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COMPLETENESS OF RELEVANT QUANTIFICATION THEORIES

ROBERT K. MEYER, J. MICHAEL DUNN and
HUGUES LEBLANC

In [20], Meyer and Dunn answered affirmatively for the relevant
sentential logics E and R the question, " I s the rule y, 'From v-A and
f-Av5, to infer B,' admissible?" This result, which confirmed an old
conjecture of Anderson and Belnap, establishes the weak completeness of
these and a number of related logics. In the present paper, some of whose
principal results were announced without proof in [21], we shall extend the
methods of past papers to prove both the admissibility of γ and, in a
reasonable sense, weak completeness for the first-order extension RQ of
R. In doing so, we replace the intuitively uninformative R-matrices of [20]
with the theory of DeMorgan monoids, which furnishes a surprisingly
smooth and natural algebraic semantics for R and, by extension, for RQ.

1. Furnishing RQ with a viable algebraic semantics and a proof of γ is no
unimportant task. In the first place, the Anderson-Belnap system R of
relevant implication is at the sentential level the most stable and interest-
ing of the relevant logics. R contains in exact and well-motivated ways both
the intuitionistic and the classical sentential calculi.1 Rj, the implicational
fragment of R,2 is the oldest of the relevant logics, having been indepen-
dently investigated twenty years ago by Moh-Shaw-Kwei and by Church in
important papers, which provide interesting deductive-methodological mo-
tivation (A relevantly implies B only if A is used in some deduction of B).3

1. An exact translation of the Curry system HD into R, and hence of the intuition-
istic sentential calculus, is presented in [18]; cf. [4] and [17]. In &, v, -, R
contains all classical tautologies; cf. [6] and also [1].

2. In unpublished work Meyer has proved that R is a conservative extension of Rj
when the latter is axiomatized as by Church in [10]. This settles an open ques-
tion for R of the sort raised by Anderson for E and Ej in [2]. Cf. also Prawitz's
[24].

3. Cf. [10] and [22].
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Though the analogues of truth-functional connectives that appear in
Church's paper were highly artificial,4 it turns out that the Anderson-
Belnap addition of strong and natural axioms governing &, v, and - does not
upset these deductive-methodological insights into the logic of a relevant —>.
Anderson and Belnap provide furthermore for the full system R motivation
of a semantic kind, of which the crudest but most memorable result is that
it is not provable that A relevantly implies B when A and B fail to share a
variable.5

Not only does R have what it needs to be a prima facie candidate for
the analysis of the notion of logical relevance, it does not have what it does
not need. In particular, it is free of the cumbersome Lewis-style theory of
modality of its sister system E of entailment, a slightly weaker system; it
is free also of the fallacies of relevance of the slightly stronger Dunn
system R-mingle.6 Among the relevant logics, it is accordingly R that
entices us to take the Goldilocks view—it appears to be just right.

For all of its motivation, however, R is but a sentential logic and is
hence inadequate to many of the purposes for which we want formalized
logics. Its extension to the quantificational system RQ is straightforward,
however, if one follows Anderson and Belnap in adding quantificational
axioms which directly generalize the principles they have laid down for
truth-functions. It turns out, as Anderson and Belnap have established in a
series of papers and reported again in [3], that there is no loss of
motivation either on the deduction-theoretic or on the semantic side in the
passage to RQ.

Anderson-Belnap style intuitive motivation is one thing, however, and
semantical viability and practical utility another. The latter, for reasons
given in [2], [3], and [20], is dependent upon the admissibility of y. For if γ
is not admissible in RQ, one can reproduce the argument for (1) of [20] to
show that there is a sentence of RQ which is (a) unprovable, but (b) whose
negation, if added to RQ as a new non-logical axiom, leads to incon-
sistency.7 More simply—if γ fails some sentence which has no counter-
example is nonetheless logically invalid according to RQ. Fortunately, as

4. Something close to Church's analogue of & will be introduced by D2 below; that
connective o, which may be understood alternatively as a consistency operator
or as an intensional analogue of conjunction, plays as interesting role a propos
of our algebraic semantics to come, o is not, however, to be confused with the
genuinely truth-functional connective & of RQ.

5. See [7].

6. For an algebraic study of R-mingle, see [11]; the system results from R by
adding A —- (A -+ A ) as a new axiom scheme. While sharing many features with
R, R-mingle permits proof of A -* B whenever both A and B are theorems of
the system. See also [19].

7. The converse does not hold; i(p v Ίp) is intuitionistically inconsistent though
p v π p is (notoriously) unprovable; yet y holds. The reader is not to infer,
either from present or past remarks, that we do not dig intuition or its ism.
How could we fail to, since R captures the one and contains the other?
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we show, this does not happen. On the side of practical utility, the possible

pay-off on our proof of γ for RQ is a subject we defer to the end of this

paper.

2. The syntax of RQ is ordinary. We use ζa', ζb', and 'c' for real

variables, 'x9, (y', and (z' for apparent variables (only the latter being

accessible to quantifiers), and assume denumerable stocks of each. We use
(Fm, (G"9, Ήn' for n-ary predicate symbols, and assume denumerable

stocks for every n from 0 on. We proceed to recursive definitions of terms

and formulas.

(i) A variable, real or apparent, is a term,

(ii) The sentential constant f is a formula,

(iii) If tu . . . , tn are terms and Fn is an n-ary predicate symbol,

Fntι . . . ^ is an atomic formula,

(iv) If x is an apparent variable and A and B are formulas, (x)A,

(A&B),(AvB), and (Λ -» B) are formulas,

(v) Nothing is a term or a formula except in accordance with (i)-(iv).

An occurrence of a term t in a formula A is a free occurrence of t in A

if it is not part of a subformula of A of the form (t)B, and a term t occurs

free in a formula A if there is a free occurrence of/ in A, We use Ά(t/u)'

for the result of substituting the term t at each free occurrence of the term

u in the formula A, provided that there are no free occurrences of u in A in

a context (t)B; otherwise the notation is undefined.

