SUMMABILITY AND ASSOCIATIVE INFINITE MATRICES

H. R. Coomes and V. F. Cowling

We consider the sequence-to-sequence matrix transformations y = Ax, where $A = (a_{nk})$, $x = \{x_k\}$, $y = \{y_n\}$,

$$y_n = A_n(x) = \sum_{k=0}^{\infty} a_{nk} x_k$$
 (n, k = 0, 1, 2, ...).

It is known that a matrix A is *conservative*, that is, Ax converges whenever x does, if and only if $||A|| = \sup_n \Sigma_{k=0}^{\infty} |a_{nk}|$ is finite, $\lim_n \Sigma_{k=0}^{\infty} a_{nk}$ exists, and $\lim_n a_{nk}$ exists for $k=0,1,2,\cdots$. If A, B, C \cdots are conservative matrices with elements a_{nk} , b_{nk} , c_{nk} , \cdots , the column limits will be denoted by a_k , b_k , c_k , \cdots . A conservative matrix A is said to be *co-regular* if

$$\lim_{n \to k} \sum_{k} a_{nk} - \sum_{k} a_{k} \neq 0.$$

Otherwise it is said to be *co-null*. Let e and e^n (n = 0, 1, 2, ...) be the sequences defined respectively by $e_k = 1$ (k = 0, 1, ...) and by $e_k^n = \delta_{nk}$ (n, k = 0, 1, 2, ...). Let $\Delta = \{e^n : n = 0, 1, 2, \cdots\}$, and let Φ be the set consisting of the elements of Δ together with e. Let $H(\Delta)$ and $H(\Phi)$ be the linear hulls of Δ and Φ , respectively. The terms "basis" and "biorthogonal" will be used as in [1, pp. 106, 110].

We shall say that a matrix A is associative if B(Ax) = BA(x) for all matrices B with ||B|| finite and all x in the summability field C_A . Clearly a matrix A is associative if and only if

$$\sum_{n} t_{n} \sum_{k} a_{nk} x_{k} = \sum_{k} \sum_{n} t_{n} a_{nk} x_{k} \quad \text{for all } x \in C_{A} \text{ and all } \{t_{n}\} \in (\gamma),$$

where (γ) denotes the set of sequences $\{t_n\}$ such that $\Sigma_{n=0}^{\infty} \, |t_n|$ converges. We shall show that if A is replaceable, that is, if there exists a regular matrix D such that $C_D = C_A$, then A is associative if and only if Φ is a basis for C_A .

Bases for the space C_A have been studied by Wilansky [3] and MacPhail [2]. A conservative matrix A is said to have $maximal\ inset$ if $\Sigma \, a_k \, x_k$ converges for all x in C_A . A is said to have $propagation\ of\ maximal\ inset$ (PMI) if $\Sigma \, b_k x_k$ converges for all x in C_A whenever B is a matrix such that $C_B = C_A$. Wilansky has shown that if A is a triangular co-regular matrix, then Φ is a basis for C_A if and only if A has PMI. MacPhail has shown that this statement is true if "triangular" is replaced by "reversible." We shall show that if A is an arbitrary co-regular matrix, then Φ is a basis for C_A if and only if A has PMI. Also, we shall give necessary and sufficient conditions that Δ be a basis for C_A .

LEMMA 1. Let A be a co-regular matrix. $\overline{H(\Phi)} = C_A$, that is, $H(\Phi)$ is dense in C_A , if and only if, for each sequence $\left\{b_n\right\}$ such that $\left.\Sigma\left|b_n\right|$ is convergent and

Received September 6, 1960.

(1)
$$\sum_{k} \sum_{n} b_{n} a_{nk} x_{k} \text{ converges for all } x \text{ in } C_{A},$$

we have

(2)
$$\sum_{k} \sum_{n} b_{n} a_{nk} x_{k} = \sum_{k} a_{nk} x_{k} \text{ for all } x \text{ in } C_{A}.$$

Proof. From [4] we know that $\overline{H(\Phi)} = C_A$ if and only if each continuous linear functional on C_A which is zero on Φ is zero on C_A . Denote the set of continuous linear functionals on C_A by C_A^* . From [4], if $f \in C_A^*$, then

