113

Intrinsic Relations Satisfied
by the Vorticity and Velocity Vectors in
Fluid Flow Theory
by
N. Coburn

1. Introduction. In plane fluid flows, it is well knownl)
that the following relation exists between the magnitude

of the vorticity vector, W, and that of the velocity vec-
tor, q,

(1.1) W ="—§—3 + Kq.

Here, [, isthe curvature of the stream line at the point
under consideration, and 3q/a n represents the rate
of change of q with respect toarc length along the dir-
ection normal to the stream line.

QOur first problem is to generalize the above
relation to three dimensional fluid flow theory. To do
so, we shall decom pose the vorticity vector into com-
ponents along the tangent, principal normal, and bi -
normal to the stream lines. From this decomposition,
the desired generalization of formula (1.1) is easily
obtained. It will be shown that the right hand side of
(1.1) is nothing but the component of the vorticity vec-
tor along the binormal direction.

Secondly, we shall determine an intrinsic re-
lation satisfied by the Bernoulli function for the case
of the steady flow of a non-viscous fluid. From this
relation, one can easily obtain a necessary and suf-

1) Theoretical Hydrodynamics, L. M. Milne - Thom-
son, Macmillan Co, London, 1938, p. 99.



114

ficient condition for the Bernoulli equipotentials to be
a family of parallel surfaces.

Finally, by eliminating the density between the
equations of motion and the equation of continuity, we
obtain a relation which determines the rate of change
of the magnitude of the velocity vector with respect to
displacement along the stream lines in terms of the
two principal values of a tensor which lies in the local
subspace ‘orthogonal to the stream lines. In the case
when there exist ool surfaces orthogonal to the stream
lines, the principal values of this tensor reduce to
the sum of the two principal normal 1c'urva.tures (the

mean curvature) of any one of these ' surfaces.

2. The Basic Decomposition. Let xJ(j =1, 2, 3) denote
the variables of a system of Cartesian orthogonal co-

ordinates. In order to use the summation convention,
we shall write indices in covariant and contravariant
positions. The velocity vector will be denoted by vj,
and if tJ is a unit vector in the direction of vJ, then we
may write

(2.1) ' =qt.

If ¢ denotes the permutation tensor with compon-
ents 1, 0, -1 according to whether (ijk) is an even per-
mutation, contains a repeated intéger, or is an odd
permutation and if "

(2.2) ajv = 3V

k o xJ
then the vorticity vector, wk, is defined by
i
(2.3) \A)k = e 31 v.j

For a congruence of curves determined by the
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unit vector, tj, it is well known thatz)
2. t = i t.

where U is the curvature vector of the congruence,
tk, j

(2.5) t o)i.tk = u
and L jk is a tensor which lies in the local spaée of-
thogonal to t,. By differentiation of the velocity vec-

tor in (2.1) and use of (2.4) we obtain the basic rela -
tion

2.0 , --'va In + v, u + L

(2.6) J (Inq) + vou +qly
e

If we multiply this last relation by e and use the

- definition of tJ K in (2.3), we find that

e -
(2.7) wl-ael v &(lnq +e‘] vjuk+qe1‘] |

jk
First, we evaluate the last term in the right
hand side of (2.7). Let us decompose the tensor ,
ij, into a symmetric tensor, Sjk’ and a skew sym -
metric tensor, w. , so that
L, - s,
2.8 = & .
(2.8) Ly = Syt Vi

Further, let n‘]

bJ denote unit vectors along the prin-
cipal normal and binormal, respectively, of the stream
lines (with unit tangent vector, tJ). Since L lies in
the subspace orthogonal to tj, the tensors Jk’ Wik

lie in this subspace. Hence, we may write

2) Einfuhrung in die Neueren Methoden der Differen -
tialgeometrie, J. A. Schouten and D. J. Struik, P.
Noordhoff, Groningen, Batavia, 1938, p. 28
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(2.9) ij = w(n.j bk - n bj) ,
where w is a scalar., Further, by forming the scalar
product of (2. 6) with the skew symmetric tensor

n‘] bk - nk b']

we obtain \ o 3 v
cj k k . . .
(2.10) bk k q ij (nJ bk - nk b‘]) ,

an “n—;_b——%

where évk/{)n, L:}vk/é b, denote the rate of change
of vi with respect to arc length along the nJ, bJ dir-

ections, respectively. Replacing the tensor ij,by
(2.8), (2.9), we find that the unknown scalar, w, is

determined by

A k9%
2.11) b - = .
S e I

If we introduce the relation (2.1), v =qty, into (2. 11)
and note that ty, Ny, by are mutually orthogonal, we find
that

DY’ Y
(2.12) bk‘;nk ) nk~3—b£ = 2w .

