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APPROXIMATION TO A DECISION PROCEDURE

FOR THE HALTING PROBLEM*

MICHAEL ANDERSON

Both the Halting Problem and the Immortality Problem for Turing
machines (to provide an algorithm for determining if a given Turing ma-
chine will stop on a given input or, respectively, any input) have been shown
to be unsolvable. In this paper we consider the problem of determining if a
machine is mortal (stops on any input) solely from the machine's state in-
structions.

The machines considered here are two symbol machines (0 and 1) with
right and left shift. Particular machines will be given in the form of ma-
chine tables. At each entry of the table there are three instructions—the
print instruction, the shift instruction (1 for right and -1 for left), and the
state instruction (q{ for the Ith state and, in particular, qQ for the stop
state). The machines will operate on two way infinite tapes on which appear
only a finite number of strokes.

At many points in the work that follows it will be unnecessary to con-
sider the complete machine table. When this occurs the instructions will
still be referred to as a machine although they actually determine a set of
machines.

The State Tree of a Machine. With each machine we can associate a
dyadic tree1, called the state tree of the machine, constructed in the follow-
ing way:

•This research was done during the school year 1966-67 in conjunction with the
Seminar in Symbolic Logic of Prof. B. Sobociήski. I would like to thank Prof. B.
Sobociήski and Prof. V. Vuckovic* for their kind encouragement and assistance.

1) The reader is referred to [1], [2], and [5] for the terminology connected with trees.
We assume the concepts of length and order ordinarily associated with trees. For
a development of the structural propositions in this section of the paper see [5] pp.
181-197, in particular pp. 190-191. The state tree of this paper is nothing more
than that of [5] with some of the structure stripped off and paths cut down.
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(1) The origin of the tree is the initial state of the machine.
(2) If a q{ in the tree is a q0 or if the path from the origin to this q^ has an

occurrence of g* other than the #f under consideration, this #f is a
terminal point. The path from the first occurrence of #f to the second
occurrence is called the cycle of the terminal point qι.

(3) If a q{ satisfies neither of the conditions of (2), then from #f there
issue two edges: one, called an upper edge, connecting qj to the state
the machine will go to if in state q{ it observes a stroke and the other,
called a lower edge, connecting q{ to the state the machine will go to if
in state #f it observes a blank. The point connected to #z by an upper
(lower) edge is called the upper (lower) point of #, .

Notice that two points of the tree may be designated by the same state
symbol. We call such points identical points. Also, there may be some
states of a machine which do not appear in the state tree. Such states can
never be reached by the machine in a computation and so, for our purposes,
are superfluous. We eliminate from consideration machines with super-
fluous states. We associate with the empty machine, the machine consisting
only of the stop state, the tree with single point q0.

A tree is called a state tree iff it is a state tree of some machine after
an appropriate renumbering under which q0 remains qQ and non-identical
points regain non-identical. In what follows we will often transfer from a
machine or tree to a renumbering of the machine or tree. The q0 will
always remain fixed and qx will denote the initial state or origin of a ma-
chine or tree.

Proposition 1: The state tree of any machine is finite.

Proposition 2: Any dyadic tree in which each point is denoted by a qι is a
state tree iff it satisfies the following conditions:
(1) The two points following a junction point are distinguished, one being
called upper and the other lower. Identical junction points have identical
upper points and identical lower points.

(2) Any terminal point is either a q0 or the path connecting the origin of
the tree to the terminal point has precisely one point different from the
terminal point and identical to it.
(3) Within any path there is not a pair of identical points.

We now proceed to introduce further terminology. A path from the
origin of a state tree to one of its terminal points will be called a complete
path. A path consisting solely of upper edges will be called an upper path
and a path consisting of lower edges, a lower path. The unique complete
upper path will be called the main path. A path with an odd (even) number
of edges will be called an odd (even) path.

