HYPERCOMPLETE LINEAR TOPOLOGICAL SPACES
J. L. Kelley

The classical closed-graph theorem of Banach states that a linear transformation
T of a complete metric linear space E into a second space F of the same type is
continuous whenever it has a closed graph. More generally, T is continuous provided
the inverse of each nonvoid open set in F is somewhere dense, T has a closed graph,
E is metrizable, and F is a complete metric space. This theorem does not hold for
complete linear topological spaces E and F, as the following example shows. If E
is any infinite-dimensional Banach space and F is the same space with the strongest
(largest) locally convex Hausdorff topology, then the identity map T has the property
that the inverse of each nonvoid open set is somewhere dense (by way of a simple
category argument), and T surely has a closed graph since T-! is continuous. Yet
T is not continuous, since F is not metrizable. Moreover, it is easily seen that in
this case F is complete, fonnele, reflexive and bornological because F is iso-
morphic to a direct sum of copies of the scalar field. Thus the validity of the closed-
graph theorem requires a stronger hypothesis than any of the usual linear topological
space specifications.

The purpose of the investigation reported here is to describe the class of locally
convex Hausdorff spaces F for which a closed-graph theorem holds for all possible
spaces E (a more precise statement is given later). It will be shown that such
spaces F are precisely those which satisfy a weakened form of the requirement that
the class @ of all convex circled subsets of F be complete relative to the Hausdorff
uniformity. We shall call ¥ hypercomplete if % is complete; a complete metric
space is automatically hypercomplete. It will be shown that F is hypercomplete if
and only if each convex circled subset A of the adjoint F* is weak*-closed whenever
its intersection with each equicontinuous set B is closed in B; that is, hypercom-
pleteness is equivalent to the well-known theorem of Krein and Smulian.

Thus both the closed-graph theorem and the Krein-Smulian theorem hold for
hypercomplete spaces. These two propositions are perhaps the most striking conse-
quences of a nonmetric completeness requirement that have been attained. Indeed,
the general notion of completeness has played a very disappointing role in linear
topological space theory in contrast to its basic importance in normed space theory.
It now appears that, whereas the class of fonnelé spaces is the natural extension of
the second category class, hypercomplete spaces are in similar position with respect
to complete metric spaces.

Previous work in this direction includes the following. Ptak [5] showed that the
open-mapping theorem for F (see Theorem 2) is equivalent to the property (W) that a
subset of F* be weak*-closed if its intersection with each equicontinuous subspace B
of F* is weak*-closed in B. Collins [2] studied property (W) further, and established
some permanence properties. Recently A. P. and W. Robertson [6] proved the closed-
graph theorem for E fonnelé and F with property (W).

There are several open questions on hypercompleteness. The first of these con-
cerns the permanence properties on which much of the usefulness of the notion de- .
pends. It will be shown in what follows that closed subspaces and quotients of

Received November 26, 1957,
This work was sponsored by the Office of Naval Research, Contract Nonr-222(37).

235



236 J. L. KELLEY

hypercomplete spaces are hypercomplete. On the other hand, a direct sum of hyper-
complete spaces may fail to be hypercomplete, as is shown by the example given
earlier. An arbitrary product of hypercomplete spaces may fail to be hypercom-
plete, because each complete space is topologically isomorphic to a closed subspace
of a product of Banach spaces, and not every complete space is hypercomplete. I do
not know whether the product of two hypercomplete spaces is of the same sort; I con-
jecture that each countable product or countable direct sum of hypercomplete spaces
is hypercomplete. -

Finally, the question of “hypercompletion” arises. We cannot expect to embed
topologically an arbitrary linear topological space in a hypercomplete space, since a
complete space is necessarily closed and would inherit the hypercompleteness of the
containing space. However, one might ask whether, for each space E, it is possible
to construct a hypercomplete space E* containing E, such that each continuous
linear map T of E into a space F has an extension T* carrying E* into F*, sub-
ject to the natural requirements: (i) if T is an identity map, then so is T~, (ii) the
map T — T" is a one-to-one linear transformation of the space L(E, F) of linear
maps of E into F into L(E", F*), and (iii) if S and T are linear transformations,
then (SoT) = S*o T".