Let χu . . . ,xn be all the free apparent variables of the formula A;

then (xj . . . (xn)A is a closure of A. A sentence of RQ is a formula in

which no apparent variables occur free.

Introduced by definition are the following:8

DO. A=rf, A — f

D l . A<r^B=df (A-> B) &(B-^A)

D2. AoB^dj A-^ΊB

D3. 3xA=df{x)Ά

D4. t = r f / ϊ

As axioms of RQ, take all closures of formulas of the following kinds:

Al. (A — B) — ((B -> C) -» (A — O)

A2. A - ( ( A - £ ) - £ )

A3. A& 5 — A

A4. A&B-+B

8. We drop henceforth outermost parentheses, rank the binary connectives &, o, v,
—, •*-* in order of increasing scope, and in the case of associative connectives
(&, o, v) leave the reader free to put in parentheses where he thinks they should
go. Our formulation of RQ differs from that of [8] chiefly on points of elegance;
Belnap presented RQ as an extension of the first-order version EQ of E, and so
he carries along into RQ axioms reflecting the E-style modal distinctions.
Naturally the formulations are equivalent.
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A5. (A — B) & (A -> C) -> (A -> B & C)
Aβ. A->AvB
A7. B — AvB
A8. (A - C) & (5 - C) - (Av5 - C)
A9. A & ( 5 v C ) - A & £vA & C
A10. A —A
All. ( A - A ) - A
A12. (x)A — A(0c), where t is a term
A13. (ΛΓ)(A -> 5) - ((*)A - (#)£)

A14. A —* (#)A, where x is not free in A
A15. (x)(A v B) -* (Av (x)B), where x is not free in A
A16. (x)A & (#)£ - (*)(A & 5)

The rules of RQ are modus ponens (for —>) and adjunction (for &).
In proving the weak completeness of RQ, we shall at one point adapt the

argument of Henkin's [14] by adding more real variables. (This can be
avoided by using the techniques of Leblanc's [15], but since our adaptation
involves new tricks we opt for familiarity vis a vis the old ones.) So we
call the result of adding at most denumerably many fresh real variables
(and accordingly inflating the supply of terms, formulas, sentences, and
logical axioms) a linguistic extension of RQ.

Our next subject will be theories. Since we wish to develop our
algebraic semantics independently for the sentential part R of RQ, we shall
for certain purposes ignore the quantificational axioms A12-A16. An
R-theory (RQ-theory) T is any set of sentences of RQ (or a linguistic
extension thereof) which contains all instances of Al-All (all closures of
instances of A1-A16) and which is closed under adjunction and modus
ponens. Where T is an R-theory (RQ-theory) and Ae T, we write f̂ A; we
say that A is derivable from the set S of sentences in the theory T, in
symbols S ^ A, if A is a member of every R-theory (RQ-theory) which
contains Su Γ.

Let T be an R-theory (RQ-theory). T is consistent if not ^f. T is
prime if and only if whenever ^A v B, ^A or ^B. T is rich if and only if
whenever ^fA(a/x) for every real variable a of T, hjr{χ)A. T is normal it
and only if T is consistent and prime (and T is completely normal if T is
consistent, primie, and rich). This extends the terminology of [20].

3. In this section we present our semantics for R, which is the proposi-
tional part of our semantics for RQ. Essential is the notion of a DeMorgan
monoid, which plays for the relevant logics the part played classically by
Boolean algebras and intuitionistically by pseudo-Boolean algebras.9

Let Φ be a quadruple (D, , -, v), where D is a non-empty set and - is a

9. Much of this section comes from Dunn's dissertation (University of Pittsburgh,
1966), which may be consulted for points of detail. Related material appears in
Meyer's dissertation (University of Pittsburgh, 1966). The central Theorem 2,
however, is new here; its proof is by adaptation of the techniques of [20].
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unary and and v are binary operations on D. We sometimes omit '•' in

favor of simple juxtaposition and enter the following definitions for all a

and b in D.

dO. a λb =df -(-a v -b)

d l . a :b =df -{-a -b)

d 2 . a2 = a .a

d3. a^biffavb=b

Then Φ is a DeMorgan monoid provided that the following postulates hold,

for all elements a, b, c e D and for an element 1 e D.

pO. (ab)c = a(bc)

pi . ab = ba

p2. la = a

p3. av b = b v a

p4. (avb)vc = av(bvc)

p 5 . a = a v (βΛ b)

p6. α Λ (b v c) = (aAb) v (a Λ c)

p7. --# = α

p8. α(6 v c) = abv ac

p9. (b:a)a^b

plO. α ^ α 2

A word about these postulates is in order. pθ-p2 are the postulates for a

commutative monoid. p3-p5 are lattice postulates; their duals are de-

livered using p7 and dO, making D a lattice with respect to Λ and v, which

is distributive by p6. (Structures satisfying dO, d3, and p3-p7 are called

DeMorgan lattices in [23], suggesting the name for the present structures.)

p8 makes D lattice-ordered, implying in particular (cf. [9]) that when

b ^ c, ab ^ ac. p9 suffices with previous postulates to make : an operation

of residuation in the sense of [9] and [13]; that is, b :a turns out to be the

least upper bound of all elements c such that ac ^ b in a DeMorgan monoid.

Finally, the square-increasing postulate plO implies with p8 that D shall be

exponentially ordered, in the sense pk — pn for 0 < k — n, on obvious

definitions.

We enter two definitions and a lemma to show that an algebraist

speaking DeMorganese is soul brother to the logician talking R. In the

DeMorgan monoid Φ, for all a, be D, let

d4. a =Φ b ~d{ b : a

d5. a<==>b=df ( f l = Φ δ ) Λ ( 6 θ α ) 1 0

Lemma 1. In every DeMorgan monoid Φ = (D, , -, v), the following hold for

all a, b, ce D.