Any point of a state tree T which is not a terminal point is the origin of
a number of subtrees of T. We call the largest such tree (the one with the
greatest number of edges) the subtree of this point. If the subtree of a point
in T is a state tree, then it is called a state subtree of T.

Proposition 3: If the path connecting the origin of a state tree T to a point
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q{ contains no point identical to a point of the subtree of qi other than qi it-
self, then the subtree of qι is a state subtree,

A submachine of a machine Mis a set of columns of the machine table
of M which is a machine2. If a computation of M enters into a submachine,
it will remain there. In the state tree T of a machine M, state subtrees
correspond to submachines of M and conversely. Two state subtrees which
have identical origins correspond to the same submachine.

We call the subtree of T associated with the upper (lower) point of a
point the upper (lower) tree of the point.

With each path in a state tree we associate a sequence (qil9 .. .#;„),
where #/; is the state associated with the j t h point of the path, and a se-
quence (xii ,'•'%{„_•)> where Xi is 1 if the j t h , edge of the path is an upper
edge and 0 if it is a lower edge. These are called, respectively, the state
sequence and the input sequence associated with the path. In what follows,
whenever we consider a particular path we will renumber the state tree in
order to obtain consecutive numbering for the sequences.

The significance of these two sequences is seen in that given a state
tree T and a complete path of T with state sequence (q1,.. .qn-l9<li) and in-
put sequence {xλ,.. ,xn-i), the machine with state tree T which shifts only
to the right, if started on the tape as shown in fig. 1, will go through the
state sequence of the path and end in state qi.

Figure 1

machine starts here in ends here in state q{

state q. after n shifts

I Xi X2 \ I Xn-ι X \

A machine is said to cycle (to have cycled) when it returns to a state it
was in before.

Lemma 1: Given a state tree T with a state subtree Tf having origin qi and
a machine Mf with state tree T\ there is a machine M with submachine Mf

and state tree T such that for any input V for Mf there is an input I for M
which will put M in state qi on the input I\

Proof: Consider the path connecting the origin of T to <&. Say this path has
state sequence (q1,... q^ and input sequence (xλ,. .. Xi-J. Then none of the
states ^ i , . . . qi-ι appear in Tτ since T1 is a state subtree. Thus assigning
instructions to these states will not determine any of the instructions of the
submachine associated with state subtree T\ Consider the input given as
in fig. 2. Construct M so that, in state qk observing Xk, M has instructions

2) Note that we have restricted ourselves to well defined machines with non-super-
fluous states.
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y/k-AOk+u f o r k <i. Start this machine on the tape in fig. 3 and it will go to
the desired configuration.

Figure 2

machine is to start here

Γ y-m-i y-m J Γ y-ι y* 3>i J

Figure 3

machine starts here

I y-i χi X2 \ i χi-ι yo yi ί

The Decision Procedure. We will now consider the problem of when a
given state tree corresponds only to mortal machines. A state tree having
this property will be called a mortal state tree.

Lemma 2: Consider a state tree T in which the only terminal points are
q0 and qλ. T is mortal iff all terminal points other than the terminal point
of an odd main path are q0.

Proof: (1) If all complete paths of T terminate in#0> then the computation
of any machine with state tree T cannot cycle and must stop.

(2) Suppose T has a complete even path which terminates in qx.
Consider the state sequence (qly. . .q2mj<li) and input sequence (xλ, . . .x2m)
associated with this path. Construct the machine with the following instruc-
tions—in state qj observing Xj the machine has instructions # / + 2 (- l ) ; # ; + 1

where j +1 is taken modulo 2m and j<2m+l. Then on the input of fig. 4 this
machine doesn't stop.

Figure 4

start machine here

I X2 Xi \

(3) Suppose there is a complete odd path other than the main path
which ends in qγ. Consider the associated sequences of this path
(tfi> #2rc -i>#i) and (xu . . .x2m _i). There is at least one Xi such that Xi = 0.
Call this Xk. Construct the machine with the following instructions—when
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observing XJ in state qj the machine has the instructions AΓ ;+2(" 1) ;V/+I for

j<k-l and Xj+2(-iy+1<2j+i for j>k-l. Then on the tape of fig. 5 this ma-
chine does not stop.

