SUMMABILITY AND ASSOCIATIVE INFINITE MATRICES

H. R. Coomes and V. F. Cowling

We consider the sequence-to-sequence matrix transformations y = Ax, where
A= (ank)’ X= {Xk}s y= {Yn},

o0

Vn=AX)= 2. aXe (Mmk=0,1,2 ).
k=0

It is known that a matrix A is comservative, that is, Ax converges whenever x does,
if and only if || A|| = supn Zx=¢ | ank| is finite, lim ,ZF=pa 1 exists, and limpanx
exists for k=0,1, 2, ---. If A, B, C --- are conservative matrices with elements
ank, Pnk, Cnk, -+, the column limits will be denoted by ay, by, cx, ***. A conserva-
tive matrix A is said to be co-regular if

lim 2.a, - 2.a # 0.
n knk X k

Otherwise it is said to be co-null. Let e and e™ (n=0, 1, 2, ---) be the sequences
defined respectively by ex=1 (k=0, 1, -+-) andby e}l=0px (n,k=0,1, 2, --). Let
A={eMn= 0,1, 2, -}, and let & be the set consisting of the elements of A to-
gether with e. Let H(A) and H(®) be the linear hulls of A and &, respectively. The
terms “basis” and “biorthogonal” will be used as in [1, pp. 106, 110].

We shall say that a matrix A is associative if B(AX) = BA(x) for all matrices B
with || B]| finite and all x in the summability field Co. Clearly a matrix A is as-
sociative if and only if

Ztngankxk= %Z thaxy forall xe Cy, andall {t } € (),
n n

where (y) denotes the set of sequences {tn} such that Z7_. |t,| converges. We
shall show that if A is replaceable, that is, if there exists a regular matrix D such
that Cp = Cp, then A is associative if and only if & is a basis for Cy,.

Bases for the space Ca have been studied by Wilansky [3] and MacPhail [2]. A
conservative matrix A is said to have maximal insel if Z ay % converges for all
x in Ca. A is said to have propagation of maximal inset (PMI) if Z byxxx converges
for all x in Cp whenever B is a matrix such that Cg= C,. Wilansky has shown
that if A is a triangular co-regular matrix, then & is a basis for Cp, if and only if
A has PMI. MacPhail has shown that this statement is true if “triangular” is re-
placed by “reversible.” We shall show that if A is an arbitrary co-regular matrix,
then ¢ is a basis for Cp if and only if A has PMI. Also, we shall give necessary
and sufficient conditions that A be a basis for Cj,.

LEMMA 1. Lel A be a co-regular matvix. H(®) = Ca, that is, H(®) is dense in
Ca, if and only if, for each sequence {bn} such that Z |bni is convergent and
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(1) 2. an an Xy converges for all x in C,,
k n

we have

(2) 222 bpan Xy = 22 Xy for all X in Cp.
k n k

Proof. From [4] we know that H(®) = Ca if and only if each continuous linear
functional on Ca which is zero on & is zero on Ca. Denote the set of continuous
linear functionals on C5 by C%. From [4], if f € CX, then

(3) £(x) = b lim Ap(x) + by An(x) + Ziapx, (x € Cp),

with {bn} € (¥). Conversely, if = ay x; converges for all x in Cp, {b,} € (¥), and
b is arbitrary, then the function f defined by (3) is in CR. Suppose f € CZ and f is

zero on &. In a representation (3) for £, let x be successively e, e° e!, *--; then
(4) blim 2ia,, + 2by 2ia, + 2io =0,
n  k n k k
(5) ba + b a, +a, =0 (k=0,1,2, ).
n

Summing (5) on k and subtracting from (4), we see that b = 0 since A is co-regular.
The change of the order of summation in (4) is permissible, since Z,b, Zrayk is
absolutely convergent. Thus o, = -Z b a, (k=0,1, 2, ), and

f(X) = anz Ak X - Zananka.
n k k n

Now {b,} € (y) and satisfies (1), and therefore, if (2) holds, f(x) = 0 for all x € Ca

and hence H(®) = Cp. Conversely, suppose that H(®) = C,, and that {b,} € () and
satisfies (1). Letting

f(X) = Ebn Eankxk - Zana.nka (X € CA)’
n k k n

we see that f € C{. But { is zero on & and hence on C,, hence (2) holds.
Lemma 1 is clearly equivalent to the following.