10. a <=> b might be equivalently defined as (a =$> b) - (b => a). Similarly, D2 might
be equivalently recast in RQ with o for &.



102 R. K. MEYER, J. M. DUNN and H. LEBLANC

t l . a ^ b iff -b ^ -a
t2. ac ^ b iff c ^ a=Φ>b
t3. 1 ^a==>b iff a ^ b
t4. 1 < «4Φ5 iffa= b
t5. a = l=^a
t6. -a = α = > - l
t7. αfr = -(α=>-&)

Proo/. Ad t l . avb= biff -(αv6) = -ft iff -(--αv--6) = -6 (by p7) iff -a A -b =
-6 (by dO) iff -6 — -α (by lattice properties). Ad t2. Suppose c ^a=^b.
By the lattice-ordering postulate p8, ac — a(a==>b), whence by p9 (and d4),
ac —b. Suppose ac — b. By t l -b — -{ac) and by p8, p9, etc., a - b ^ a -
(ac) ^ -c, whence by t l again, double negation, dl and d4 c ^a=>b. t3 is
immediate from t2, since 1 is the identity. t4-t7 are trivial and are left to
the reader.

A filter in a DeMorgan monoid Φ = (D, ., -, v) is a filter in the lattice-
theoretic sense—i.e., F is a filter in Φ if and only if F c Z), F j φ and
a Abe F iff ae F and 5 e F . If the identity 1 is a member of the filter F in Φ,
F is a l-filter.

In the algebraic development of classical and intuitionist logics, filters
in general correspond to theories; for the relevant logics, 1-filters play
that role. (Filters in general, not uninterestingly, correspond to sets of
sentences closed under logical consequence; these need not be R-theories,
however, since relevance restrictions do not permit logical axioms to be
consequences of arbitrary sentences. Only 1-filters are of further interest
for present purposes.) We introduce for 1-filters terminology paralleling
that introduced in [2] for theories. Let F be a l-filter in the DeMorgan
monoid Φ. F is consistent if and only if - l / F . F is prime if and only if
whenever avbeF,aeF or beF. F is normal if and only if F is both
consistent and prime.

In each DeMorgan monoid, there is a smallest l-filter—namely the
principal filter determined by 1, consisting of just those monoid elements a
such that 1 — a; we call this, for short, the P-filter, and extend our
terminology further by calling the DeMorgan monoid Φ itself consistent,
prime, or normal just in case its P-filter is respectively consistent,
prime, or normal.

At this point, we can make contact with some previously developed
ideas in the algebraic semantics of the relevant logics. Belnap, in [8],
provided such a semantics for the first-degree fragment of R and of E, and
by extension for RQ and the quantificational version EQ of E. The key
notion was that of an intensionally complemented distributive lattice with
truth-filter, which is a pair (9M, F), where 3JI is a DeMorgan lattice
(cf. p. 101) and F is a filter in 9Jί which contains exactly one of a, -a for each
lattice element a. (F is called a truth-filter in [8] because the idea is that
lattice elements correspond to propositions and that exactly one of each
proposition and its negation is true.) Belnap also introduced the notion of
an implicatiυe extension of one of his lattices, a triple (2W, F, =Φ>), near
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enough, where <9K, F) is an intensionally complemented distributive lattice
with truth-filter and => is a binary operation on the underlying set M. Let
us call such a creature a Belnap algebra provided that in the sense of [8] it
satisfies the axioms and rules of R. Then when a pair (Φ, F) is such that Φ
is a DeMorgan monoid and F is a 1-filter in Φ, a sufficient and necessary
condition that (Φ, F) be a Belnap algebra is that F be normal (where =Φ> is
defined by d4). The crucial point is that, first, if F is normal we may use
plO to show 1 ^av-a and hence by primeness aeF or -a e F, and hence
also by t l a A -a — - 1 , so that because F is consistent not both aeF and
-aeF; second, if (Φ, F) is a Belnap algebra, then the 1-filter F cannot
contain -1 and is hence consistent; moreover F contains one each of the
pairs a, -a and b, -b but cannot contain all three of -a, -b, a vb on pain of
inconsistency; so F is prime and hence normal. Since Belnap conjectures
in [8] that Belnap algebras form the key to the semantics of R, we see that
this will be true if normal DeMorgan monoids suffice for the semantics of
R, since the P -filter will serve in this case to do the job of Belnap's
truth-filters.

In relating our DeMorganist and our logician, we play familiar tricks.
The crucial one is to interpret each sentence of our formal language as
making a statement about DeMorgan monoids. Success (at the sentential
level) is measured as follows: R is semantically consistent provided that
each sentence of RQ which belongs to all R-theories (and is hence derivable
from Al-All alone) is, as interpreted, true of all DeMorgan monoids; R is
semantically complete if each sentence of RQ true as interpreted of all
DeMorgan monoids belongs to all R-theories. We shall prove success on
both counts.

Let Φ = (D, ., -, v) be a DeMorgan monoid. By an R-interpretation in
Φ, we mean a function / defined on the sentences of RQ with values in A
subject to the following conditions:

(i) I(A - B) =IA==>IB
(ii) I(A &B) = IAΛIB

(Hi) I(AvB) =IAvIB
(iv) /(f) = -1

Lemma 1 may be applied to show that defined connectives of RQ correspond
to similar DeMorgan operations—i.e.,

(v) /(t) = 1
(vi) I(A oB)=IA.IB

(vii) I(A*-*B) = /A<=>/£

A DeMorgan monoid, considered as the range of an interpretation of R, may
be viewed as a system of propositions.1 1 In such a system, our task is to
separate the good ones from the bad ones, in order to carry out our
program. A fortuitous choice is to count a monoid element a true if and

11. Cf. [8] and the Anderson-Belnap papers cited there.
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only if 1 ^ a, and false if and only if a — - I . 1 2 So we count A true {false) on
the R-interpretation / in the DeMorgan monoid Φ if and only if I(A) (I(A))
belongs to the P-filter in Φ. Similarly, A is R-valid if and only if A is true
on all R-interpretations / in all DeMorgan monoids Φ.