Now, through use of (2.8), (2.9), the last term on the
right hand side of (2.7) reduces to

ijk ijk ijk
Zc 13 = = - °
( ) qe ij qe wjk qwe (njbk nkbj)
If we recall the cross-product relations
ijk i ijk ET :
(2.14) e n.b, =t , e J tn =bl ijk i
J k j k s € thk =n

evaluate (2.13), and replace w by its value as given by
(2.12), we see that
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N Lt )t
, k k k k k
(2.15) qel‘] ij qtl (b I -n 3T ) .

i

The terms in the parenthesis on the right hand side
are known as rotation coefficients. 3)

Secondly, we evaluate the first an d second
terms in the right hand side of (2.7). By decompos -
ing an, we obtain

~ dq da dq
(2.16) aq TJ —~—n +abbJ

where Aq/Bs indicates the rate of change of q with
respect to arc length along the t; dlrecli:mn Form-
ing .the scalar product of (2.16) with e Vk» recall -
, and (2.14), we find that

ijk ) Jdq i dq i
) 1 = - b °
‘(2 17) e Vi j(nq) Y + 3% n

ing that Vie = 4 tk

Finally, since the curvature vector, ui, is given by
= K, nk

where K, is the curvature of the stream lines, the
second term in (2.7) reduces to

e .
(2.18) e Vj u = q K,,bl

In order to obtain the desired generalization
of formula (1.1), we substitute (2.15), (2.17), (2.18)
into the right hand side of (2. 7) and find that

3) Einfihrung ...., J. A. Schouten and D. J. Struik,
loc. cit.; p. 33
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. 3t 2b.
(219) W' = - ) ¢

+—5—EHJ + (- —%%4— qIC)b‘]
For plane flow , we know that

dq j
— = 0, t. =0
ob w].]

Hence, (2.19) reduces to (1.1). Finally, we note that
formula (2.19) may be generalized by replacing the
principal normal and binormal vectors, nj, bJ, by
two arbitrary unit vectors, r J, mJ which lie in the
local subspace orthogonal to ti and which are mu-
tually orthogonal. Then, if the principal normal is
expressed in terms of these vector fields by the rela-
tion

(2.20) ngam‘]-i-brj, a2+b2=1

where a, b are scalars, a routine computation shows
that (2.19) must be replaced by

(2.21) (A]'::q(m —g—;—-r dm)tJ

+ (5o +Kab)r
+ ( - ——g—% +Kg a) m

where &q/ dm and aq/ér denote the rate of change
of q with respect to arc length in the mJ, r J direc -
tions, respectively.

3. An Intrinsic Expression for the Bernoulli Function
in Steady State Non-Viscous Fluid Flow. It is well
known that for the steady state flow of a non-viscous
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incompressible fluid, the Bernoulli function is de-
fined by

_|9p
where p is the pressure, e the density, ¥ the poten-

tial of the body forces. Further, it is known4) that
the surfaces

B

qz
Y

+ B,

B = constant
consist of stream lines and vortex lines, and

JB
3.1 — = g W sin ,
(3.1) 5o q A
wheredB /9 p denotes the rate of change of B with
respect to a displacement normal to surfaces, B =
constant, and 4 is the angle between the velocity and

vorticity vectors.

We shall express the right hand side of (3.1)
in terms of intrinsic expressions involving q, the
magnitude of the velocity vector. Evidently, the right
hand side is the magnitude of the cross-product of
w ) and vl. By use of (2.19), we may express this
cross product by :

ijk dq i
3.2 = - b
( ) e wj Vi 19-35%
;
+ qf - aq + qk)n .

n

Thus, (3.1) may be written in the form

4) Hydrodynamics, H. Lamb, Dover Publications,
New York, 1945, p. 244.
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| 1
(3.3) ,_é_i [“gj‘) +‘12(-%—2+qk)2]/2;

For parallel surfaces, the p is constant between
two surfaces of the family, B = constant. Hence, a
necessary and sufficient condition that the surfaces,
B = constant, consist of parallel surfaces is that

[(g‘g") + (g K/ - %%)2] = constant

along each surface of the family.