LEMMA 1'. Let A be co-regulay. H(®) = Ca if and only if B(AX) = BA(x), for
all xin Cp and all B with H BH finite and such that BA(x) exists for all x in Cp.

The following lemma is an immediate consequence of [3, Lemma 13].

LEMMA 2. Let A be conservative,x € Ca. If s(ty) = Tk Zn th ank Xk S con-
vergent for all {t,} € (y) then s(ty) = ZotnZ kank XK

Thus a conservative matrix A is associative if and only if Zx 2, tya,kx) is
convergent for all {t,} € (y) and x € Cpx.
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An element x of an FK-space E (with A C E) is said to have FAK (funktionale
Abschnitiskonvergenz) if Z x f(ek) converges for each f € CE. If each element of
E has FAK, E is said to have FAK.

LEMMA 3. Let A be consevvalive. An element y in Cp has FAK if and only

if

(6) 2.2 t,a . v,  converges for all {t } € (y)
k n

and

(7) 2. a, y, converges.

k

Proof. Let y have FAK, {t,} € (y). Let f(x) = Z,t, A,(x) and g(x)=1lim, A, (x).
Since f and g are in C}, (6) and (7) hold. Conversely, if (6) and (7) hold, let f € Ch

f(X) = b lim An(X)+ Zthankxk+ %akxk (X ECA),
n n k

with {t,} € (y). Setting x=¢ek (k=0, 1, 2, -*), we see that Z1 vk £(eX) converges.

LEMMA 4. Let A be a consevvative matvix such that ® is a basis for Cap.
Then Cp has FAK, and consequently A is associative and has PMI.

Proof. We have x = ae + Iy ageX (x € Cp), where @ and o (k=0, 1, 2, -+,
are uniquely defined for each x € Cp. It may be shown by an argument similar to
that in [1, p. 111] that the function h defined by h(x) = @ (x € Ca) is linear and con-
tinuous. Also, h(e) =1 and h(ekK) =0 (k= 0, 1, 2, *-*). For each k, let

gr(x) = xi - h(x).

Then gy € C:\ for each k, and the system { h, g,, ***; e, €°, ---} is biorthogonal.
Therefore

x = h(x)e + ng(x) ek = h(x)e + 2. (x) - h(x))ek.
k k

If g € CX, then

g(x) = h(x) gle) + %‘(xk - h(x)) g(e¥).
From the form (3) of a member of Cz, we see that Z; g(eX) converges, hence
g(x) = h(x) (g(e) - Zg(ek)) + 2ixpgle) .
k k

Thus Ca has FAK, and by Lemma 3, A is associative. If B is a matrix such that
Cp = Ca, then lim, B,(x) is a continuous linear functional on C,. Since
lim, B,(e}®) =b,, A has PMI, by Lemma 3.
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LEMMA 5. If A is a veplaceable associative malrix, then ® is a basis for Cp.