Theorem 1. Let A be a sentence of RQ. A is R-valid if and only if\ for all

R-theories T, b^A.

Proof. Suppose first ι-̂ A for all R-theories T. As noted above, this means
that there is a proof of A from instances of Al-All, adjunction, and modus
ponens. Show by induction on the length of that proof that A is R-valid,
verifying that the axioms are R-valid and that the rules preserve
R-validity.

This proves the consistency part of the theorem. To prove the
completeness half, define for each R-theory T its Lindenbaum algebra $*
in the following way. For each sentence A of RQ, let A* be the set of
sentences B of RQ such that \-rfA^->B. Let Γ* be the class of all such A*
and define for all A*, B* e Γ* the DeMorgan monoid operations thus:
A* . £* = (A o £)*, -A* - A*, A* v J5* = (AvB)*. It is readily verified, ap-
plying mutatis mutandis the techniques of [25], that $* = (Γ*, ., -, v) is a
DeMorgan monoid.

To finish the proof of Theorem 1, suppose now that not ^ψB for some
R-theory T. For each sentence A of T, let A* be as above and let I(A) = A*.
It is readily verified that / is an R-interpretation in the Lindenbaum algebra
£* of T and that hfA if and only if 1 = t* ^ A* in $*. So in particular B is
not true on / in $*. Contraposing and generalizing, for all sentences A of
RQ, if A belongs to the class of R-valid sentences, A belongs to all
R-theories, ending the proof.

Theorem 1 may be viewed as a specialization to our more natural
semantics for R of (i)-(ii)of Theorem 2 of [20]. But just as in [20], there is
a crucial gap between the kind of completeness guaranteed by the theorem
and what is required. For in suggesting that the reader picture a DeMorgan
monoid as a system of propositions, we nonetheless characterized truth
and falsity in a way that will not do on most intuitions; there are DeMorgan
monoids in which certain elements are both true and false, or neither true
nor false. Believing, as some of us do, that both inconsistent and incom-
plete theories have their uses, and that accordingly there maybe reasons

12. It was with this fortuitous choice in mind that we introduced the sentential con-
stant t (intuitively, for an arbitrary RQ-theory T the conjunction of the theorems
of T) into the syntax and the corresponding monoid identity 1 into the semantics;
dual remarks apply to f and - 1 . Both syntax and semantics can be handled
without these frills; cf. [171, P 196. (Besides these formal reasons for liking
t and its kin, our colleague Nino Cocchiarella supplies another; our t may be
correlated with what he calls the world-proposition and which in his view no
correct ontology can do without. Having come ourselves to like t on shallow
formal grounds, we rejoice to have discovered that its utility is no accident but
is grounded in the Nature of Things.)
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not to bifurcate the class of propositions into just the true ones and the
false ones, still R would be a strange system if it required us to postulate
that some propositions are both, or neither, of true, false.

This is incompatible with the Goldilock's view expressed above; what is
the case, happily, is that if we stick to DeMorgan monoids in which exactly
one of a, -a is true for all a, we can still reject all R-invalid sentences. In
making contact with Belnap's semantics for first-degree R, we have
already noted that the DeMorgan monoids meeting this condition are just
the normal ones. Hence let us call a sentence A of RQ normally R-valid if
and only if A is true on all interpretations in normal DeMorgan monoids.

Theorem 2. For all sentences A of RQ, A is R-valid if and only if A is
normally R-valid.

Observation. We adapt rather than apply directly the technique of [20] in
order to render its extension to RQ uncluttered.

Proof. If A is R-valid it is trivially normally R-valid. Suppose then that A
is not R-valid. Then there is a DeMorgan monoid Φ = (D, ., -, v) and an
R-interpretation / such that A is not true on / in Φ. We show how to
transform Φ into a normal DeMorgan monoid Φ* and / into an interpretation
/* such that A is not true, and hence by normality false, on /*. There are
two stages in the transformation, which we call respectively priming and
splitting.

Stage 1. We trade in Φ for a prime DeMorgan monoid Φ f . We use two
facts. First, by the Stone prime filter theorem (cf. [29]), if F is a filter in
Φ and a /F, there is a prime filter Ff such that F c F' c D and a{ F\ In
particular, since A is not true on I, I{A)fίPy where P = {b: 1 ^ b} (i.e., P is
the P-filter in Φ). So there is a prime filter Pr such that PcPτ and
KA)flP'.

P' is a 1-filter, since P is. This brings us to our second fact, namely
that 1-filters determine homomorphisms and hence quotient monoids in the
theory of DeMorgan monoids. (This fact is already reflected in the proof of
Theorem 1; here we admit it.) Let F be a 1-filter in Φ, and for all cie D let
ar = {b: bφφae F}. Let Df be the set of all such a\ and define operations
.', -', vf on D' by setting, for all br, c1 e Dr, br .' c' = (b.c)', ~(b') = (-b)r

bτ v' c1 = (bv c)τ. There is then no difficulty in verifying that (i) these
operations are well-defined, (ii) φ / F = (Dr, . ', - ', v'} is a DeMorgan mon-
oid, and (iii) ' is a homomorphism from Φ onto Φ/F, in the sense that '
preserves monoid operations and that V is the identity of the quotient
monoid Φ/F. 1 3

We conclude stage 1 by setting Φ f = Φ / P f , where P r is as above. Define
an R-interpretation in Φ' by setting Γ(B) = (l(B))r for all sentences B of RQ.

13. Thus among other things a homomorphism from one DeMorgan monoid to
another is a lattice-homomorphίsm (cf. [9]) and accordingly in particular pre-
serves lattice order; i.e., if a ^ b, h(a) <h(b). We note also that of course the
identity in a DeMorgan monoid, as in any commutative monoid, is unique.



