A < 74n2, where
d is the measure of the projection of E onto the real axis and A is the perimeter of
E.

Section 4 deals first with some necessary or sufficient conditions for-the con-
nectedness of E, and then with some consequences of connectedness.

The last section is concerned with the convexity of E and two related problems.

1. THE DIAMETERS OF THE COMPONENTS OF E

There is a close connection between lemniscate domains E and compact sets F
with cap F = 1. Here cap F denotes the (logarithmic) capacity of F, also called the
transfinite diameter of F. Every lemniscate domain E = {|f(z)| < 1} generated by
f(z) = [zn]+ ... has capacity 1 [4], and conversely the following approximation theorem
holds | 5]:

Let F be a closed bounded set with cap F = 1. Given any € > 0 and 5 > 0, there
exists a p (1< p<1+mn) and a polynomial f(z) = 2z + --- such that the lemniscate
{[f(z)l = pn} contains F in its interior and is contained in an e-neighborhood of F.

We shall now apply the approximation theorem to some problems of Erdos, Her-
zog and Piranian [2]. Let E have the components Ej, of diameters dj. Then Prob-
lem 8 asks whether

2 max (0, d; - 1)
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is bounded in the class of all polynomials with highest coefficient 1. Problem 9 (re-
vised form [2, p. 148]) asks whether the number of components with diameter greater
than 1 is bounded in the same class, for 1 > 1 and fixed. The following theorem
shows that the answer to these two questions is negative, even with d 5-1 (1<4) in-
stead of dj - 1 in Problem 8, and with any 1 < 4 in Problem 9.

THEOREM 1. For each 0 <1< 4 and k=1, 2, -, one can find a polynomial
f(z) = 2™ + -+ such that E ={|f(z)| < 1} has at least k different components of
diametey grveatlev than ov equal to 1.

Proof. Let F be the union of the k segments [iu6, 1 + iud6] (u =1, -+, k, and
&> 0). Since the capacity of a segment is 1/4 < 1, we have cap F< 1 if 6 > 0 is
small enough (for reasons of continuity). The approximation theorem ensures the
existence of a polynomial f(z) such that E contains F and is contained in a 6/3-
neighborhood of F. Those k of the components of E that contain the k segments of
F are therefore different and have diameters at least 1.

I want to deal again with Problem 10 b of [2]. Let z* be a point of E that lies on
a line of support of E. Erdos, Herzog and Piranian asked whether E contains a
point z with |z - z*| > 2. I have proved [9] that this is not always true. The next
theorem gives the exact constant by which 2 has to be replaced.

THEOREM 2 If z* € E lies on a line of support of E, theve exists a point z € E
with |z - z*| > 3V3/4 ~ 1.299. The constant 3V3/4 is best possible.

Proof. The function

e~Ti/6 (1 + z-1)2/3 4 Ti/6(1 - z-1)2/3
W =
(1 + Z_1)2/3 - - Z~1)2/3

3
=Z'\[§Z+‘

maps the exterior, region of the half-disk { [zl <1, $z> 0} conformally onto
|w| > 1. Hence the half-disk

H={|z| < 3V3/4, 3z > 0}

has capacity 1. We may assume that z* = 0 and that E is contained in Sz > 0. If
the theorem were not true, it would follow that |z| < 3vY3/4 for all z € E and thus
E c H. Since cap H=1 = cap E, we have E = H. This equation can not hold, since
the half-disk H is not a lemniscate domain. The approximation theorem shows that
3vV3/4 is the best possible constant (see [9]).

Let the zeros z, of f(z) belong to the disk |z| < r. Erdds, Herzog and Piranian
[2, Problem 7] raised the question whether there is always a component of E with
diameter at least 2 - r (r < 2). The answer is negative for r > 1. To show this, let
f(z) =z - r® (r > 1). Then the set E = {|z’r1 -rt L 1} has n components. If z
belongs, for instance, to the component that contains the zero r and if z - r = @
(lwl < 1), then for n — «

IZ - I'l = l(rn+ w)l/n - I'l = r]l + wn"l r-n O(n-zr-n)+ cer - 1|
< n-! r-ntl(1 + O(n-1)) — 0.

Hence the (common) diameter of the components of E tends to 0 as n — . We shall
need the following two lemmas to treat the case r < 1.

LEMMA 1. Let
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- 1< 1
)= Il (-2), 20=3 Z 2 2=EE |, |
v=1 v=1 v=1
If 0% - |20|2 <1, the disk
|2 - 20| < (1 - 0%+ |2o[*)¥2

is contained in E = {|f(z)| < 1}.

Proof. Since the geometric mean is less than or equal to the arithmetic mean,

@2/ - ( I Iz—zulz)l/n
v=1

n n

<1T z-22-1 2 (22 - 20(zz,]+ |5,]?)
1 v=1

:3 I

z|? - 2%[zz,] + o
0

|z - z0|2— |z0|2‘+02,

and this quantity is at most 1, for |z - 2|2 <1 - 02+ |z,[2 (> 0).