In the case of the compressible non-viscous
fluid, the above result remains valid providing we con-
sider only isentropic fluids (that is, fluids of constant
entropy). This result follows by modlfymg Lamb's
argument in a trivial fashion.

4. Intrinsic Significance of the Equations of Motion,
Continuity, and Energy for Compressible Non-Viscous
Fluids. In this section, we consider the steady.flow

of a non-viscous, compressible fluid when the body
forces vanish. For this case as well as for the in-
compressible case, the equations of motion are

j 1
(4.1) v ajvk:—?ékp»

where p is the pressure and A is the density. How-
ever, the continuity relation for the compressible and
incompressible cases will be discussed separately.
In the compressible case, the continuity relation is

N )
(4.2 v d. 0+ . veo= 0 ;
) J/) / J
and in the incompressible case, this relation reduces
to
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(4.3) aj v =0

We shall consider the energy relation for the
case of polytropic gases. In this case, the condition
that entropy is constant along any stream line may be
expressed by the Bernoulli relation’

. 2 S
(4. 4) Je) (h +-é-) = 0

where h, the enthalpy, is given by
2

c
(4.5) h = cpT = 57

The c/qnstant c.. is the s&aécific heat at constant pres-
sure,f is the ratio. of the specific heats, T is the ab-
solute temperature, and c, the local sound speed, is
defined by ‘

2 c)p

(4.6) c = ?}’—)
S

where S is the entropy. By use of the gas law,
p = R/dT ,

where R 1is the universal gas constant, and of the
formula (4.5), we may express the equations of mo-
tion and energy in terms of the variables, Vi T, 4,
or equivalently in terms of v, cz, . A simple
computation shows that these relations may be written

as

5) Supersonic Flow and Shock Waves, R. Courant and
K. O. Friedrichs, Interscience Press, N. Y., see
equations (9.06), (14.05).



In the special case of isentropic flows (S = constant),
we can express the equations of motion in the simpli-
fied form (see 4. 6)

2

(4.8) v 33 Vi = - E—/a- ak[{Qr

The energy relation of (4. 7) is unaltered.

Now, we.'express the various ‘terms of equa-
tions (4.2) (or (4.3)) and (4.7), (4.8) in terms of in-
trinsic quantities. The basic relation (2.6) may be

written as
4, =t t .
(4.9) ajvk k&jq+qjuk+quk

Let us choése the directions determined by the unit

vectors, rl,' ml so that they coincide with the princi-

pal directions of the symmetric tensor Sk - ( see

(2.8)). Then, if hy, h, are the principal values of
S, , wWe may write

jk
4,10 = h .
( ) Sjk h1 r‘j r, + h, mj m,
Sim ilarly to(2.9), we may express the skew symmet-
ric part of ik by .
4,11 = w -
( ) ij W (rj m, r, mj)

where the scalar, w, may be expressed in terms of
the rotation coefficients by (see 2.12)
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: - k gt k 5‘ t
(4.12) 2w = (m —'g—”—' —5"‘—-)

Further, it should be recalled that the tensor L
(4.9) is defined as.the sum

jk of

(4.13) ij = s + wjk .

From these last relations and (4.9), we see
that the left hand side of the equations of motion (4. 7)
may be expressed by

j 2
(4.14) v ijk = q-—a’a—%—t + q u

k k-~

By contracting (4.9), we find that
I L jk
4.15) d. v = <= 4 L,
(4.15) ; 5s T 98 Ly
jk
where g'] is the metric tensor. With the aid of (4.10),
(4.13) we see that
jk

g ij = (hl +h2)

.and (4.15) reduces to

(4.16) J %—q+q(hl+h2)

Let us draw some conclusions from our calcu-
lations. First, consider the incompressible case and
hence equations (4.1), (4.3). From (4.3), (4.16), we
see that for an incompressible fluid, the rate of change
of q with respect to arc length is given by

(4.17) g_‘: = -q(h, +h,).
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Further, by substituting equation (4.14) into the equa-
tions of motion (4.1), we find that the rate of change
of pressure is determined by

' d4q 2 _ ‘l,'=
(4.18) qéis tk+qK,nk-—-’Fka.