Proof. There exists a regular matrix B such that Cg = Cp. Let

lim B, (x) = h(x)

for x € CA. Then
\

h(x) = t lim A (x) + ZtnAn(x) + Zﬁkxk,
n n k

where {t,} € (y). By [3, Lemma 8], A is a co-regular, and since

1= h(e) - Dh(ek) = t (1im Day - Zay ),
k k k

we see that t # 0. Therefore, by [4, Theorem 5.3], we may assume that B = (bp1)s
where

box = Bi s
blk = Bk + ta’Ok (k = 07 11 2’ "')’

n-2
b =B + 'ZO tag, +ta, ;. (n>2).
J:

Suppose {c,} € (y). Then

c-2
chbnkzﬁk ch+ thn+1ank+ 2. an t a5k
n n n n=2 j=0

_so that Ty %, cnbpkXk converges for all x € C 4 provided Zy [271; ¢, Z?:'oz tj ajx Ixx
'does. Now

o) -2
Z: Cn _] Ak = Z Z cn+2 Ak »
n=2

0 J n=j

o]

.
1]

since either side is absolutely convergent. Since Zj |Zn =j Cn+2 Y l converges and A
is associative, 2y (Z o= =j Cnt2t; aJk)xk converges for all x € CA. Thus

2220 ¢y boyexy
k n

converges for all x € Cp. Since Cp = Cp, B is associative. But b =0

(k=0,1, 2, ->-), so that by Lemma 3, Cp has FAK. The set Ng of all x such that
lim, B, (x) = 0 is a closed linear subspace of Cpg, and if f € N, f may be extended
to a continuous linear functional on Cy (see [4]). Thus Np has FAK. By Lemma 1,
H(®) = Cg, so that H(A) = Ny, since B is regular. Therefore, by {5, Theorem 3.4],
A is a basis for Np. If x € Cp, then x = h(x)e + y with y € Ng. Hence
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y = Zykek = E(xk -hx)ek and x=hxe+ Z(xk - h(x)) ek.
k k k

It is easily seen that the coefficients of e and ek (k=0, 1, 2, ***), are unique. Thus
® is a basis for Cg, and since Cp and Ca have the same topology [4, Theorem 4.5],
® is a basis for Cp.

The following lemma is a restatement of [3, Lemma 14 and Theorem 3].

LEMMA 6. Suppose A is conservative and has PMI. Then A is associative. If
in addition A is co-vegular, then A is replaceable.

From Lemmas 4, 5 and 6 we have the following two theorems.
THEOREM 1. Let A be a replaceable malvix. The following are equivalent:

(8) ® is a basis for C,.
(9) A is associative.
(10) A has propagation of maximal inset.

THEOREM 2. Let A be a co-regulay matvix. Then ® is a basis for C, if and
only if A has propagation of maximal inset.

THEOREM 3. Let A be a conservative matvix. A is a basis for Cp if and only

if

(11) A is associative, and

(12) lim Ap(x) = 2ayx, forall x € Cp.
n k

Proof. If A is a basis for Cp, then x = TixreX for x € Ca. If {t,} € (), let
f(x) = Z,t, A, (x). Then f € Ch, and it follows that

2ty Day x = L2t a,, % (xe€ Ca),
n k k n

so that A is associative. (12) is obviously true. Conversely, if (11) and (12) hold,
let £ € C%. Then

f(x) = t lim A, (%) + EtnAn(x) + %kak

= tzakxk + Ez:tnankxk+ Z:kak = Zxkf(ek)
k k n k k

for each x € C5. By [5, Theorem 3.4], A is a basis for C,. Clearly, if A is a
basis for Cp, then A has PMI. Further, if Cg = Cp, then lim, B, (x) = =y b xy for
all x € CA‘

Note that wherever the equation (AB)x = A(Bx) has occurred, the restriction that
|| B]| be finite may be replaced by the condition that either =, 'bnkl be convergent
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for each n, or that B be conservative. If {b,} € (y), the elements b, may be made
the elements of a row of a matrix of any of the above types.

A conservative matrix A may be associative while & fails to be a basis for Cy;
this can be seen from the following example. Let A = (a,;), where a, ) = c,by with
2y | by | convergent and lim, ¢, =0. If {t,} € () and x € C4, then

2. Ztnankxk=z Ztncnbkxk,
k n k n

and therefore the double series on the left converges. Obviously, A satisfies (12).
Thus A is a basis for C5 (compare [3, Theorem 2]).
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