LEMMA 2. If A is a continuum, AC E, and z, € A for v=1, ***, n, then E is
connected.

Pyoof. It follows from the maximum principle that each component of E contains
at least one zero. Because z, € A C E, the zeros z; can be connected within E, and
E is itself connected.

THEOREM 3. Let f(z) = II(z - z,), |z,,| <r<1,andlet 4, be the diameter of
the component E, of E that contains 0. Then
d,> 2 for 0<r<1/2,
d,> 1/r for 1/2 <r < (V5 -1)/2,
do>2-1r2 for (V5-1)/2<r<1.

Remarks. 1. Since |f(0)| I |zV| < 1, the point 0 belongs to E. Therefore it is
meaningful to speak of the component E, of E containing 0. Lemma 1 shows that
the centroid z, lies in E; (compare Theorem 1 of [2]).

2. The inequality d, > 2 for r < 1/2 cannot be improved, as the example
f(z) = z» shows. Also, the polynomial
@+ 1)(z - 17 (z - €72)1 (z - ei7/n)-1
has d, < 1 + ¢ for sufficiently large n (see the proof of Theorem 7 in [2]). Hence
the inequality d, > 1 is best possible, for r = 1.

3. Since all three bounds 2, r-1, and 2 - r?® are greater than or equal to 2 - r,
Theorem 3 answers Problem 7 of Erdds, Herzog and Piranian affirmatively, for
o0<r<1.
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Proof. Let |z,| <1 and f(z) # z™. We shall first prove that E, contains a point
in |z| > 1. This assertion is trival if a zero z, with |zy| =1 belongs to E,. Since
E, contains at least one zero (by the maximum principle), we may therefore assume
that at least one of the z, lies in |z| < 1, so that |£(0)| < 1. The polynomial

n
gz) = I (1-2,2)
v=1
is not constant and satisfies |g(z)| > |f(z)| for |z| < 1 and |g(z)| = |£(z)]| for

|z| = 1. Suppose that E, is contained in |z| < 1. Then |g(z)| > |£(z)| = 1 holds for
the boundary points of E,. Since g(z) # 0 in |z| < 1 and |g(z)| = |£(z)| 2 0 on

{|z| = 1}n E,, the function g(z) has no zeros in E,. Therefore the minimum prin-
ciple implies that |g(z)| > 1 for all interior points of E,. But g(0) = 1, and 0 is an
interior point of E,, since |f(0)| < 1.

2. Let 0 < r < 1/2. Then it is obvious that |f(z)| <1 for |z| < 1/2. Hence
Lemma 2 shows that E is connected. Thus E, = E, cap E; = 1, and the inequality
d, > 2 follows from the fact that every continuum of capacity 1 has a diameter at
least 2.

3. Let 1/2 <r < (V5 - 1)/2 and Zg = n’lzzy. Since 0%=n"1x Iz,,[z < rz,
Lemma 1 implies that the disk
(1) lz-zolf_(l -r2+ lz‘,[z)l/2

lies in E,;. If lzol < (1 - 2r®/(2r) (> 0), then E, contains the disk of center 0 and
radius (1 - r?+ |zy[2)¥/2 - |z,|. Since this radius is a monotone decreasing function
of |z,), it is not less than

(1 r2+1-4r2+4r4')1/2 1-2r2 1 1-2r2
- 4r2 I Y O T T 9w

Hence the disk [zl < r is contained in E;, and it follows again (by Lemma 2) that
do, > 2 > 1/r. If on the other hand Izol > (1 - 2r?)/(2r), then the radius of the disk
(1) is monotone increasing, hence at least 1/(2r). Thus E,; contains a disk of diame-
ter 1/r. Since clearly E, cannot be identical with this disk, it follows that dj, > 1/r.

4. Finally, let (V5 - 1)/2 < r < 1. It was proved in the first part that E, con-
tains a point in |z| > 1 (except if £(z) = z1, in which case d, = 2). Also, the disk
|z| < (@ - 12 + |2,])¥2 - | 2,| lies in E,. Hence, for |z,| < r?/2,

do> 1+ (1 - 12+ |2|2)V2 - |2,
>1+(1- r2+r4/4)1/2- r’/2 =2 - r?.
On the other hand, E, contains the disk (1), whose radius is at least 1 - r?/2 for

| z,| > r*/2. Hence E, contains the disk |z - z,| < 1 - r2/2, but is not contained in
it. Therefore d, > 2 - r2.
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2. THE LARGEST DISK CONTAINED IN E

Let A be a given compact set, let zy € A (v =1, -+, n), and let p denote the
radius of the largest disk contained in E. If cap A < 1, there exists a positive num-
ber p, = po(A) such that p > p, [2, Theorem 6]. If A is a disk of radius 1 or a seg-
ment of length 4 (in both cases, cap A = 1), there does not exist any positive lower
bound for p that is independent of the degree n of f(z). Erdds, Herzog and Piranian
put the question whether p > const - n~?1 if |Zv| < 1 [2, Problem 3]. I shall only
prove a weaker estimate (see also [2, Problem 2]).