106 R. K. MEYER, J. M. DUNN and H. LEBLANC

Noting that a' - bf in Φf if and only if a=Φbe Pf we conclude in particular

that Γ ^/'(A)—i.e.,-if A is not R-valid, there is an R-interpretation in a

prime DeMorgan monoid on which A is not true.

Stage 2. We may at this stage already assume (for the typographer's

sake) that Φ = (D, ., -, v) is a prime DeMorgan monoid in which A is not

true on the interpretation /. What we show now is that there is a normal

DeMorgan monoid Φ* of which Φ is a homomorphic image. The construc-

tion of Φ* will enable us to construct the crucial interpretation /* on which

A is not true.

Let N be the set of elements of D which are both true and false, i.e.,

N = {a: 1 — a &, a — -l}. (If N is empty, Φ is already normal.) Let -N be a

set disjoint from D and in 1-1 correspondence with N; let ^ b e a bijection

from N onto -N. Define

(i) D*=DΌ-N.

(ii) h: D* — D is a function defined by cases thus:

(a) if ae D, h(a) = a;

(b) if aeN, h(g{cή) = a.

(iii) -* is a unary operation on D* defined thus:

(a) tf aeN, -*a = g(-a);

(b) if ae D* - N, -*a = -h(a).

(iv) .* is a binary operation on D* defined thus:

(a) if h(a) . h(b) eD - N, a.*b = h(a). h(b);

(b) if h{a). h(b) e N, then

(1) i f b o t h a e N a n d beN, a .* b = a.b;

( 2 ) if a^Nor b^N, a .* b = g(h{a) . h(b)).

(v) v* is a binary operation on £>* defined thus:

(a) if h(a)vh(b)eD - N, av*b = h(a)vh(b);

(b) if h(a)vh{b)eN, then

(1) iίae-N and be-N,av*b = g(h(a)v h(b));

(2) if αe D and be -N, 1 ^ α i n ϋ ) , α v * δ = 5v*α = g{avh(b));

(3) otherwise αv*5 = δv*α = Λ(α) v/?(δ).

Let Φ* = (£>*, .*, -*, v*) be defined by (i)-(v). Straightforward verification

establishes the following points:14

(vi) Φ* is a DeMorgan monoid.

(vii) The identity 1 of Φ is the identity of Φ*, and the P-filter P* of

elements greater than or equal to 1 in Φ* is normal; hence by

definition Φ* is normal,

(viii) The function h from D* to D defined in (ii) is a homomorphism from

Φ* onto Φ.

We finish the proof by rejecting the R-invalid formula A in Φ*. Where / is

the R-interpretation on which A is not true in Φ, let /* be a function defined

14. The reader interested in further details may consult corresponding sections of
[25] and of Dunn, op. cit.
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recursively on all sentences of RQ thus: if B is atomic or of the form

(x)C, I(B) = I*(B); otherwise I*(C - D) = -*(/*(C) .* -*/*(£)), I*(C vD) =

I*{C) v*/*(Z>), /*(f) = -*1 , and I*{C & D) = /*(C) Λ*/*(D), Λ* defined on £>* by

dO from v* and -* . Straightforward induction shows for all sentences B of

RQ that ft(/*(A)) = /(A). But 1 ^/(A) in Φ; since Λ by (viii) is a homomor-

phism, 1 ^ /*(A) in Φ*, since lattice homomorphisms preserve order. This

completes the proof of Theorem 2.

We call the technique of stage 2 splitting because its effect is to

provide for each element of Φ which is both true and false one counterpart

in Φ* which is definitely true and another which is definitely false. We

enclose a couple of snapshots of DeMorgan monoids (order from bottom to

top, value of . not indicated) to show its effect.

BEFORE AFTER BEFORE AFTER

a f f a fa fa

-a I -*1 b, - b < ί > c,-c b fςX> c

1 -*a Y 1 -*5<^P>-*c
• -a ^y -*-l

* -*α

That the rule γ is admissible for R-valid sentences (i.e., at the

sentential level) is an easy consequence of Theorem 2. Let A be R-valid.

If B is invalid, B is by Theorem 2 false in some normal DeMorgan monoid

on an R-interpretation /; by normality A v B is false on / and hence also is

R-invalid. Contraposing and generalizing, if A and A v B are both R-valid,

so also is B. This concludes our remarks about the theory of DeMorgan

monoids and the role they play in developing at the sentential level an

algebraic semantics for relevant implication.

4. In this section we extend the ideas developed above to full-blooded

relevant quantification theory. There are at least two ways to do this, of

which we opt for the one which makes it easiest to deliver our promised

results. The way we do not choose is to complicate the algebra by

providing an operation corresponding to the universal quantifier as the

DeMorgan operations correspond to sentential connectives. What we do

rather is to leave the algebra as is and constrict instead the notion of what

counts as an interpretation.

Let L be the set of sentences of RQ. Let Φ be a DeMorgan monoid and

let P be its P-filter (i.e., the set of its true elements). By an RQ-

interpretation in Φ, we mean a function / defined on L with values in D,

subject to conditions (i)-(iv) of the definition of an R-interpretation and (1)-

(2) below.

(1) I((x)A) e P if and only if I(A(a/x)) e P for all real variables a of I .

(2) If the sentence A of RQ is of one of the kinds A12-A16,1 (A) e P.