(3)
$$f(x) = b \lim_{n} A_{n}(x) + \sum_{n} b_{n} \dot{A}_{n}(x) + \sum_{n} \alpha_{k} x_{k} \quad (x \in C_{A}),$$

with $\{b_n\}$ ϵ (γ) . Conversely, if $\Sigma \alpha_k x_k$ converges for all x in C_A , $\{b_n\}$ ϵ (γ) , and b is arbitrary, then the function f defined by (3) is in C_A^* . Suppose f ϵ C_A^* and f is zero on Φ . In a representation (3) for f, let x be successively e, e^0 , e^1 , \cdots ; then

(4)
$$b \lim_{n \to k} \sum_{k} a_{nk} + \sum_{n} b_{n} \sum_{k} a_{nk} + \sum_{k} \alpha_{k} = 0,$$

(5)
$$b a_k + \sum_{n} b_n a_{nk} + \alpha_k = 0$$
 $(k = 0, 1, 2, \dots)$.

Summing (5) on k and subtracting from (4), we see that b=0 since A is co-regular. The change of the order of summation in (4) is permissible, since $\Sigma_n b_n \Sigma_k a_{nk}$ is absolutely convergent. Thus $\alpha_k = -\Sigma_n b_n a_{nk}$ (k = 0, 1, 2, ...), and

$$f(x) = \sum_{n} b_{n} \sum_{k} a_{nk} x_{k} - \sum_{k} \sum_{n} b_{n} a_{nk} x_{k}.$$

Now $\{b_n\}$ $\underline{\epsilon}$ (γ) and satisfies (1), and therefore, if (2) holds, f(x) = 0 for all $x \in C_A$ and hence $\overline{H(\Phi)} = C_A$. Conversely, suppose that $H(\Phi) = C_A$, and that $\{b_n\}$ ϵ (γ) and satisfies (1). Letting

$$f(x) = \sum_{n} b_n \sum_{k} a_{nk} x_k - \sum_{k} \sum_{n} b_n a_{nk} x_k \quad (x \in C_A),$$

we see that $f \in C_A^*$. But f is zero on Φ and hence on C_A , hence (2) holds.

Lemma 1 is clearly equivalent to the following.

LEMMA 1'. Let A be co-regular. $\overline{H(\Phi)} = C_A$ if and only if B(Ax) = BA(x), for all x in C_A and all B with ||B|| finite and such that BA(x) exists for all x in C_A .

The following lemma is an immediate consequence of [3, Lemma 13].

LEMMA 2. Let A be conservative, $x \in C_A$. If $s(t_n) = \Sigma_k \Sigma_n t_n a_{nk} x_k$ is convergent for all $\{t_n\} \in (\gamma)$ then $s(t_n) = \Sigma_n t_n \Sigma_k a_{nk} x_k$.

Thus a conservative matrix A is associative if and only if $\Sigma_k \Sigma_n t_n a_{nk} x_k$ is convergent for all $\{t_n\}$ ϵ (γ) and $x \in C_A$.

An element x of an FK-space E (with $\triangle \subset E$) is said to have FAK *(funktionale Abschnittskonvergenz)* if $\Sigma_k x_k f(e^k)$ converges for each $f \in C_E^*$. If each element of E has FAK, E is said to have FAK.

LEMMA 3. Let A be conservative. An element y in C_A has FAK if and only if

(6)
$$\sum_{k} \sum_{n} t_{n} a_{nk} y_{k} \quad \text{converges for all } \{t_{n}\} \in (\gamma)$$

and

(7)
$$\sum_{k} a_{k} y_{k} \text{ converges.}$$

Proof. Let y have FAK, $\{t_n\} \in (\gamma)$. Let $f(x) = \Sigma_n t_n A_n(x)$ and $g(x) = \lim_n A_n(x)$. Since f and g are in C_A^* , (6) and (7) hold. Conversely, if (6) and (7) hold, let $f \in C_A^*$,

$$f(x) = b \lim_{n} A_n(x) + \sum_{n} t_n \sum_{k} a_{nk} x_k + \sum_{k} \alpha_k x_k$$
 (x \in C_A),

with $\{t_n\}$ ϵ (γ). Setting $x=e^k$ ($k=0,1,2,\cdots$), we see that $\Sigma_k y_k f(e^k)$ converges.

LEMMA 4. Let A be a conservative matrix such that Φ is a basis for $C_A.$ Then C_A has FAK, and consequently A is associative and has PMI.