THEOREM 4. If |z,,| < 1, the lemniscate domain E contains a disk of radius
(2e)-t n-2,

Proof. Let again E; denote the component of E that contains the point 0.
Theorem 3 (for r = 1) shows that the diameter of E, is d, > 1. Since E, is con-
nected, we have d, < 4 cap E, (see for instance [6, p. 42]), and therefore
cap E, > 1/4. Since |f(z)| <1 for z € E,, this inequality implies (see [11]) that

If'(z)|<—i—< 2en? (z € E,)
— 2 cap E, o

Let zy be a zero of £(z) that lies in E,, and let z* be the boundary point of E,
nearest to zy,. Taking the segment between z m and z* as path of integration, we
obtain

z¥k

S f(z)dz
“n

1= |f(=z¥]= <|z*-z“|~2en2

and |z* - z,|> 1/2en?, and therefore the disk |z - zy| < 1/2en? is contained in
E, C E.

Let now the given set A be the segment [-2, +2], that is, let the zeros z, = £,
be real, with -2 < £, < 2. I want to establish the conjecture of Erdos, Herzog and
Piranian [2, p. 132] that p > n~Y, where y denotes an absolute constant. We shall
need

LEMMA 3. IftE=z+2z™}, E'=2'+2'"1) z=x+1iy, z'=x'+ iy, |z|= |z'|=1,
y> 0,y >0,then |&- > |z - 2]

Pyoof. |&- &' =|z-2z'||1- @z =]|z-2]|z- z'| > |z - z'[?, because
|z - z2']2 = (x - x")2 + Y+y2>E-x2+(y-y)2=|z-z'f.

THEOREM 5. Let -2 < zy = £, <2, Then the set ENX contains a segment of
length 1/8e?n* (X denotes the real axis).

Proof. Let

g(z) =z"fz+z D) = II (z%- Eyz+ 1),
v=1

which is a polynomial of degree 2n. The zeros £,/2 + i(1 - 55/4) 1/2 of g(z) have
absolute value 1. The proof of Theorem 4 shows that the set {I g(z)| <1} contains
a disk of radius 1/2en? and center on [z| = 1. We can thus choose an arc B on
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|z| = 1, of diameter 1/4en?, such that |g(z)| <1 on B, and such that Iz has always
the same sign on B, say Sz > 0. The segment B* = {£{ =z + z71: z ¢ B} has length
at least (4en®~2 by Lemma 3, and we have '

|#(&)] = |21z + z71)| < 1

for & € B*, hence B*c ENX.

3. UPPER BOUNDS FOR GEOMETRIC QUANTITIES
ASSOCIATED WITH E

Pélya [8] has proved that the linear measure d of the projection of a compact
set with cap F = 1 onto a straight line satisfies d < 4. I want to give the exact upper
bound of d for lemniscate domains E = { [f(z)l < 1} of polynomials of degree n.

THEOREM 6. Let £(z) = -, (z - z,), let P be the projection of E onto the
veal axis X, and let d be the linear measuve of P. Then

capP<2°1/m  da<4.2-/n,

with cap P = 2-1/2 exactly if all z, lie on a pavallel to X and if E = {|f=)| < 1}
has n components. (The result concerning d was already known to P. Erdés and Bl.
Sendov; see the remark after Problem 102, Wisk. Opgaven 20/3 (1957), p. 22.)

Remark. The equation d = 4- 2‘1/n holds exactly if cap P = 2 -1/n and P is one

segment. Then E consists of n components whose boundaries meet in pairs at the
n - 1 zeros of f'&z}. It can be shown that these conditions are satisfied if and only

if f(z) = T, @2-111/nz ¢ ¢), where T,(¢) is the n-th Tchebycheff polynomial and ¢ is
a complex constant.

Proof. 1. Let zy = x), + iy, and
n
t*z) = II z -x%)), E*={|f*=2)|<1}.

v=1

If x is a point of the projection P, then z = x + iy € E for a certain y, hence
|[f*x)| = I |x - x| < II|z - 2| = | £(2)] <1.

Therefore we have
(2) Pc E*xnX.

Suppose that P = E*N X. If x' is the greatest value in E*NX = P, then, for a cer-
tain y' and for z' = x' + iy', 1= |f*x")| < |£(z')| < 1, hence |f*(x')| = |£(z")| and

IH(x'- %)%+ (3" -y,)%) = II(x' - %)%,

and therefore y'-yy, =0 for v=1, ++-, n.