1. COMPLETENESS PROPERTIES

All spaces considered will be assumed to be locally convex linear topological
Hausdorff spaces, with either the real or complex numbers as scalar field. A local
base for the topology of a space F is a base for the neighborhood system of O; thus
local convexity is equivalent to the statement that the class of convex circled neigh-
borhoods of O (that is, the class of convex neighborhoods closed under multiplication
by scalars of absolute value at most one) is a local base for the topology. If % is a
local base, then the closure A~ of any set A is a subset of A + U for every U ina/,
and in fact, A" = [J{A+ U: Uea}.

The family .« of all subsets of a linear topological space F has a natural uniform
structure which is described as follows. For each neighborhood U of O in F, let
Wy ={(A,B): Ac B+ U and B'C A + U}. The family of all sets of the form Wy is
the base of a uniformity for .# which we shall call the Hausdovff uniformity. If F is
metric, the Hausdorff uniformity is precisely the uniformity of the Hausdorff metric
for . It is known that if F is metric and complete, then «/ is complete; the proof
of this fact is elementary, since the set to which a Cauchy sequence {A,} converges
is simply the set of all limit points of Cauchy sequences of points {xn} such that
Xn € A, for each n. However, as will be demonstrated, it is in general impossible
to infer completeness of </ from that of F.

We shall be particularly concerned with the completeness of the family € of all
convex circled subsets of F; if ¥ is complete, relative to the Hausdorff uniformity,
then F is called A2ypercomplete. 1t is possible to describe hypercompleteness
rather simply in the following terms. A family & of nonvoid convex circled subsets
of F will be called fundamental if and only if (i) it is directed by < (that is, if it is a
filter base), and (ii) if for each neighborhood U of O in F there is B in & such that
BC A + U for every A in &. The fundamental family # converges provided, with
the notation C = (|{A™: A € #}, it is true that for each neighborhood U of O in F

the set C + U contains a member of & (in other words, & is eventually in C + U).

THEOREM 1. The linear topological space F is hypercomplete if and only if
each fundamental family in F converges.
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Proof. If F is hypercomplete and # is a fundamental family in F, then & is
directed by c, and the net {A, A € F } is clearly a Cauchy net relative to the Haus-
dorff uniformity; it therefore converges relative to this uniformity to a member C of
. Consequently, for each neighborhood U of O there exists a member A of &
which is contained in C + U and hence in C™ + U. The fundamental family &% will
then be shown to converge if it is proved that C™ = n{A": A € F}. For each neigh-
borhood U of O, for some A in &, C+ UD A, whence

C-+U+UDA+UDA-D [){B:Be#},

and hence C~ contains the intersection of the closures of the members of % . On the
other hand, for each U it is true that A + U eventually (and hence always) contains
C, and since this inclusion holds for fixed A and all neighborhoods U of O, it follows
that A~ D C, whence the intersection n{A‘: A € #} contains C~. Thus equality is
proved.

Conversely, if {An, n€ D} is an arbitrary Cauchy net in % and Cp, is the con-
vex extension of U{An: n> m}, then the family of all sets of the form Cm is

easily seen to be fundamental. If this family converges, C = n {C';n: m e D}, and U

is a neighborhood of O, then C + U contains Ci, and hence contains C. It follows
that { A, n€ D} converges to C, relative to the Hausdorff uniformity.

A weakening of the notion of hypercomplete will be useful. A fundamental family
Z in F will be called scalar provided that if A € & and r is a positive real number,
then rA € ¥; and F will be called fully complele provided each scalar fundamental
family converges. (H. Collins has defined “fully complete” in a way which one of the
theorems of this paper shows to be equivalent to the preceding.) It is clear that if ¥
is a scalar fundamental family, then n{ A": A e F} isa closed subspace of F. By

using the argument of the proof of the preceding proposition, one can see that if F is
fully complete, then the class of all closed subspaces of F is complete relative to the
Hausdorff uniformity; the converse does not hold. I do not know whether a fully com-
plete space must be hypercomplete.

Certain elementary properties of fundamental families will be useful.

LEMMA 1. If T is a continuous linear topological space E and ¥ is a funda-
mental family in ¥, then the class {T[A]: A e F} of images of members of F is
Sfundamental in E. Moreover, if &F converges, so does {T[A]: Ae F}.

If T is a continuous open linear map of F onto a linear topological space E, and
if G is afundamental family in E, then {T"I[B]: Be9} is fundamental in F.