Figure 5

start machine here

I
I 0 0 x2 xx 0 0 \

(4) Consider a state tree in which the main path is odd and termi-
nates in qx and all other paths terminate in q0. The only chance for this
machine to be non-mortal is if it cycles on the main path. But, since the
main path is odd, any cycle must leave the machine at least one space to
the right or left of its starting space. Thus after n cycles it must be at
least n spaces away from its starting space. Therefore the machine will
eventually be thrown into a computation off the main path. But these all
terminate in q0. Thus the machine will eventually stop.

Corollary: Any state tree which has an occurrence of qγ as a terminal
point other than on an odd main path is non-mortal.

Theorem 1: Given a mortal state tree T, any state subtree of T is mortal.

Proof: Suppose there is a state subtree of T which is not mortal. Then
there is a machine corresponding to this state subtree which has an endless
computation. But, by Lemma 1, this implies that there is a machine with
state tree T which has an endless computation and thus T is not mortal.
Thus any state subtree of Tis mortal.

We. define the order of a finite tree to be the maximum length of its
paths.

Theorem 2: A state tree T is mortal iff every terminal point of T is either
a q0 or a qt whose cycle is an upper odd path.

(1) Assume there is a terminal point q^ whose cycle is not an upper
odd path. Consider the path from the origin of T to this terminal point and
the associated sequences (#i , . . . # £ , . . .#»-i»&) and (xx,.. .#»_i). Combin-
ing the construction of Lemma 1 with the constructions of (2) and (3) of
Lemma 2, we get a machine with state graph T which has an endless com-
putation. Thus T is not mortal.

(2) Consider the set of all state trees such that every terminal point
is either a q0 or has a cycle which is an upper odd path. We proceed by
induction on the order of the trees.

(i)

#i and tfi are mortal.
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(ii) Assume that for all state trees of order kKn the theorem holds.
Let Γ be a state tree of order n satisfying the condition. Consider the
upper and lower trees of T. The lower tree has no occurrence of qx and
thus is a state subtree of T. It satisfies the condition and is of order less
than n. Thus it is a mortal state tree. With the upper tree we must dis-
tinguish two cases:
Case 1: If the upper tree has no occurrence of qu it is, as with the lower
tree, a mortal state tree. This implies that T is mortal.
Case 2: If the upper tree has an occurrence of qu it must be as the termi-
nal point of the main path and this path must be odd. Consider the state
sequence of the main path, (ql9.. .#2OT+I><2Ί) None of the q{ on the main
path have points off the main path identical to them for this would imply the
existence of qx as a terminal point other than on the main path or the exis-
tence of a non-upper cycle. Thus the lower trees of all the points on the
main path are state subtrees of T. Since they satisfy the hypothesis and
have order less than n, they are all mortal. Thus the only chance for a
machine with state tree T to cycle indefinitely is to stay on the main path
for its computation. But as in (4) of the proof of Lemma 2, the machine
can't have an endless computation on the main path. Thus T is mortal.

Formal Results. We now present a formal system representing the
preceding results. To this end, we associate with each state tree a formula.

First consider all cycles of a state tree T with origin ^ . A point of a
state tree is said to occur under another point if there is a point with sub-
tree T1 which contains both points and such that the first point is contained
in the lower tree of T and the second is contained in the upper tree of T\
We consider the lowest3 occurrence of q{ and eliminate the subtrees, save
for the origin itself, of all the other occurrences of #*. The remaining tree,
called the reduced tree of T, is dyadic. Different state trees have different
reduced trees. We define upper and lower trees etc. as with state trees.