2. Let R = {z: f*(z) real, If*(z)[ < 1}. Since the segment [-1, +1] has capacity
1/2, a theorem of Fekete [4] (see for instance [6, p. 259]) shows that cap R = 2-1/n,
Since f*(x) is real for real x, E¥N X c R. Therefore, by (2),
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3 cap P < cap(E*NX) <capR = 2-1/11
and [8]
d<4capP<4-2°/m,

3. We have cap P = 2‘1/  exactly if the sign of equality stands in all inequali-
ties (3), hence if and only if P = E¥N X = R. Part 1 of this proof shows that
P = E*N X holds exactly if the zeros zyp lie on a parallel to X, which we may as-

sume to be X itself. Then this means f*(z) = f(z). Suppose that E has the maximal
number n of components. Each component is mapped by w = £(z) onto lwl < 1. Be-

cause f(z) assumes every value only n times, f(z) is real in ﬁ} only for real z.
Hence E*NX = ENX = R. On the other hand, suppose that ]% has fewer than n com-

ponents. Then there exists a real £ € EOI with £'(¢) = 0. A certain small curve that
begins in £ and goes into Iz > 0 is consequently mapped by w = f(z) into the real
axis. Hence E NX is properly contained in R, and cap P < 2-1/2, Thus Theorem 6
is proved.

The inequality d < 4 implies that the maximum of the measures of the different
projections of E is at most 4. Let b be the minimum of the measures of the pro-
jections of E. By applying the approximation theorem to the “5-Stern” [10, p. 73] we
obtain a lemniscate domain with b > 2.386 (compare [2, Problem 10a]). I shall give
an upper bound for b.

THEOREM 7. Let F be a closed bounded set with cap F = 1. Then the projec-
tion of F onto a certain straight line has measure less than 3.30.

Proof. The set F can be enclosed by a system of closed curves Ly
(v =1, ---, m) whose lengths Ay satisfy

m
2, Ay <10.36
=1

[12, Theorem 2]. We may assume that these curves are convex (otherwise we take
instead the boundaries of their convex hulls; if these intersect, we take them as one
curve, and so forth). Let bu(B) be the width of L, in the direction 6, that is, the
width of the narrowest strip containing Ly that forms the angle 6 with the real
axis. Then [1, p. 48]

1 (2w

and therefore

1 27 m m
55 2. by(e)do = 22 Ay <10.36.
0 pu=1 p=1

This inequality implies that
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m m
22 by(6p) = min 25 by, (6) < 10.36/7 < 3.30.
p=1 9 p=1 -

The projection of F onto the straight line of direction 6, + 7/2 has measure at most
Ebu(eo) < 3.30.

We shall now consider the linear measure A of the intersection of E with the
unit circle Izl = 1. The equation A = 27 holds if and only if f(z) = z™. Even if the
zeros zp satisfy |zV| = 1, the measure A can come arbitrarily near to 27. I shall
give an upper estimate for A that depends only on the degree n. This estimate
shows that A does not depend continuously on the set {z], -, Zy}.

THEOREM 8. Let £(z) # z. Then

n

meas[Eﬂ{Iz]:l}]ﬁZwrbLl

Proof. We write £(z) = Z:E:O ay zK and o = 27/(n + 1). Then

1 2 ig+rion(2 _ 1 N . v = oi(k-f) Jiav(k-f)
2. (f(e )| © = 2. 20 2) aage
n+1u=oI | n+ 1,20 f=0 v=0 k5 ©

=1+ |an 1 [%+ -+ |a?.

Since f(z) # z™, this quantity is greater than 1. Hence there exists, for each 6 in
0< 6<a,aninteger 1 (0 < i < n) such that |f(elf+ina)| > 1. Let u(6) be the
least of these integers, and let M denote the set of values ¢ in [0, 27) which have
the form ¢ =0 + au(d) (0< 0 < a). Then M has measure o = 27/(n + 1), and the
theorem follows from the fact that the set MN E is empty.

Finally, I shall obtain an upper bound for the length A of the lemniscate
{|£(z)] = 1}. Problem 12a in [2] asks whether A is greatest for f(z) = z™ - 1. An
affirmative answer would imply that A < 2n + o(n).

THEOREM 9. If £(z) = z® + --- and A is the length of C = {|i(z)| = 1}, then
A < T4n2,

Proof. The lemniscate C is given by the algebraic equation

f(z)f(z) = 1 (z=x+1y, x and y real)

with real coefficients. Hence C is the “real” part of a plane algebraic curve of
order 2n, “real” in the sense of algebraic geometry, that is with real x and y. We
may assume, for reasons of continuity, that this curve has only simple singularities
and no “real” double points. Then C has at most 2n(2n - 2) “real” points of inflec-
tion [7], because C does not have any “real” cusps and isolated points. At the points
at which C has a tangent parallel to the real axis X, an algebraic equation of degree
2n - 1 is satisfied. Since it is easily seen that there are only finitely many such
points, the theorem of Bézout shows that C has at most 2n(2n - 1) points with a
tangent parallel to X.

