169

Notre Dame Journal of Formal Logic
Volume XV, Number 1, January 1974
NDJFAM

CONCERNING THE PROPER AXIOMS OF S54.02

BOLESEAW SOBOCINSKI

In [4] it has been established that the addition of the following formula
1 SECHpLppCLML D

as a new axiom, to S4 generates a system, called S4.02, which is a proper
extension of S4. And obviously, ¢f. [6], in the field of S4, +1 is inferentially
equivalent to

£2  GCCpLPppLCLMLpp

In this note it will be shown that in the field of S4 each of the following
two formulas

£3 CEEPLPLPpCLMLPpLD

and

t4 CECPLPLPCLMLpp

is inferentially equivalent to 1.
Proof:

1 Assume S4 and £3. Then, obviously, we have £t4. Now, S4 yields the
following formulas:

Z1 GLpLLp
Z2  GGpqSLpLq

Whence,
Z3  GCLEpLpLpCLMLpp [£3; z1]
1 CECpLppCLMLpp [Z2, p/epLp, q/p; Z3; S1°]

Thus, in the field of S4: {£3} — {£4} — {t1}.
2 Now, let us assume S4 and £1. Then:

Z1 CCuCqrECCprsCuEspgs [s4]
Z2  GCpqECvECprsSvCEpgs (s4]
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zZ3
Z4
zZ5
Z6
zZ7
zZ8
Z9
Z10
Z11
Z12
Z13
Z14
zZ15
Z16
zZ17
(25,
Z18
Z19
Z20
zZ21

z22

z23
zZ24
zZ25
Z26
z27

Z28

Z29

Z30

t3
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CEpgEErsCEqrEps [s3°]
CCtsCCpqECvEE priCvEE qrs [s4]
CCpCqresrs€pCqs [s3°]
CCpCqreS pCqsSE rCstSpCqt [s3°]
CCE pgCrpECpqCrq [s2]
CCqrCCpqCpr [s1°]
CEpCpqCpq [s2]
CpCNpq [s1°]
SNpChq [s1°]
SLpCNpq [s2]
SENppCpLp [s2°]
CCpLqCpq [s2]
SCC pgrSENvLNpLy [s3°]
CCMpLqCpLq [s4°; ¢f. [3]]
SCPLpCCMppSpLp

p/CpLp, q/CMpp, v/CMpLp, s/SpLp; Z8, q/p, p/Mp, v/Lp; Z16, q/p]
CCNpLNqCMaqp [s1°]
CSCLMLCqLprCLMLpy [s4°]
CCLMLCNpqrCLMLpy [s2°]

CCLMLCNpqCNyLNsCLMLpCMsy
[7z5, p/CLMLCNpqCNrLNs, q/LMLp,
v/CNvLNs, s/CMsv; Z20, v/CNvLNs; Z18, p/v, q/s]
CECpPLPLpCENpEHPLPpCPLP
[(Z1, v/cCpLPLD, q/SpLp, v/p, p/Np, s/CpLp; Z14, p/SpLp, q/p; Z13)
SCCPLPLPpECCPLPEpLpCPLY
(z2, p/Np, q/CpLp, v/CEPLPLD, v/SpLp, s/CpLp; Z11, q/Lp; Z22)
SCCpLPLPpCLMLPCpLp
[Z23, p/CSEpLPLD, q/CECPLPEpLpCHLP, v/CLMLCPLpCPLD,
s/CLMLpCpLp; Z23; Z19, q/p, v/CpLp; £1, p/CpLp]
CCEpLPLHSE NPLNPLD (714, p/SpLp, q/p; Z15, q/Lp, v/p; S1°]
CCCHpLPLPCCC pLPLpEC pENPLNPLp ;
[Zz1, v/CCpLpLp, q/SNpLNp, v/Lp, s/Lp; Z25]
CCCpLPLPCEHENPLNpLYp  [Z29, p/SCHLpLP, q/SCpENPLNpLp; Z26]
SCCPLPLPpECCNpLNpENpLNpCNpLNp
[z4, t/Lp, s/CNpLNp, q/CNpLNp,
v/CCpLPLP, ¥/SNPLNp; Z12, q/LNp; Z11, q/LNp; Z27)
SCCpLPLPCLMLPCMpp
(23, p/CCpLpLp, q/CE CNpLNpENpLNpCNPLNp,
v/CLMLCNpLNpCNpLNp, s/CLMLpCMpp; Z28; Z21, q/LNp, v/p,
s/p; £1, p/CNpLNp]

SCSCpLPLPCLMLPSpLD
[Zz6, p/SCpLpLp, q/LMLD, v/CPLp, s/CMpp, t/SpLp; Z24; Z29; Z17)
CCCPpLPLPpCLMLPLp (z7, p/spLp, q/Lp, v/LMLp; Z30]

Thus, in the field of S4: {£1} — {£3}. Hence, we have proved

{54.02} = {s4; £1} = {s4; 2} = {s4; £3} = {s4; L4}
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Remarks:

1 It should be noted that the proof given above is strictly analogous to the
deductions which I presented in (5], pp. 366-367, section 1.2.2.) Namely, in
that paper a logical proof was given of Schumm’s result, ¢f. [1], which he
had obtained metalogically that in the field of S4 the so-called Diodorian
modal formulas

N1 CCCpLppCMLpp
and
M1 CCCPLPpLPCMLPLD

are inferentially equivalent. Obviously, an analogy existing between the
proofs given in [5] and in this note is due to the fact that N1 and M1 have
syntactical structures very similar to those which £1 and t3 possess
respectively.

2 Recently, cf. [2], Schumm has proved metalogically that, in the field of
S3, the formulas £1 and £2 are inferentially equivalent. It is an interesting
open problem whether, in the field of S3, each of the following formulas
3,4 and

t5 CCCPLPLPLCLMLPLD
t6 CCECpLPLPpLCLMLpp
is inferentially equivalent to £1. A similar open problem is also worth

investigating. Namely, whether in the field of S3 all the known proper
axioms of S4.1 are mutually equivalent.
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