Thus, pressure does not vary in the binormal direc-
tion © and its variations along the stream line and its

G )

principal normal are determined by the laws

| 5p 2q  dp._ . ; E
(4.19) _d—s_“—/pqés' dn“'/]ql{"

The formulas (4.19) are well known in the two dimen-

sional plane flow caseb). | l

To discuss the compressiBle flow of fluids,
we first consider the isentropic case. The equations

of motion (4. 8) become

2
C

N da 2,
4.20 = _ S J 4
(4.20) a7t + a Ko /k/ﬁ’
the equation of. contiﬁuity (4. 2) reduces to

(4. 21) q—c}ﬁ -.'-/@[i: + q(h1 + hz)] = 0;

d s
and the energy relation (4.7) reduces to
J c? q° |
4, ‘ — ) = .
(4.22) s ( ¥-1 * 2 ) 0

' Again, we see that the pressure (and the density)do

6) Theoretical Hydrodynamics, L. M. Milne-Thom-
son, loc. cit., p. 10l. Note, only the Frenet formu-
las need be used in deriving (4.19). Thus, equations
(4.19) must be known, though the present author cannot
find any reference to them.
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not vary in the binormal direction. Instead of (4.19),

‘we have the relations

(4.23) CZ% Aq Cz% = ‘/0‘512&=

Eliminating the derivative of A in (4.21) by use of the
first relation in (4. 23), we find that
2 2, J 2
(4.24) (@ - )52 - “aln
ds
Thus, the variation of q along the stream lines is de-
termined by the sum of the principal values of the

1fh2)=0.,

t
tensor SJk

Finally, we consider the general non-isentrop-

ic case of a compressible fluid. In this case, the first
equation of (4.7) replaces (4.8) and instead of (4.23)
we must write

(4. 25) (/Oc) = -b‘fq—g—g ;
$alp = apde

Through use of the energy relation (4. 22), the first of
the above relations reduces to the first relation of
(4.23), or

(4. 26) gﬁ /ﬂq

Thus, for the isentropic and non -isentropic cases,
the rate of change of density along a stream line is de-

termined by the same law (namely, 4.26). Further,

in the non-isentropic case, the variation of the mag-
nitude of the velocity follows the same law (4.24)as
in the isentropic case. The essential difference be-

tween these two cases must lie in the variation of 1‘0 )
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q, ¢ along the principal normal and binormal to the
stream lines.

Some additional insight into this last topic is
given by discussing the intrinsic form of the following
relation? ,.

2 2
- +S‘—-)-T§ks=:‘ v‘]wl

.
dk(y-,l 2 kJ.l

Forming the cross product of vJ and LU in (2. 19),we
find that the above relation reduces to
2 qZ 9
—) - T S
¥ 2 ) k

(4. 27) o)k (

da . dq
_Jg ak)n +q 3?’% Py -
In terms of’components along the principal normal and

binormal to the stream lines, this last equation shows
that

| 2
(4. 28) a'n ( ;_1) - T%-';S; = - d%k .

_a ( cz)_ /aS
ob ‘" F-1

These relations show that the rate of change of ¢ along

x|
!
o

the principal normaldirectionis completely determined

by the rate of change of S along this direction, and sim-

ilarly for the rate of change of c¢c along the binormal

direction. If two mutually orthogonal directions rJ, mlJ

which are perpendicular to tJ are introduced, then
(4. 28) must be replaced by

7) Supersonic Flow and Shock Waves, R. Courant and
K. O. Friedrichs, loc. cit., equation (14.03). This
relation is easily obtained from the equations of mo-
tion and is the basis of the work in section 3.
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2 ‘ .
( QS "qza-K“

7)) - Ty

c:2 )\S -2

am(a,_l) _T;-r_r; = -q b K .

5. The Case Where vl is Orthogonal to oo
This is a generalization of the ‘case of irrotational
flow. In the latter case, the oo]' surfaces are the vel-
ocity equipotentials and W is the gradient of a scalar
function; in the present case, v is proportional to the
gradient of a scalar function. From the integrability

W

(4. 29)

v Qv

! Surfaces.

condition

ijk _ jo_
(5.1) e ~Vi%vk'_ vj W = 09‘

we see that v is orthogonal to w?, and conversely.
Use of (2.19) shows that a necessary and sufficient
condition for v to be orthogonal to )/ is

(_5.2) w‘] =-%=%n‘] + (g K, - %—%—)b

j .