We mark on C all points of inflection and all points with a tangent parallel to X.
The number of these points together is less than 8n2. They divide the lemniscate C
into simple arcs Cy (k= 1, -+, m) on each of which the curvature has constant sign,
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and which have no interior points with a tangent parallel to X. It is easy to see that
joining the endpoints of an arc Cy by a segment gives a closed convex curve Clt'

The endpoints of every arc C, belong to one of the two categories just described.
The number m of arcs therefore satisfies the condition m < 8n?. Because Cy C C,
we have cap Ci < cap C = 1, and the convex hull of Cy has a perimeter less than
9.2 [10, Theorem 5]. Therefore the length Ay of Cy is

A <length of C§ < 9.2
and
m
A =2 A <9.2m < 9.2-8n% < 740 .
k=1
4. THE CONNECTEDNESS OF E

Let f(z) = Il})=; (z - zp). We shall first obtain some relations between the con-
nectedness of the set E = {|f(z)| < 1} and the distribution of the zeros z,. We
shall need

LEMMA 4. Let C(r) = {z: |f(z)| = r®} (x> 0) and

__1 2 |
@) M) == ) [zl 1@ ] az].
C(r)
Then
Ar) > 20 |z,|2
v=1
for > 0.

Proof. 1. Let r > 0 be a value for which C(r) does not contain any zero of the
derivative £'(z). Then there exist integers m and pjy such that C(r) consists of m
closed analytic curves each of which is mapped py times (k=1, -, m;

p; + -*- + p,. = n) onto the circle lWl = r%, by the function w = £f(z). Each function

Py . .
Wy = i(z) k is therefore regular on one of these curves and maps it one-to-one ont

onto |w|= rn/pk. Let z = ¢, (W) (k=1, -, m) denote the inverse function. Then

whE = £, W),  p wEET! = 01(@) ol (wy)
and therefore, by (4),
- b -1
= D § e ndP ™ ey
k=1 27T IWk|=rn/pk
(5 ,
Pk T n/ igy |2
= — ¢ (r pkelg) deg.
Zal In |
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Differentiation gives

= 2 &SZW -%—(rn/Pk-IZ m[eigﬁc(rn/pkeie) ¢ ] do
=] 0

i

Sozwm [1%¢(rn/1°keie),5k]d9.

n/px

We write ¢y (r ei9) = ur(9) + ivi(H) and obtain

m
2T
Ar) = oo (viu, — uiv,)dé.
o1 7T, KUk — U Vi

Since uy + ivy; represents a positively orientated simple closed curve, the value of
the integral is twice the area enclosed by this curve, and is therefore positive.
Hence A'(r)> 0 for all r, except possibly for a finite number of values. Since A(r)
is continuous, this function is strictly increasing.

2. If r.> 0 is sufficiently small, then f'(z) # 0 within C(r), except at the multiple
zeros of f(z). We now denote the multiplicities of the zeros by px. Temporarily, we
may relabel the zeros in such a way that f(z) has m different py-fold zeros Z)

(k =1, ---, m). Let again z = ¢, (wy) be the inverse function of

)l/pk

wy = i(z = ¢ (z - Zp) + -+ (cy 2 0).

Then ¢ (0) = zx, equation- (5) is again applicable, and it follows that

m m n
lim A(p) = 22 6,.(0)|2 = 27 z. |2 = 22 |z,|2.
0 p =1 Pk‘ x( l bt Pkl k| V:ll y|

Since A(p) is strictly increasing,
n
Ar) > lim A(p) = 22 lZy'Z .
pP—0 v=1
THEOREM 10. Let

n

n
Z;z,,=0 and (72=-r1—l 2 IZVIZ.
v=1 v=1

ZO=

=Rl

Then the following best possible vesults hold:
@) I |z,| <V2/2 or if z, €[-1, +1], then E is connected.
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(b) If E is connected, then |z,| < 2 and o < V2.

Proof. (a) Let IzV| < V2/2. Because z,= 0, Lemma 1 implies that the disk
|z| < V2/2 is contained in E. Hence E is connected, by Lemma 2. The polynomial
(z2 - 1/2)™ (z% + a%) with a > v2/2 has three distinct components, if m is suffi-
ciently large. Hence the bound v2/2 cannot be improved.

Let zy be contained in the segment [-1, +1]. Then both halves [-1, 0] and [0, 1]
lie in E [2, Theorem 1], and Lemma 2 shows again that E is connected. The poly-
nomial z2 - a? with a > 1 has two components.

(b) Let E be connected. Then (because z, = 0)
(6) w=fz)!/? = (z2+a, 2%+ ---)l/n =z+afzl+ .