Proof. 1t is straightforward to verify that the images of the members of a funda-
mental family form a fundamental family, and that convergence is preserved. If T
is continuous and open, ¢ is a fundamental family in E, and U is a neighborhocod of
O in F, then T[U] is a neighborhood of O in E, and hence for some B in ¥ it is
true that T[U]+ B> A for all A in 9. A small calculation then shows that

U+ T-B] > T-YT{U]+ B] o T[A],

and consequently { T-}[B]: B€ ¢} is fundamental.

It is an immediate consequence of the lemma that if F is a hypercomplete space
and N is a closed subspace, then F/N, with the quotient topology, is hypercomplete;
for if & is fundamental in F/N, the class of inverse images of members of & under
the quotient map is fundamental in F, hence converges, and consequently the class of
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images (that is, #) converges. The same argument shows that a quotient space of a
fully complete space is fully complete, since the class of all images and the class of
all inverses of the members of a scalar family are scalar families. It is also clear
that closed subspaces of spaces possessing either completeness property possess the
same property. Thus:

COROLLARY 1. If T is a linear topological space which is hypercomplete (ve-
spectively, fully complele) then each closed subspace of ¥ and each quotient space is

hypercomplete (vespectively, fully complete).

Remark. It is rather easy to see that if F is hypercomplete, then it is complete,
for if {xn, ne D} is a Cauchy net in F, then {Cn, ne D}, where Cp ={axn: |a|< 1}
is a Cauchy net in ¥. It is true that if F is fully complete, then F is complete, but
~this fact apparently lies a little deeper; it is a consequence of one of our principal
results.

2. THE CLOSED-GRAPH AND OPEN-MAPPING THEOREMS

Let T be a linear transformation of a linear topological space E into a space F.
We shall say that T™?! is somewhere dense if and only if for each neighborhood U of
O in F itis true that (T"}[U])” is a neighborhood of O in E. Note that T~! is al-
ways somewhere dense if E is of the second category, (more generally, if E is fon-
nelé). The general problem of this section is: For what spaces F is it true that
each linear transformation T of an arbitrary linear topological space E into F is
continuous provided T has a closed graph and T™! is somewhere dense? Such spaces
F are said to have the closed-graph property. A classical theorem of Banach asserts
that complete metrizable linear spaces possess the closed-graph property.

There is an open-mapping theorem which, in a sense, is dual to the closed-graph
theorem. Let us call a transformation T somewhere dense if and only if for each
neighborhood U of O it is true that (T[U])~ is a neighborhood of O in the range
space. As above, if T maps F onfo E, and E is of the second category (or, more
generally, fonnelé), then T is automatically somewhere dense. We shall seek condi-
tions under which a somewhere dense transformation of a space F is necessarily
open.

The connection between the notation of fundamental family and that of a transfor-
mation whose inverse is somewhere dense will now be established. Suppose that T
is a linear transformation of E into F, that 9/ is a local base for the topology of E,
and that % is a local base for the topology of F. Then:

LEMMA 2. The family {T[U]: U e} is a fundamental family if and only if T!
is somewhevre dense.

Pyoof. By definition, T~! is somewhere dense if and only if for each V in v
there is U in @ such that Uc T"YV]+ W for all W in % (this is equivalent to
U c T-}[V]™). Clearly this implies that T[U]c V + T[W] for all W; that is, that
{T[U]: U €@} is fundamental. Conversely, if { T[U}: U € «} is fundamental, then
for each V in ¥ there exists U in % such that T[U]c V + T[W] for all W in a,
whence

Uc TT[U]lc TV + T[W]]c T V] + W,

and therefore T~! is somewhere dense.
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The next lemma gives a useful characterization of transformations having a
closed graph. ’

LEMMA 3. Let T be a linear transformation of a linear topological space E
into a linear topological space F, let A be a local base for the topology of E, let v
be a local base for the topology of F, and let 9 be the family of all sets of the form
T[U]+ V for U in % and V in . Then the grvaph of T is closed if and only if

({TUl+V:Ue % anda Ve v} ={0},

or equivalently, if and only if the topology with local base 9¢ is a Hausdorff topology.