The effect of (1) is that we opt for a substitution interpretation of the

quantifiers in the sense discussed in [16], [12], [15], [27] and elsewhere.
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That is, we do not provide in our semantics for domains of objects over
which our quantifiers are to range, but count instead a general statement
true provided that all its instances are true. This is rather more a matter
of convenience than of substance, since the adaptation to RQ of the more
customary model-theoretic semantics would proceed along similar lines
and lead to similar results. 1 5 (2) reflects the decision announced at the
outset; we avoid the technicalities of algebraic analysis of quantification by
requiring of an RQ-interpretation simply that it make all logical truths
true and that it respect the rules of modus ponens and adjunction. This is
accomplished as follows. That the rules are respected by an RQ-interpre-
tation / in the sense that the conclusion of a rule is true on /whenever its
premisses are is secured because 3) is a DeMorgan monoid; so is the truth
on /of sentences of the kind Al-All; (2) takes care of sentences A12-A16.
What remains to be shown is that closures of arbitrary formulas A1-A16
are true on /, and for this we use (1) to argue inductively; the induction is
on the number of prefixed universal quantifiers.

Thus an RQ-interpretation /is simply an R-interpretation which shows
quantifiers the respect they deserve. So truth on /is as above. And A is
RQ-valid (normally RQ-valid) if and only if A is true on all RQ-interpreta-
tions in all DeMorgan monoids (normal DeMorgan monoids). We turn now
to the principal task of this section, which is to extend to RQ the main
results of 3.

Writing ^ Q A if and only if A is a theorem of RQ itself and noting the
equivalence of ^RQA and H-fA for all RQ-theories T (i.e., that RQ is the
smallest RQ-theory), we observe that semantic consistency remains
trivial.

Lemma 2. Suppose ^ Q / 1 . Then A is RQ-valid.

Proof. It suffices to observe that an arbitrary RQ-interpretation / in a
DeMorgan monoid Φ makes the axioms of RQ true and that truth on / is
preserved under modus ponens and adjunction.

Lemma 3. Suppose ^RQA. Then A is normally RQ-valid.

Proof. Immediate from Lemma 2.

To prove semantic completeness for RQ is more difficult. Our
strategy is as follows. Assume that A is a non-theorem of RQ. In the
manner of Henkin's completeness proof we construct a rich and prime
RQ-theory such that not h^A. Forming the Lindenbaum algebra for T as

15. Were we interested in strong rather than weak completeness theorems for RQ,
some complication of the present semantics would be in order. Cf. [15], p. 233,
for an appropriate kind of complication. But whereas what counts classically as
weak completeness can be rendered in the relevant logics either as validity or
normal validity of just the provable sentences, since the notions coincide in
extension, strong completeness either holds or fails relevantly depending upon
which among equivalent classical notions one takes it to be. The choice is
tedious without being illuminating; see the last sentence of the paper.
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before, we obtain a prime DeMorgan monoid Φ and an interpretation / such
that A is not true on /; this shows that A is not RQ-valid. We then employ
the splitting technique of the proof of Theorem 2 to turn Φ into a normal
DeMorgan monoid Φ* and / into an interpretation /* on which A is false. So
as explained above A remains falsifiable on normal semantic intuitions,
from which we derive as a corollary a proof of γ for RQ.

Since the first part of our proof will be deduction-theoretic, we
introduce a definition and develop a pair of syntactic facts that will be
needed.

D5. A^^A&t-ΰ. 1 6

Lemma 4. (Deduction theorem for RQ.) Let T be an RQ-theory, S a set of
sentences and A a sentence of RQ or a linguistic extension thereof. Then

SU {A} ϊ-τB if and only ifS^jA^B.

Proof. The usual proof of the deduction theorem suffices (as e.g. in [26]),
noting that essential formulas involving ^ as defined by D5 are theorems
of RQ.

Lemma 5. Let T be an RQ-theory. Let S be a set of sentences and A (a/x)
and B1} . . . , Bn be sentences of RQ or a linguistic extension thereof. Let
the real variable a be foreign to S, T, and Blf . . . , Bn. Then

(i) S hj, A(a/x) if and only if S hf (X)A;

(ii) S \j Bι v . . . v Bn vA(a/x) if and only if S ^ ^ v . . .v5 t t v (x)A.

Proof. Ad (i). If A(a/x) belongs to every RQ-theory which contains S u Γ ,
there is a finite sequence d9 . . . , Cp of sentences of a linguistic extension
of RQ such that each C, is a logical axiom, a member of S u T, or a
consequence of predecessors by modus ponens or adjunction. Rewrite
bound variables so that x does not occur in Cl9 . . . , Cp and define a
sequence C/, . . . , Cp

f by letting C, f = C* if a does not occur in C, and
letting Ci = (x)B if C, is of the form B(a/x), where x occurs free in B.
Using the fact that closures of formulas of the form of logical axioms are
logical axioms, show by induction that S \~τ C, ' for each i from 1 to p\ in
particular, since Cp

r = (ΛΓ)A, S h[.(χ)A, which was to be shown. The con-
verse is trivial.

Ad (ii). Use (i) and the confinement axiom A15. We remark that (ii) of
Lemma 5, and hence the confinement axiom, άs an essential ingredient in
our proof that RQ has a normal semantics and hence that γ holds for it.
This is not surprising in view of the importance of the distribution axiom
A9, of which A15 is a kind of infinite analogue, for the proof of γ in the
sentential case, on which we remarked in [20]. Since the presence of the
intuitionistically invalid A15 causes the translation of [18] to become
inexact at the level of predicate logic, however, it would be interesting to

16. D is an enthymematic implication in the sense of [18].
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consider dropping A15 in order to preserve that translation. Question-
does γ hold or fail if A15 is dropped?

Continuing with A15 (which is by the way used in the Anderson-Belnap
proof that the arrow-free fragment of RQ is the classical first-order
functional calculus, cf. [5], [28]), we are ready for a theorem.

Theorem 3. Let T be an RQ-theory, and let A be a sentence in the
vocabulary of T such that not ^ A . Then there is an RQ-theory T1 such
that (i) Γ c Γ', (ii) T' is prime, (iii) Tr is rich, and (iv) not ^ ,A.