Since this function is univalent in the exterior region {|f(z)|> 1} of E, the inverse
function

o0

(N z=¢pW) =w+ 2 buw-“’
]J.:l

is meromorphic and univalent in |w|> 1. Hence E is contained in |z] < 2 (see for

instance [6, p. 42]), and it follows that lz,,l < 2 because z, is an interior point of
E. Using (5) (with m =1, p, = n) and (7), we obtain for r > 1

T o0
|o(rei®)|2 do = r2+ 2 |by|? r2H,
( p=1

A(r) _ 1 2
n 27 b

and therefore, by Lemma 4,
n ) [>e]
2 _1 2 _ A1 2
g —“ﬁ ZIZVl <—'n—=1+ Z |b“| .
v=1 pu=1

Since ¢(w) is univalent in lwl > 1, the area theorem [6, p. 39]

2 ulbpl* <1
p=1

gives 0% < 2,

The lemniscate domain E of the polynomial
Tn(21/n‘1 z) = cos[n arccos (Zl/n-1 z)]=2z"+ -

is connected, and the zeros are
x(,,n) = 9l-1/m oo 2lrr—l(2V -1) w=1, -, n).

The zero xgn) = 21-1/ngg —27—% tends to 2 as n — «, and
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n

n
1= x,,n)2 = 22-2/n. 1 53 062 T (9 1)
nV=1 no 2n

Hence the bounds in (b) cannot be improved.

The last sufficient condition in Theorem 10a is z, =0 and z, € [-1, +1]. The

segment [-1, +1] has capacity 1/2. To generalize the condition on the z,, we need
the following lemma.

LEMMA 5. If K is the convex hull of the zevos z,, then
g(@) = @) /P =z 4 .

is univalent in the exterior region of K.
Proof. Let L be an arbitrary convex analytic curve that contains K in its in-
terior and is positively orientated. We assert that

arg g(z) = n"arg {(z)

increases monotonically on L. It is enough to prove that arg f(z) increases on each
orientated straight line that leaves all z;, on its left side. We may assume this line
to be the imaginary axis. Then

n

arg f(iy) = 2 %[log (iy - x, - iy )],
v=1

where z, = x,, + iy, and x; < 0, and therefore

n
d i
— arg (i =Z)°“[. ]
dy 278 (iy) = B e e
n _x,
= 2 > >0,

which was to be proved. The variation of arg f(z) on L is 2wn, by the argument
principle. Hence the variation of arg g(z) is 2w, and arg g(z) increases monotoni-
cally by 27 on L. Therefore g(z) is univalent on L and consequently in the entire
exterior region of K.

THEOREM 11. Let A be a closed bounded convex set with cap A =k <1/2 and
conformal center 0. This means that the function Y(W) that maps Iw| >1 conform-
ally onto the exterior region of A has the development

Y(W) = KW+ c, WL+ «oo,

If the zevos z,, of £(z) belong to A and if their centroid z, is 0, then E is connected
and contains A.
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Proof. Since the convex set A contains the zeros zyp and therefore their convex
hull K, the function g(z) = f(z)1/? is univalent in the exterior region of A (Lemma
5). Hence, by equation (6),

gy(w)) = kw + cFw e e,
and g(y(w)) is univalent in |w|> 1. Therefore

max |g(z//(w))| <2¢<1

w =1
[6, p. 32], and it follows that

max |£(z)| = max |g(@)|” < 1.
zZ €A Z€EA

This inequality means that A C E, and Lemma 2 shows that E is connected.

We shall now derive some metric properties of E for the case where E is con-
nected. More generally, we shall consider a continuum F of capacity 1. Let b and
d be the width and the diameter of F. Erdds, Herzog and Piranian put the problem
to find bounds for b, d, bd and related quantities [2, Problem 15]. I have proved the
(not best possible) inequality b < 2.920 [10, Theorem 6].

In another note [9], I asserted that b? + d* < 63/3; but the proof was not correct-
ly formulated, as Prof. Herzog kindly pointed out to me. I want to complete the
proof here: Inequalities (3) and (4) of [9] imply

1/2
b2§-§:§-2-—163+6—;-(1+§3)/

1
az<-32, 163+93(1 —3-3)1/2
=73 3 ! s

where 0 < B < 1. Hence
1/2 1/2
e <§ (10 d0) e (1-30) 0] <%

which is the asserted inequality.

Probably b?+ d? < 16 holds (with equality for a segment of length 4). For the
case where F is convex or contains at least a segment of length d, the inequality
b? + d? < 16 has been proved [10, Theorem 9].

THEOREM 12. Let F be a continuum, of capacity 1 and symmelric with rve-
spect to the point 0. Then either

(D b<2V2, Db*+d<16 and Dbd<8, or
am b < 2, b2+ <18 and bd<4V3.

Remarks. 1. There exists a symmetric continuum of capacity 1 with b > 2.18,
and one with bd > 6.15 [9].