The condition (5.1) or (5.2) implies that ,
w =0 (see (4.12) and (2.21)), and hence that L. ik is a
symmetric tensor. Further, the principal values hy,
h; of this tensor become the two principal curvatures
of the ool surfaces orthogonal to t). Thus, only the
mean curvature |

M=:h1+h2

of these oo’ surfaces enters into relations (4.17)
and (4. 24).

For the incompressible case, we can state the
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following theorem: the magnitude of the velocity, g,
varies along the stream lines according to the law

2 q
2 s

-Mq.

In particular, a necessary and sufficient condition for

q ﬁo be constant along a stream line is that M, the

mean curvature, vanish along the stream line. At
1

such points, the oo* surfaces consist of hyperbolic
points in the sense of differential geometry. The ne-

cessary and sufficient condition for q to be constant
1

along any stream line is that the oco® surfaces be min-

imal.

For the compressible case (isentropic andnon-
isentropic), relation (4.24) or

2 2, dda 2

- -4 - M =0
(g <) 5% c q
holds. In this case;, we see that for either subsonic
or supersonic flows, similar theorems to those of the
preceding paragraphs are valid. Further, at those
points where a transition between subsonic (%< c) and

supersonic (q > c) occurs, the mean curvature of the

ool surfaces orthogonal to the stream line vanishes.

Finally, the equations (4. 29) furnish an inter -
esting result. Consider the case where the stream
lines are straight lines and the entropy depends only
upon the temperature, then (4.29) shows that

c2 T
(5°3) —;‘;-_—1— - f TdS = constant,

for the surface elements determined by the directions
rk, my. The surfaces defined by (5.3) consists of the
planar elements determined by the directions ry, my,



129

and these surfaces are perpendicular to the rectilin-

ear congruence of stream lines. Thus, if the stream
lines consist of a rectilinear congruence and entropy

is a function of termperature only, then the stieam:
lines are orthogonal te oo~ surfaces.

Added in Proof

1. Presented to the American Mathematical Society,
December 1952, St. Louis, Missouri. '

2. The theorems of section 5 invelving M, the mean
curvature, are known for the cases of the incom-
pressible and compressible isentropic fluids. It
should be noted that the fact that (4. 26) is valid fer
non-isentropic as well as for isentropic flows leads
to the result that the above theorems remain valid
in the compressible ncn-isentropic case. The fol-
lowing articles contain proefs of these theorems in
the incompressible and cempressible isentropic
cases.

a. the incondpressible case: L.. Castoldi, Sopra
una proprieta dei moti permanenti di fluidi incom-
primible. .., Atti. Accad. Naz. Lincei Rend. Cl.
Sci. Fis. Mat. Nat. (8), 3, 333-347 (1947).

b. the compressible isentropic case: S. S.
Byuggens, The critical surface of an’adiabatic
flow, Doklady Akad. Nauk, SSSR (N.S.) 58, 365-
368 (1948) also M. Giqueaux, Sur la gemoetrie des
ecoulements permanentes des fluids compressibles,
C. R. Acad. Sci. Paris, 226, 222-224, (1948).

~
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3. In the theorem on rectilinear congruences of sec-
tion 5, the restriction that the entropy be a function
of temperature only is not necessary. By letting
the curvature vanish i (4.29), feplacing c2 by
cst and integrating, we find that, S - Cp InT =
constant, along each of the ool surfaces orthogonal
to t). By a change of thermodynamic variables,
these surfaces can be written in the form, p = con-
stant. This can be seen, more directly, by use of
the intrinsic form of the equations of motion. For
incompressible flow, this theorem is due to: S. S.
Byu‘s’gens, The geometry of the stationary flow of
an ideal incompressible fluid, Izvestiya Akad. Nauk,
S.S.S.R. Ser. Nat. 12, 481-512 (1948).

¥

4. It should be remarked that the hj, h, of section 4
are known when the stream line pattern is given
In fact, the relations (4.17), (4.24) show that only
that component of the stream line pattern which de-

termines h,, h2 is essential in determining , g

along a stream line.