Proof. The graph of T is closed if and only if for all (x, y) in E X F with
y # T(x), there exists U in @ and V in ¥ such that (x + U) X (y + V) is disjoint
from the graph of T. Translation of E X F by (-x, -T(x)) is a linear homeomorph-
ism leaving the graph of T invariant, and it follows that the graph of T is closed if
and only if for each nonzero element z (=y - T(x)) of F there exist U in % and V
in 7 such that U X (z + V) is disjoint from the graph of T, or equivalently, such that
z ¢ T[U] - V. Thus the graph of T is closed if and only if

{o}= N{TU]- V:Uew and Ve v} = (\{T[U]+ V:Uew and Ve v},

and this is simply the condition that the topology with local base 9¢ be a Hausdorff
topology.

Our special concern will be spaces F such that the closed-graph property holds
for all spaces E and all quotient spaces of F. The reason for this is that an open-
mapping theorem holds for such spaces F, as noted in the following lemma on open
mappings.

LEMMA 4. Let S be a linear map of a space F onto a space E, let N be the
null space of S, and let T be the induced map of F/N onto E. Then T~* has a
closed graph if and only if S has a closed gvaph; movreover, T is somewhere dense
if and only if S is somewheve dense;and S is open if and only if T~ is continuous.

In particular, if S is somewhere dense and has a closed gvaph, then S is open
provided (E, F/N) has the closed-graph property.

Proof. Let ¢ be a local base for E, ¥ a local base for F, and Q the quotient
map of F onto F/N. The family of all Q[V], for V in ¥, is a local base for the
quotient topology for F/N. In view of Lemma 3, T™! has a closed graph if and only
if the topology with local base consisting of all sets of the form T~![U]+ Q[V], with
U in % and V in 7, is a Hausdorff topology. From the definition of Q, this is the
case if and only if for each member y of F with y¢ N, there exist U in % and V
in 7 such that y¢ S~ [U]+ V + N. Because S maps F onto E, this is equivalent to
the following requirement: if x (= S(y)) is a nonzero element of E, then x ¢ U + S[V]
for some U in % and some V in . But, again by Lemma 3, this is true precisely
if and only if S has a closed graph. Hence T~! has a closed graph if and only if S
has a closed graph. Finally, it is evident from the definition of the quotient topology
that T is somewhere dense if and only if S is somewhere dense, and it is well known
that S is open if and only if T is open, which is the case if and only if T-! is con-
tinuous.

The following is the principal result of the section.

THEOREM 2. The following statements about a linear topological space F are
equivalent:
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(i) The space F is fully complete.

(ii) Any linear map T into a quotient space of F is continuous provided T has a
closed graph and T~ is somewheve dense.

(iii) Each somewheve dense, linear trvansformation with closed grvaph of F onto a
linear topological space is open.

(iv) Each continuous, somewhere dense, linear tvansformation of F onlo a linear
topological space is open.

Proof. The pattern of proof is (i) — (ii) — (iii) — (iv) — (i). The implication
(ii) — (iii) is established by Lemma 4, and (iii) — (iv) is obvious; therefore only the
first and last of the sequence require proof. To prove that (i) — (ii), assume that N
is a closed subspace of a fully complete space F, that Q is the quotient map of F
onto F/N, and that T is a linear map of a space E into F/N such that T™! is some-
where dense and the graph of T is closed. If 9, is the class of convex circled
neighborhoods of O in E, we know from Lemma 2 that the family { T[U]: Ue @} is
fundamental in F/N. In view of Lemma 1, the family { Q[T [U]]: U e} is funda-
mental in F, and since F is assumed to be fully complete, this family converges.
But the continuous image of a convergent fundamental family is also convergent, and
hence {T[U]: U € «} converges. Thus, for each neighborhood V of O in F/N there
exists U in @ such that T[UJc V+ {{(T[S])”: S e a}. But, if 9¢ is the class of

neighborhoods of O in F/N, then

T([S])”

({T[El+W: Weaor},

hence

N{(sD:seax} = [J{T[S]+ W:Se % and Wear},
and since the graph of T is closed, this last intersection is {O}, by Lemma 3. Thus
T[Ulc V + {0}, and continuity is proved.