Observation. Theorem 3 is a generalization of the classical theorem which
permits us to extend any consistent theory to a maximally consistent
theory. But whereas classically this result implies Theorem 3 directly, the
absence in RQ of implicational paradoxes blocks the classical argument.
Accordingly we argue directly for Theorem 3, noting that our eventual
theory Tr is not maximally consistent but maximally A-free; to get a theory
which is both consistent and maximally A-free requires not only Theorem 3
but also application of the splitting technique; cf. the end of the paper.

Proof. We are going to build a prime and rich extension Tr of T which fails
to contain A. We shall do so by building an infinite sequence of infinite
sequences of ever larger theories; the union of which will be the desired
Γ f. Again, generalization of simple classical techniques for assuring
richness is blocked; what this involves in practice is that at each stage i of
the construction we shall define a set Ri of rejected sentences no disjunc-
tion of which will be permitted in any of the theories we build.

We accordingly define, for each natural number i from 0 on, a set Vι
of real variables, the set Li of sentences of a linguistic extension of RQ
built up from V{ by the formation rules of 2, an RQ-theory Ti, and a
rejection set Ri. Since Li will be in each case denumerable we assume it
ordered by the positive integers and call its ordering alphabetical. Using
the alphabetical order of I , we define for fixed i and for every natural
number j an instantial variable a^, a critical sentence A^ and an auxiliary
RQ-theory T(j.

Let N be the set of natural numbers. We begin by setting Vo = V, where
V is the set of real variables which occur in sentences of T, To = T, and
Ro = {A}. The instantial variables αf ; we require to be distinct from each

other and from all members of Vo, and we define Vί+ί to be V{ U U ; fN {«,-;•}•
This determines Viy and hence Liy for each natural number i.

Tί+1 is defined using the auxiliary RQ-theories T^ —specifically,

Ti+i = U ίN^Ί The critical sentence A, ; is the (j+ l)th sentence of Lt in
alphabetical order. For each Li and subset S of Liy let [S, Li] be the
smallest RQ-theory H such that S c H c Li. We then define the auxiliary
RQ-theories Γ^ inductively as follows. For fixed i, Ti0 = [Γ,-, Z.,-]. Thus
except for the case i = 0, Ti0 results from T{ by increasing the vocabulary
and closing T{ under logical consequence in the expanded vocabulary;
c l e a r l y TίQ i s a n inessential extension of T{ i n t h e s e n s e Tion Li_1= T{.

Supposing Γt ; defined, we define 7\ f/ + 1 by cases as follows:
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(i) If for some disjunction B of members of Ri, {Ajj}\-B in Γz ; , then

(ii) Otherwise Tiιj+ι = T{j U {Aif}.

We turn to the important rejection sets R{. The central idea is that
whenever at any stage in our theory-building we must leave out a sentence
of the form (x)B, we want to make sure that at some point we also leave out
an instance B(a/x). Accordingly define the i-instance, for fixed i, of a
critical sentence At y of the form (x)B as B{a^/x), where x is free in B.
Call a sentence of Li_ι generally i-untenable provided that it is of the form
(x)B and that it does not belong to TV For each i from 1 on, let Q{ be the
set of i-1-instances of generally ^-untenable sentences. Finally, let Ri+1 =
Ri U Qi+i, for each i from 0 on.

Let V = UίfN-ί ή Γ f = L L N Γ * > β ' = UiVΛffli. We finish the proof of
Theorem 3 by showing that V is indeed an RQ-theory and that conditions
(i)-(iv) in the statement of the theorem hold.

To is an RQ-theory, and for each i from 1 on Γ, is the union of a chain
of RQ-theories; it is easy then to prove that each Tί is an RQ-theory, and,
repeating the argument, that Tτ is an RQ-theory.

We observe next that for each sentence B e Rr, B^Tr. Suppose for
reductio that there exists a Be Rτ Π Tr. Then there are least i, j such that
Be Ri Π 7); clearly Rj Π T{ = 0, so z < j . So there is a least integer k such
that Be Ri Π Tj-! k, i ^ j - 1. We distinguish two cases.

Case 1. k = 0.
1.1. i = j - I. i > 0, since Γo = Γoo. Since £ first shows up in #/, by

the leastness of i, B is the instance C(a/x) of a generally z-untenable
sentence (ΛΓ)C, where a is foreign to L -i Since l-C(a/.v) in Γ70, apply
Lemma 5 to show \-(x)C in Ti0. But as remarked Ti0 is an inessential
extension of Ttr, so (x)C e Γ7, contradicting its general z-untenability.

1.2. i< j - 1. But then 5 is in the vocabulary of Γy_i; since Γy_t 0 is
an inessential extension of Tj-l9 Be Tj.l9 contradicting the leastness of .

Case 2. k > 0. By (i) under the recursive definition of the Tin T^lιk =
Tj-i^-i if B ( a s a rejected sentence of Rj-ι) is derivable from the critical
sentence at this stage in the construction, which contradicts the leastness
of k. The cases being exhaustive and leading uniformly to contradiction, we
conclude that β ' Π Tf = 0.

In particular, this shows that since A e Ro c Rr, A / Tr, proving (iv) of
the theorem; moreover T = Γo c Γ f, proving (i). We next prove (ii) by
showing Tr prime.

Since Tr is the union of the 7\, clearly it will be prime if each of the Γ,
are prime, for each / from 1 on. (Since Γo c Tl9 we ignore it.) Let i be the
least positive integer such that T{ is not prime. Then \-BvC but neither
\~B nor hC in Γ, . Since both B and C are in L^l9 each is a critical
sentence in the construction of T{\ by definition of the Γ / _ 1 ; , we conclude
that there disjunctions D and E of members of Ri-ι such that D is derivable
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from B and E is derivable from C in T(. One sees easily, using the
disjunction and distribution axioms and the deduction theorem, that
B v C \ - D v E i n Γ , . B u t t h e n s i n c e B v C e T i y D v E e T { .