2. Let z* € F be a point with the maximal distance d/2 from 0, and let b* be
the width of the narrowest strip that contains F and is parallel to the diameter
[-z*, z*] of F. Using the method of the proof which follows, one can show that
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(8) b* < 2V2, Db*d<8.

The example F =[-v2, V2 ]U[-iV2, iV2] and z* = V2 has b* = 2V2, b*d = 8. Hence
the inequalities (8) are best possible.

Proof. Let h(w) = w+ gw™! + +-- be the odd function that maps |W| > 1 conform-
ally onto the exterior region of F. We may assume that 8 is real and nonnegative.
Then 0 < B8 < 1. The function

h(Wl/z)2 =W+ 28 + -
is meromorphic and univalent in le > 1. If z is a point of F, then h(w) # +z and
h(wY/?)? # 22, in |w|> 1. Therefore |z - 28| < 2 [6, p. 42]. Hence F is contained
in
|(z/v2)2 - | < 1.

Elementary computations show that this inequality implies

2V2(1 - P2 for 0<B<1/2,
= V2g-1/2 for 1/2<8<1,
and
d < 2v2(1 + B2,

In the case (I) where 0 < 8 < 1/2, we have therefore b?+ d® < 16, bd < 8, b < 2V2,
and in the case (II) where 1/2 <8< 1, we have b < 2 and

b2+ d® <2871+ 8(1+P) <18, bd<4(l+p)Y2<4v3,

5. CONVEXITY

Let f(z) = I1(z - zp), and let zg =% 2.z,. Erdds, Herzog and Piranian [2, Theo-
rem 11] have proved that the set E = { |f(z)| < 1} is convex if

sin 7/8

|ZV| < 1+ sin #/8

~ 0.277.

The following theorem improves this result slightly.
THEOREM 13. If one of the conditions

(@) |z,| <0.320, (b) |z,|<0.424 and z5 = 0

is satisfied, then E is convex.

Proof. Let p> 1, and write £, = pzy and

n

(9) g®=1II €-¢)=1I (- pz,) =p ip-10).

v=1 v=1
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(a) Let |¢y] < 1/2. Then |g(®)| <1 for |t|< 1/2, and Lemma 2 shows that
F={|g(®)| <1} is connected. Lemma 1 implies that the disk

c-nls (1-3)" -3

(with &, = pz,) is contained in F. The area of F is therefore at least 37/4. Let

o0

E=yYw)=w+ 2 b‘uw"’JL
©=0

be the inverse function to w = g(C)l/ N Since Y(w) is univalent in [wl > 1, the area
of F is

= o]
7l 1 - E Hlbu_lz),
p=1
hence Z p.l by lz < 1/4. Applying the Schwarz inequality, we obtain for p> 1
oo 2 [ce] o0
2 u? byl p‘(“”)) < Z oplbylp - T op3p-2el)
u=1 =1 p=1

41+ 4p-2 4+ p-t
(1-p-2)4

If we put p~2 = 0.41, the last term is less than 1, and therefore

1
<3P

> p2 [by o) < 1
p=1

This inequality implies that the curve {¢ = Y(w): le = p} (p~2 = 0.41) is convex
(see Hilfssatz 4b in [13]). The curve can be written {lg(t‘;)l = pn}, or, by (9),
{e: |f(o-20)| = 1}. Therefore the set E = {z: |£(z)| < 1} is convex if

|zy| = p~* | €y] < 0.4172.0.5 > 0.32.

(b) Let |¢y| < V2/2. Then ¢, = pz, = 0, and the set F = {|g(¢)| <1} contains
the disk ]§| < v2/2 (Lemma 1). Hence F is connected, and its area is at least 7/2.
Therefore

o0

2 -2 -4
2 ~(p+l 1 41+4p°"+p

and this quantity is less than 1 for p~2 = 0.36. Hence E is convex if
|z,] =p-1lc,|<0.6-v2/2> 0.424.

Let f(z) = IIL, (z - zk)pk (z distinct, p,. positive integers), and let
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E = {|f(z)| < 1} have the maximal number m of components. H. Grunsky (see [2,
Problem 16]) raised the question whether all components must be convex. I shall
give a counter-example.

THEOREM 14. Let f(z) = zP(z - a). If a - (1 + p~Y) - pl/(P+1) is positive and
sufficiently small, and p is sufficiently large, then the set E = {|£(z)| < 1} has two
components, one of which is not convex. \

Proof. We put £ = pl/(P+1) and fp(z) = ip(z - (1+p~1)£). Then

(= _p, 1
)z z_(1+p-)¢’

£,(6) = - gP-ple=-1,
and therefore

ff,(§)=—%+%=0.