It remains to prove that (iv) — (i). Suppose that & is a scalar fundamental fam-
ily in F, and that N = n{A':.A € #}. Then N is a closed subspace of F, and we
denote by Q the quotient map of ¥ onto F/N. We construct a topology for F/N as
follows. Let 97 be the class of all convex circled neighborhoods of O in F, let ¥ be
the class {Q[A + U]: A€ & and Ue#}, and let F/N have the topology with local
base 7. Evidently the map Q is continuous relative to this topology, and we note
that the topology is a Hausdorff topology, since

[[{A+U+N:Ae g and Ueau} = [{{A+U:Ae & and U e}

{A":Aes} =N

If it is shown that Q is open, then it will follow that & converges: if for each U in
q¢ there éxist V in ¥ and A in & such that Q[U] D Q[A + V], then, taking inverse
images under Q, we have U+ ND A + V + ND A, In.wiew of the hypothesis, the
proof then reduces to showing that Q is somewhere dense. Since ¥ is fundamental,
for each U in % there exists A in & such that U+ B> A for all B in &; hence
Q[U] + Q[B] o Q[A], and therefore Q[U] + Q[B + V] o Q[A] for all B in # and V in
v . It follows that (Q[U])~ o Q[A], whence (Q[2U])~ o (Q[U])~ + Q[U]l » Q[A + U], and
it is demonstrated that the closure of the image of each neighborhood of O in F is a
neighborhood of O in F/N.
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It is interesting to note that the theorem above yields a new proof of the classical
closed-graph and open-mapping theorems. The sequential character of the argument
becomes apparent in the proof that the space of closed subsets of a complete metric
space is complete, relative to the Hausdorff metric; given this, all else is free of
countability assumptions.

A few general observations about the preceding theorem should be made. Speaking
with some imprecision: a closed-graph theorem for normed domain spaces E would
really be adequate for most instances, since from this one can deduce a closed-graph
theorem for sequentially complete bornological spaces. In order that an open-mapping
theorem hold in addition, we should require the space F to have the property (A): the
closed-graph theovem holds fov each novmed E and each quotient space of F by a
closed subspace. 1 do not know whether (A) implies full completeness or hypercom-
pleteness. By the methods of the preceding sections, one may see that F possesses
(A) if and only if, whenever B is a convex circled subset of F such that the scalar
multiples of B form a fundamental family (this requirement is equivalent to eB + U
absorbing B for each neighborhood U of O and each e > 0), then the image of B in
the quotient space F/ [|{eB~:e> 0} is bounded. Anticipating the methods of the
next section, we point out that F has property (A) if and only if, whenever C isa
convex circled w*-closed subset of F* such that the linear space G generated by
C is ew*-closed, then G is necessarily w*-closed. The Robertsons [6] have shown
that the countable inductive limit of fully complete spaces has a weakened closed-
graph property which is approximately (A); their result implies the closed-graph
theorem which is given in Grothendieck’s thesis.

3. DUALIZATION: THE KREIN-SMULIAN THEOREM

Let F be a linear topological space, and let F*, its adjoint, be the space of con-
tinuous linear functionals on F. The weak*-topology for F* is the topology of point-
wise convergence on F. For each subset A of F the polar A° of A is defined to be

{f:f € F* and f(x) <1 for all x in A},
and, symmetrically, if B C F* then the polar B, of B is defined to be
{x:x € F and |f(x)| <1 for all { in B}.

If AcC F, then A® = (A7)°, A°, is the closure of the convex circled extension of A,
and if B c F* then B°, is the weak*-closure of the convex circled extension of B.
A linear subspace G of F* is weak*-dense in E* if and only if G distinguishes
points of F; that is, if for each nonzero member x of F there is a member f of G
such that f(x) # 0. (For these and related facts, see [1] or [4].)

We shall also need a few facts about a linear transformation and its adjoint. If T
is a linear transformation of a space E into a space F, then the adjoint T* of T is
defined by T*(f) = foT for all f in F* such that foT is continuous. If the domain
of T* is all of F*, then T is necessarily continuous, provided E is a Mackey space
(see [1] or [4]). The map T* is always continuous relative to the weak*-topologies.

The ew*-topology for the adjoint F* of a space F is defined by agreeing that a
subset B of F* is ew*-closed if and only if BN D is weak*-closed in D for each
equicontinuous set D. The relation of the ew*-topology to the closed-graph and
open-mapping theorems will now be exhibited. The most important implications of
the following proposition will also follow from the later theorem which is the major



242 J. L. KELLEY

result of the section; however, the arguments given below are of some intrinsic
interest.