From the reduced tree for T we construct a formula for T in the
following manner:

(1) With q^^i, qj the upper point of qι and qk the lower point, we as-

sociate Kq{qjqk.
A

(2) With ^ί<Cσ where A and B are dyadic trees, we associate Kquxβ
where a is the associated formula of A and β is the associated formula of B.
Then for any tree there is a unique formula and a formula corresponds to
no more than one tree

The Formal System

Variables: ql9.. . #t

Constant: q0

3) Among any set of identical junction points, there is a lowest.
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Connective: K
Wffs: (1) Any constant or variable is a wff.

(2) If α, ft and γ are wffs, then Kaβy is a wff.
(3) Nothing else is a wff.

Normal Numbering: If in a wff an occurrence of qi+1 immediately following
a K is preceded in the formula by an occurrence of # f , immediately follow-
ing a K for i ^ 1; then the wff is said to be normally numbered.

Part: We define a part of a wff inductively as follows —
(1) If K aβy is a wff, where α, β, and y are wffs; then β and y are

parts of Kaβy.
(2) A part of a part of a wff is a part of that wff.
(3) Nothing else is a part.

System K
Rules:
Substitution: For any occurrence of q0 in a thesis θ we may substitute a
thesis Δ where θ and Δ are renumbered in order not to identify distinct var-
iables and to keep the numbering normal.

Reference: For any occurrence of q0 in a thesis θ we may substitute a q{
where qi occurs in a part of θ which is a thesis after renumbering and this
part ofθ occurs after the q0 to be substituted for.

Axioms:
Λo: q0

Aji KqxqQqQ

A2: KqγKq2.. . Kq2i_λq γq0. . . q0 for al l i > 0

Note that system K is trivially a decidable system since there is no
rule by which a thesis yields a shorter thesis.

Theorem 3: A state tree is mortal iff its associated formula, after renum-
bering, is a thesis of the K system (semantic completeness).

Proof: (1) The reader may verify that all the theses of the K system cor-
respond to mortal state trees.

(2) Consider the set of all mortal state trees. We proceed by in-
duction on the order of the reduced trees.

(i) The formula associated with the state tree q0 is in the K system.
(ii) Assume for all k < n the formula of a state tree with reduced tree

of order k has its associated formula in the K system. Consider T\ of
order n, the reduced tree of T.

The lower tree of T is of lower order than Tand, since it is the re-
duced tree of a state tree, its formula is in the K system. Call it ax.

We distinguish two cases for the upper tree of T.
Case 1: If there is no occurrence of qγ in the upper tree of T, then by sub-
stituting for any #; which appears in the lower graph of T a, q0 we get the
reduced tree of a state tree whose order is less than n and which is mortal.
Thus its formula is in the K system. Call it α2.
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We have KqxqΌq0 as a thesis and thus, by substitution, we have Kq1a2au

renumbering ax and a2. By the reference rule we may substitute for any q0

in a2 a qι appearing in ax. In particular wherever we substituted into the
original tree a q0 for a #,, we may substitute this #, back (actually its ap-
propriate renumbering). Thus the formula of Tis in the system.
Case 2: If qx does occur in the upper tree of T, it only occurs as terminal
point of the main path. Consider the state sequence of the main path,
(tfi,. -Q2m +v<li) As in the proof of Theorem 2, the lower trees of the
points on the main path correspond to state subtrees. By substituting in the
lower tree of #, a q0 for any occurrence of a #/ which appears in the lower
tree of a qu, where u < i , we get a reduced tree which is a reduced state
subtree and is of order less than n. Call the formula of the K system
associated with the state subtree of qi α, .

We have as a thesis of the system Kq1Kq2(K . ^Kq2m+1q1q0.. .q0 and thus
we have Kq^q^K... Kq2m +1qλ a2m +1... ax. But a2m + 1 . . . aλ are theses of the
K system. Thus any q0 in a2m+1 can be changed to a #, appearing in
Q?2»i+i o r <*i Thus we can substitute back the #; which we eliminated
before. Continuing the process we substitute back for the tfo's appearing in
a2m» a2 a n d Set the formula of the original tree.
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