Proof. We have $x = \alpha e + \Sigma_k \alpha_k e^k$ ($x \in C_A$), where α and α_k ($k = 0, 1, 2, \cdots$), are uniquely defined for each $x \in C_A$. It may be shown by an argument similar to that in [1, p. 111] that the function h defined by $h(x) = \alpha$ ($x \in C_A$) is linear and continuous. Also, h(e) = 1 and $h(e^k) = 0$ ($k = 0, 1, 2, \cdots$). For each k, let

$$g_k(x) = x_k - h(x).$$

Then $g_k \in C_A^*$ for each k, and the system $\{h, g_0, \cdots; e, e^0, \cdots\}$ is biorthogonal. Therefore

$$x = h(x)e + \sum_{k} g_{k}(x) e^{k} = h(x)e + \sum_{k} (x_{k} - h(x))e^{k}.$$

If $g \in C_A^*$, then

$$g(x) = h(x) g(e) + \sum_{k} (x_k - h(x)) g(e^k)$$
.

From the form (3) of a member of C_A^* , we see that $\Sigma_k g(e^k)$ converges, hence

$$g(x) = h(x) \left(g(e) - \sum_{k} g(e^{k})\right) + \sum_{k} x_{k}g(e^{k}).$$

Thus C_A has FAK, and by Lemma 3, A is associative. If B is a matrix such that $C_B = C_A$, then $\lim_n B_n(x)$ is a continuous linear functional on C_A . Since $\lim_n B_n(e^k) = b_k$, A has PMI, by Lemma 3.

LEMMA 5. If A is a replaceable associative matrix, then Φ is a basis for C_A . Proof. There exists a regular matrix B such that $C_B = C_A$. Let

$$\lim_{n} B_{n}(x) = h(x)$$

for $x \in C_A$. Then

$$h(x) = t \lim_{n} A_{n}(x) + \sum_{n} t_{n} A_{n}(x) + \sum_{k} \beta_{k} x_{k},$$

where $\{t_n\}$ \in (γ) . By [3, Lemma 8], A is a co-regular, and since

$$1 = h(e) - \sum_{k} h(e^{k}) = t \left(\lim_{k} \sum_{k} a_{nk} - \sum_{k} a_{k} \right),$$

we see that $t \neq 0$. Therefore, by [4, Theorem 5.3], we may assume that $B = (b_{nk})$, where

$$\begin{aligned} b_{0k} &= \beta_k \,, \\ b_{1k} &= \beta_k + t a_{0k} \quad (k = 0, 1, 2, \dots) \,, \\ b_{nk} &= \beta_k + \sum_{j=0}^{n-2} t_j \, a_{jk} + t a_{n-1,k} \quad (n \ge 2) \,. \end{aligned}$$

Suppose $\{c_n\} \in (\gamma)$. Then

$$\sum_{n} c_{n} b_{nk} = \beta_{k} \sum_{n} c_{n} + t \sum_{n} c_{n+1} a_{nk} + \sum_{n=2}^{\infty} c_{n} \sum_{j=0}^{\infty-2} t_{j} a_{jk},$$

so that $\Sigma_k \Sigma_n c_n b_{nk} x_k$ converges for all $x \in C_A$ provided $\Sigma_k [\Sigma_{n=2}^\infty c_n \Sigma_{j=0}^{n-2} t_j a_{jk}] x_k$ does. Now

$$\sum_{n=2}^{\infty} c_n \sum_{j=0}^{n-2} t_j a_{jk} = \sum_{j} \sum_{n=j}^{\infty} c_{n+2} t_j a_{jk},$$

since either side is absolutely convergent. Since $\Sigma_j \left| \Sigma_{n=j}^{\infty} c_{n+2} \, t_j \right|$ converges and A is associative, $\Sigma_k \left(\Sigma_j \, \Sigma_{n=j}^{\infty} \, c_{n+2} \, t_j a_{jk} \right) x_k$ converges for all $x \in C_A$. Thus

$$\sum_{\mathbf{k}} \sum_{\mathbf{n}} \mathbf{c}_{\mathbf{n}} \, \mathbf{b}_{\mathbf{n}\mathbf{k}} \mathbf{x}_{\mathbf{k}}$$

converges for all $x \in C_A$. Since $C_A = C_B$, B is associative. But $b_k = 0$ (k = 0, 1, 2, ...), so that by Lemma 3, C_B has FAK. The set N_B of all x such that $\lim_n B_n(x) = 0$ is a closed linear subspace of C_B , and if $f \in N_B^*$, f may be extended to a continuous linear functional on C_B (see [4]). Thus N_B has FAK. By Lemma 1, $\overline{H(\Phi)} = C_B$, so that $\overline{H(\Delta)} = N_B$, since B is regular. Therefore, by [5, Theorem 3.4], Δ is a basis for N_B . If $x \in C_B$, then x = h(x)e + y with $y \in N_B$. Hence

$$y = \sum_{k} y_{k} e^{k} = \sum_{k} (x_{k} - h(x)) e^{k}$$
 and $x = h(x)e + \sum_{k} (x_{k} - h(x)) e^{k}$.