THEOREM 3. Let T be a linear map of a linear topological space E into a
space ¥, and let G be the class of all £ in ¥* such that £oT is continuous. Then

(i) G is ew*-closed if T~! is somewhere dense;

(ii) if E is a Mackey space and T-' is somewhere dense, then G is ew*-closed;
and

(iii) T has a closed graph if and only if G is weak*-dense in F*.

In the dual situation: if T is a somewhere dense, continuous, linear transforma-
tion of F onto a space E, then the image T*[E*| is ew*-closed in F*.

Pyoof. If U is a neighborhood of O in F and f e GNU®, then f°T € T"[U]°,
and since fo T is continuous, fo T € T™Y U] °. Consequently, if (T~U])” isa
neighborhood of O in E, then T* Gn U°] is an equicontinuous subset of E*. It fol-
lows that for each weak* accumulation point g of GN U©° it is true that goT is con-
tinuous, hence G is ew*-closed whenever T~! is somewhere dense, and (i) is estab-
lished. If G is ew*-closed, then, for each convex circled neighborhood U of O jn
F, the set G N U° is weak*-compact and convex, and T*[G n U°] is therefore equi-
continuous if E is a Mackey space. But, by an elementary calculation,

T*[G N U° = T™1[U]°, whence T-![U]°,= (T-![U])” is a neighborhood of O. This
establishes (ii).

To establish (iii): By a straightforward verification, we see that G is precisely
the set of linear functionals that are continuous with respect to the topology for F
which has a local base consisting of all sets T[U]+ V, where U is an arbitrary
neighborhood of O in E, and V an arbitrary neighborhood of O in F. Hence, by the
Hahn-Banach theorem, G distinguishes points of F (equivalently, G is weak*-dense
in F¥) if and only if this is a Hausdorff topology, and according to Lemma 3 this is
the case if and only if the graph of T is closed.

The last statement of the theorem is an immediate consequence of the fact that if
U is a neighborhood of O in F, then T*[E¥ N U°= T*[T{U]°] This identity may be
verified directly. Using it, we see that if T is somewhere dense, then
T[U]° = [T[U]"]° is equicontinuous, hence weak*-compact, thus T* T[U°] is weak*-
compact, and THE] N U° is weak*-closed. Therefore T*E*] is ew*-closed.

It is clear from the foregoing that if F is a space such that each ew*-closed sub-
space is w*-closed (that is, fully complete in the sense of H. Collins [2]), if E is
tonnelé and T has a closed graph, then T is continuous. This result was proved by
the Robertsons [6]; a somewhat stronger proposition of this sort will be obtained
here.

The proof of the main theorem of the section requires a little preliminary calcu-
lation on polars. For convenience, let us define the set A AB, corresponding to sub-
sets A and B of a linear topological space, as the set of all x such that x € rAn sB
for some nonnegative real numbers r and s with r + s < 1. In other words,

AAB=|J{rAnsB:r>0, s>0, and r+s<1}.

If A and B are circled sets, then it is easy to see intuitively the nature of the set
AAB: the set AAB contains rays only in “directions” common to A and B, and if
mx € A and nx € B, where m and n are positive real numbers, then a simple calcu-
lation shows that {1/(1/m + 1/n)] x € AAB. Thus, speaking roughly, the set AAB
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extends in each direction to one half the harmonic mean of the distances to which A
and B extend. The most important properties of A, and indeed the reason for the
definition of the operation, are given in the following lemma. '

LEMMA 5. If A and B are nonvoid civcled subsets of F, then (A + B)® = A°AB°.

It is always true that (1/2)(ANB) Cc AAB, and if A and B are circled, then
AABC ANB.

If % is afamily of subsets of F, then AN | J{B: Be 8} = U{AaaB: Be 3},

Proof. If fe (A + B)°, a=sup{|f(x)|: xe A}, and b = sup{ |£(x)|: x € B}, then we
see that a+ b < 1. Then f € aA° NbB® c A° AB°. On the other hand, if f € A° AB°,
then f € rA°N sB® for some nonnegative numbers r and s with sum at most one.
Then |f| is at most r on A and at most s on B, and is therefore at most r + s on
A + B; thatis, [f(x)| <r+ s< 1 for x in A + B, and it is proved that f € (A + B)°.
The last two statements of the lemma are established in a straightforward way, and
the proofs are omitted.