Thus £ is a double-point of the curve Cp = {|fp(z)| = 1}, and Ep = {|fp(z)}| < 1}
consists of two parts which have only the one common point £. The two branches of
Cp in £ have the tangents y = +(x - £). Hence Epﬂ {lz - E] < 6} is contained in
the set

S={x+iy: |y|<1.1-|¢-x|},

for some small 6 > 0. The point z* = 0.5+ i-0.6 (|z*| < 1) satisfies fp(z*) — 0 as
p — . It follows that z* € E, for large p. Also, z* ¢ S for large p, since £ — 1
as p — «. Thus the segment connecting z* and ¢ contains a point that does not be-
long to Ep, and therefore the part of Ep containing 0 is not convex for large p. If
a - (1 + p~Y)£ is positive and sufficiently small, then E = {|f(z)| < 1} has two com-
ponents, and the component that contains the point 0 is not convex.

Finally I shall deal with the following problem of Erd6és, Herzog and Piranian [2,
Problem 13]. Let zy be n complex numbers which satisfy ]z“ -zy| < 2
(m,v=1, -, m). Is II,,_; II ;észu - z,,] maximal if the z, are the vertices of a
regular n-gon of diameter 2? We denote the maximum by Apj:

n
(10) An= max H H |Z’J' —Zyl.
Z], ** Zp v=1 pzp
|zu-—z,,|§2

The conjecture implies that A, = n™ for even n and A, = n®(cos n/ 2n)-n(n-1) for
odd n. The last quantity is

2 -n(n-1)

nn(l __1r_z+ ) ~nhe™ /8
8n

In order to obtain an estimate for A,, we need a result on convex sets.

LEMMA 6. Let K be a convex continuum of capacity 1. Then there exist
polynomials
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f(z) = 20+ ... n=1, 2, --)

with zevos in K such that max |£.(z)| < 4.
ZE -

Proof. Let y(w) = w + *++ be the function that maps |w|> 1 conformally onto
the exterior region of K. We shall prove that

n
fn(z) = I (z - w(e2mi¥/my)
v=1
satisfies lfn(z)l < 4 for z € K. Let z be a fixed point of K, and let

&(w) = e—?Ti(n-i—l)/n II (w(eZ‘niv/nw) _ Z)l/n = WA eee

for |w|> 1. Then

oW 1y iw/n.,  W(e2TiV/ny)
(11) R (W ‘I’(WS ) “n VE:I R (e21T U/ v w(ezﬂ’iv/nw) -2z ) )

A convex set is star-like with respect to each point in it. Hence w(e2TiV/ny) _ 4
maps |w|> 1 onto the complement of a continuum which is star-like with respect to
the point 0, so that every term of the sum in (11) is positive. Therefore &(w) is
also a star-like univalent function that does not vanish. Furthermore,

&(e2M/1y) = e-mi(nt1)/n [T (y(e2mi(v+l)/ny) - g)l/n = e2Ti/n g () .
v=1

It follows that the function
W(w) = <I>(w1/n)n =W+ -

is again meromorphic, univalent, and different from 0 in |w| > 1. Hence
max I\Il(w)l < 4, and

w =1

n

It = IT |w(e™¥/™) _ 4] = |2@)| < 4.

v=1

THEOREM 15. Let K be a convex continuum of capacity 1. Then, for z, € K
(V = 1; "ty n),

n

H H |Z“ - ZVIS 24(1‘1-1) nn.
v=1 u#y

Proof. Using well-known properties of determinants, we obtain
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LIl -ml-l: 0 [P

v=1 u#y

1 £f3(z1) - £,_1(z1)
-l AL

1 fl(zn) eer f 1(zn)

n-

and, by the Hadamard determinant theorem,

H II lz“ - zy| < n® max |£;(z)P --- max |f, 1@ .
v=1 u#y eK z€K

(This inequality is due to Szegd; see Footnote 7 on p. 236 of [3]). Therefore, by
Lemma 6,

H II Iz 'zul<42(n 1)

v=1 u#y
THEOREM 16. If A, is defined by (10), then
An < 24(n-1) . p?

Proof. Let {zl, ey zn} be a system of points with |zu - zy| < 2 such that

n
=II I |2y -2,].

v=1 p+v

Let K be the convex hull of the points z,. It follows from Theorem 15 that

4(n-1) s n(n-l).

(12) A, < 2 (cap K)

Since 2 cap K <diam K and diam K < 2, we see that cap K < 1. Therefore in-
equality (12) yields

A, < 24(11-1) .

Remark. We can make the following observation in favor of the conjecture of
Erdos, Herzo§ and Piranian about A;. The convex hull Kj of a maximal system
}

{ z(n) is nearly a disk, for large n. For if this assertion were not true,
there Would exist a sequence ni such that the convex sets K ny converge to a convex

set K,, of diameter at most 2, that is not a disk (for the concept of convergence of
convex sets, see for instance [1, p. 34]). Then 2 cap K, < diam K, < 2, cap K, < 1,
and cap Kn <1-46<1 for k sufficiently large. But then, by 1nequa11ty (12),
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By < 24(nk-1)n£k(1 _ 5)nk(nk-1) <1

for large k, contrary to Ank > nzk.
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