It is easily seen that the coefficients of e and e^k (k = 0, 1, 2, ...), are unique. Thus Φ is a basis for C_B , and since C_B and C_A have the same topology [4, Theorem 4.5], Φ is a basis for C_A .

The following lemma is a restatement of [3, Lemma 14 and Theorem 3].

LEMMA 6. Suppose A is conservative and has PMI. Then A is associative. If in addition A is co-regular, then A is replaceable.

From Lemmas 4, 5 and 6 we have the following two theorems.

THEOREM 1. Let A be a replaceable matrix. The following are equivalent:

(8)
$$\Phi$$
 is a basis for C_A .

THEOREM 2. Let A be a co-regular matrix. Then Φ is a basis for C_A if and only if A has propagation of maximal inset.

THEOREM 3. Let A be a conservative matrix. \triangle is a basis for C_A if and only if

(12)
$$\lim_{n} A_{n}(x) = \sum_{k} a_{k} x_{k} \quad for \ all \ x \in C_{A}.$$

Proof. If \triangle is a basis for C_A , then $x = \Sigma_k x_k e^k$ for $x \in C_A$. If $\{t_n\} \in (\gamma)$, let $f(x) = \Sigma_n t_n A_n(x)$. Then $f \in C_A^*$, and it follows that

$$\sum_{n} t_{n} \sum_{k} a_{nk} x_{k} = \sum_{k} \sum_{n} t_{n} a_{nk} x_{k} \quad (x \in C_{A}),$$

so that A is associative. (12) is obviously true. Conversely, if (11) and (12) hold, let $f \in C_A^*$. Then

$$f(x) = t \lim_{n} A_{n}(x) + \sum_{n} t_{n} A_{n}(x) + \sum_{k} \beta_{k} x_{k}$$

$$= t \sum_{k} a_{k} x_{k} + \sum_{k} \sum_{n} t_{n} a_{nk} x_{k} + \sum_{k} \beta_{k} x_{k} = \sum_{k} x_{k} f(e^{k})$$

for each $x \in C_A$. By [5, Theorem 3.4], \triangle is a basis for C_A . Clearly, if \triangle is a basis for C_A , then A has PMI. Further, if $C_B = C_A$, then $\lim_n B_n(x) = \Sigma_k b_k x_k$ for all $x \in C_A$.

Note that wherever the equation (AB)x = A(Bx) has occurred, the restriction that ||B|| be finite may be replaced by the condition that either $\Sigma_n |b_{nk}|$ be convergent

for each n, or that B be conservative. If $\{b_n\}$ ϵ (γ), the elements b_n may be made the elements of a row of a matrix of any of the above types.

A conservative matrix A may be associative while Φ fails to be a basis for C_A ; this can be seen from the following example. Let $A = (a_{nk})$, where $a_{nk} = c_n b_k$ with $\Sigma_k \left| b_k \right|$ convergent and $\lim_n c_n = 0$. If $\left\{ t_n \right\} \in (\gamma)$ and $x \in C_A$, then

$$\sum_{k} \sum_{n} t_{n} a_{nk} x_{k} = \sum_{k} \sum_{n} t_{n} c_{n} b_{k} x_{k},$$

and therefore the double series on the left converges. Obviously, A satisfies (12). Thus \triangle is a basis for C_A (compare [3, Theorem 2]).

REFERENCES

- 1. S. Banach, Théorie des opérations linéaires, Warsaw, 1932.
- 2. M. S. MacPhail, On some recent developments in the theory of series, Canadian J. Math. 6 (1954), 405-409.
- 3. A. Wilansky, Summability: the inset, replaceable matrices, the basis in summability space, Duke Math. J. 19 (1952), 647-660.
- 4. K. Zeller, Allgemeine Eigenschaften von Limitierungsverfahren, Math. Z. 53 (1950-51), 463-487.
- 5. ——, Abschnittskonvergenz in FK-Räumen, Math. Z. 55 (1951-52), 55-70.

The University of Kentucky