We are now in a position to give dualized equivalences to the notions of fully com-
plete and hypercomplete.

THEOREM 4. A linear topological space F is fully complete if and only if each
ew*-closed subspace of the adjoint space is weak*-closed.

The space F is hypervcomplete if and only if each ew*-closed convex civcled sub-
set of the adjoint space is w*-closed.

Proof. We shall give the proof of the second statement only. A proof of the first
may be obtained by replacing “fundamental family” everywhere by “scalar fundamen-
tal family,” and “convex circled subset” by “subspace.”

Suppose that F has the property that each ew*-closed convex subset of F* is
w*-closed, and that &% is a fundamental family in F. If ¢ is the class of polars of
members of Z, then the fact that & is fundamental implies, by Lemma 5, that for
each neighborhood U of O in F there is a member Ay of & such that
U°AGC (ApP forall G in 4. Let P= |J{G: G € ¢}; then U°AP c (Ayy)°, and
hence [U°AP]” C P, where ~ denotes w*-closure. For each neighborhood U of O
and each positive n, we then have

P> [PANU9" D> [ (1 _%)p n (1_;_11)1]0]_

(the last inclusion is easily verified), and hence U°NP D r[U°NP]” for each r

(0 <r <1). It follows that if x € [U° N P], then the half-open real line segment
[0, x) is a subset of U° N P, and hence the set P' = PU {x:[0: x) c P} has the
property that U°N P' D [U°N P']”. Thus P' is ew*-closed, and consequently, under
the assumed hypothesis, P' is w*-closed. Finally, from the fact that for each U
there exists Ay in & such that U°A P c Ay®, we deduce that U°A P'c Ay° be-
cause Ay° is closed, and hence U°, + P' D Ay by Lemma 5. Since P, = P',, we
have

AyC U +Po=0%+ [J{Gu:Ge 9} =0 + [J{A:A eF}.

Thus & converges.

To prove the converse, suppose that F is hypercomplete, and that A is a convex,
circled e-w*-closed subset of F*. Let # be the family of all sets of the form
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(wen A), , where U is a neighborhood of O in F. Clearly & is directed by , and
the following argument shows that & is fundamental. If U and V are neighborhoods
of O in F, then

(V + (USN A))° = VO A(U°N A) € VON A,
in view of Lemma 5, and hence
V +V + (U°N A), D (V+ (U°NA))°, D (VON A),.

Thus, for each neighborhood W of O there exists a member of & (namely, (V°NA),,
where V is any neighborhood such that V + VC W) which is contained in W + C for
each C in #. Since & is fundamental and F is supposed to by hypercomplete, &
converges. Letting '

B = ﬂ{(U°n A),: U a neighborhood of O in F},

we have: for each neighborhood V of O there is U such that B + VD (U°n A),.
Hence, in view of Lemma 5, B AV® Cc U°n A c A. It follows from this inclusion
that if x € B®, then the half-open real line segment [ 0: x) is contained in A, since
the union of B° AV® for all neighborhoods V is {x:[0: x) ¢ B9 . But since the set
A is ew*-closed, it surely contains x whenever [0: x) c A, and hence B c A. On
the other hand, B® > V°N A for all V, since the polar of V°N A contains B, and
therefore A ¢ B°. Thus B°= A, consequently A is weak*-closed and the proof is
complete.

Presumably the requirement “circled” could be omitted from the statement of the
preceding theorem; this would yield a precise generalization of the Krein-Smulian
theorem, but I do not see how to establish this stronger result.

4, THE ew*- AND cew*-TOPOLOGIES

The usual proof of the Krein-Smulian theorem depends on identifying the topology
ew* with the topology of uniform convergence on totally bounded sets. In the follow-
ing paragraphs we give a few resulis obtained by applying this sort of argument to the
general case. The argument yields some information on the nature of the topology
ew¥; in particular, it will be seen that ew* is not always locally convex.

The topology cew* for the adjoint F* of a space F is defined to be the strongest
locally convex topology which is weaker than ew*. Thus the family of all convex
circled ew*-neighborhoods of O is a local base for cew*, and cew* = ew* if and only
if ew* is locally convex. Clearly, each linear functional on F* which is cew*-
continuous is ew*-continuous. The converse proposition is also true, for if ¢ is ew*-
continuous, then {f: |¢(f)| < 1} is convex, and is in fact a cew*-neighborhood of O
on which ¢ is bounded. Thus F*, with either the ew*- or the cew*-topology, has the
same adjoint.

There is another topology for F* which yields the same adjoint. According to a
theorem of Grothendieck, the completion F* of F is topologically isomorphic to the
class of all linear functions ¢ which are w*-continuous on each equicontinuous sub-
set of F*. But ¢ is w*-continuous on each equicontinuous subset if and only if
¢~Y[0] is ew*-closed, which is the case if and only if ¢ is ew*-continuous. Thus ¢
is ew*-continuous on F* if and only if ¢ is evaluation at some point of the comple-
tion F* of F. Stated a little more precisely, each member f of F* has a unique
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continuous extension f* whose domain is F*, and a linear functional ¢ is ew*-
continuous if and only if, for some member x of F*, ¢(f) = {*(x) for all f in F*.
Thus, if we let w* denote the weakest topology for F* such that the map f — £ (x)
is continuous for each x in F*, a linear functional ¢ is ew*-continuous if and only
if it is w*-continuous. The topology w* will be called the weak*-fopology defined by
the completion of F; F is complete if and only if w* = w*.

Summarizing the preceding remarks, we have

THEOREM 5. A lineay functional ¢ on F* is ew*-continuous if and only if it is
cew*-continuous, and this is the case if and only if ¢ is continuous relative to the
weakr-topology w* defined by the completion of F.

If two locally convex topologies 7, and J, for a linear space E yield the same
adjoint E*, then a convex subset A is J,-closed if and only if it is 7,-closed, since
closure of A is equivalent to weak closure, which is defined in terms of E*. Hence
the

COROLLARY. A convex subset of F* is cew*-closed if and only if il is w" -
closed.

Consequently, if ew* is locally convex and ¥ is complete, then each ew*-closed
convex subset of F* is w*-closed.

Since there exist complete spaces which are not hypercomplete, it follows that
the topology ew* is not always locally convex.

The topology cew* has an interesting alternative description. Let Fp be the
topology of uniform convergence on totally bounded (precompact) subsets of F. Then

THEOREM 6. The topology cew* for F* is stronger than J p, and if F is com-
plete, then cew* = J p.

Proof. We first show that if A is a totally bounded subset of F, then A° is a
cew*-neighborhood of O, so that cew* is stronger than Jp. If A is totally bounded,
then for each neighborhood U of O in F there exists a finite set B such that
A c B + (1/2)U; taking polars, we see by Lemma 5 that

A° > B°A[(1/2)U]% > (1/2)B° n (1/2)[(1/2)U]° = 2B)° N U°.

Hence A° contains the intersection of U° and a w*-neighborhood of O, and it fol-
lows that A® is a cew*-neighborhood of O.

If F is complete then, by Theorem 5, each cew*-continuous linear functional on
F* is evaluation at a point of F. Consequently each cew*-closed convex set is w*-
closed, and in particular each cew*-neighborhood of O contains a w*-closed, con-
vex, circled cew*-neighborhood of O. If V is such a neighborhood, then V %=V,
and if it is shown that V is totally bounded, then it will follow that & p = cew*. If
U is a neighborhood of O in F, then there exists a finite subset B of F such that
VDO U°NA° because V is a cew*-neighborhood of O. Hence V, C <UUA>", where
<> denotes convex extension. But we may Suppose that U is closed and convex, and
in this case <UU <A>> is closed, since it is the convex extension of the union of a
compact convex set and a closed convex set. Hence Vo C <UUKA>> C U + <A>.
Since <A> is compact, it is totally bounded, and there is therefore a finite set B
such that <A>c B+ U. Thus Vo C B + U+ U, and it follows that V, is totally
bounded.

We note that w* and w*, the weak*-topology defined by the completion of F, have
the same relativization to any w"-compact subset B of F*, since w* is stronger
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than w* and w* is a Hausdorff topology. In particular, this is the case if B is the
polar of a neighborhood of O. It follows that, speaking inexactly, the ew*-tcpology
is the same regardless of whether F* is considered as the adjoint of F or as the
adjoint of the completion F*. Thus

COROLLARY. The topology cew* for F* is the topology of uniform convergence

on totally bounded subsets of the completion F~ of F.
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