DvE is itself a disjunction of rejected sentences infl,--!, since both D
and E are. Let Bu . . . , Bj be the members of this disjunction which
belong to β t . 2 , if any, and let Cl9 . . . , Ck be the rest. Γ, is itself a union
of the Ti-i.j, and by the instructions for building the latter the bad disjunc-
tion must belong to 7\_1>0, since otherwise Γz _ l j ; would in violation of
orders newly contain a bad disjunction.

i Φ \, since only A belongs to Ro; by idempotence disjunction of A's
reduce to A; but we have proved Ae Tr. Accordingly each of C b . . . , C& is
the instance of an i-1 -untenable formula, say (x)Dl} . . . , (x)Dk respectively.
So since

\-Bxv. . .vBj v C x v . . .vCk in Γ, _ l j 0 ,

where each G\ contains an instantial variable distinct from the others and
from all variables of I z β l , we conclude by repeated application of Lemma 5
and elementary properties of disjunction,

H 5 i v . . . v 5 / V (x)D1 v . . . v (x)Dk in T^.

Since i > 1 was chosen as the least natural number such that Γ, is not
prime, Timml is prime. Accordingly one of Bl9 . . . , Bj, (x)Dly . . . , (#)Z>£
belongs to Ti_ί. But this is not the case: the Bp all belong to Rf and thus
as we have observed do not belong to Tr and a fortiori do not belong to Ti-X\
neither are the (x)Dq, being generally z-1-untenable, in 7VX. This refutes
the assumption that there is a Ti9 i > 0, which is not prime, and establishes
(ii) — T1 is prime.

We finish the proof of Theorem 3 by showing (iii) Tr is rich. In view of
A12 and the fact that Tr is an RQ-theory, it is plain that for every real
variable α, ^fB(a/x) whenever ^τ,{x)B. On the other hand, suppose it is
not the case that ^,(x)B. Then for some z, (x)B is generally i-untenable;
for that i, there is for some real variable a an instance B(a/x) e Rί c Rr;
since Rr Π Tr = 0, not ^,B(a/x). So ^ , (x)B if and only if ^τ,B(a/x) for
every real variable a of L f—i.e., Tτ is rich, which completes the proof.

Here is the next step of the program set out in the observation made
above.

Lemma 6. Suppose A is RQ-valid. Then ^QA,

Proof. Suppose it is not the case that ^RQA. By Theorem 3, for some
RQ-theory Γ', not \-τ, A, where Tτ is prime and rich. Let $ '* be the
Lindenbaum algebra of Tr, defined as for Theorem 1. Since the number of
real variables of T1 is denumerable and only a finite number of them occur
in A, clearly we may assume without loss of generality that the variables
and hence the sentences of the language of Tr are just those of RQ. Define
a function / from the set of sentences of RQ to $ r * by setting/(JB) = 5 * for
each sentence B, where B* = {C: ^,B<r-^c}. We now show that / is an
RQ-interpretation on which A is false in the prime DeMorgan monoid $ f *,
proving that A is not RQ-valid.
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Since V is an RQ-theory and a fortiori an R-theory, by the proof of
Theorem 1, %'* is a DeMorgan monoid in which A is not true on /; moreover
the primeness of %'* follows readily from that of Γ\ Trivially / is an
R-interpretation; what remains to be shown is that / satisfies (1) and (2)
definition making it an RQ-interpretation.

Let Pr be the P-filter of $ '*. We observe that ^T,B if and only if
1 = t* < B*. Since T' is rich, I((x)B) accordingly belongs to P ' if and only
if I(B(a/x))e Pr for all real variables a of RQ; so / satisfies (1); further-
more since all RQ-axioms are in Tr, their values under / are in Pr,
satisfying (2). So if not ^RQA, A is not RQ-valid. Contraposing we have the
lemma, ending its proof. We now apply the splitting technique to get
normality.

Lemma 7. Suppose A is normally RQ-valid. Then ^ Q A .

Proof. Suppose it is not the case that R̂Q A. By the proof of Lemma 6,
there is a prime DeMorgan monoid Φ and an RQ-interpretation / such that
A is not true on /. Split Φ as in stage 2 of the proof of Theorem 2 to obtain
a normal DeMorgan monoid Φ* = (D*, .*, -*, v*>, where Φ = (D, ., -, v).
Define a function from the set of sentences of RQ to D* by setting I*(B) =
I(B) for each atomic sentence B\ I*{C -> D) = /*(C)=>* /*(£>), /*(C & D) =
/*(C) Λ*/*(/)), J*(C VD)=I*(C)V*I*(D), and/*(f) = - * 1 , as before. I*(B(a/x))
having been defined for all real variables a of RQ, define I*((x)B) as
follows:

(i) N, -N, g, and h being as before if I{(x)B) e N and I*{B(a/x)) e -N for some
real variable a of RQ, I*((x)B) = g(I((x)B)).
(ii) Otherwise I*((x)B) = I((x)B).

/* having been defined on all sentences of RQ, we must now show it an
RQ-interpretation. Since by the proof of Theorem 2, Φ* is a normal
DeMorgan monoid and since /* is clearly an R-interpretation in Φ*, again
all that remains to be shown is that (1) and (2) of the definition of
RQ-interpretation hold.

To prove (2), we observe first that each of A12-A16 is of the form
B - C, that I*(B - C) = /*(£)==>* /*(C), and that /*(£)=#>* /*(C) is in the
P-filter of Φ* if and only if I*(B) ^* /*(C), by t3 of Lemma 1.

Let h be as in (i). By (viii) of Theorem 2, stage 2, h is a homomorphism
from D* onto D, and it is again evident that h(I*(B)) = I(B) for all sentences
B of RQ. So by definition of h, I*(B) = I(B), or I*(B) e -N and I*(B) = g(I(B)).
Further checking of definitions establishes that the order relation on Φ* is
an extension of that on Φ and that (cf. [20], p. 468)

(a) If a e N and b e ~N, a ^* b;
(b) Otherwise a ^ * b if and only if h(a) ^ h(b).

(The authors are themselves committed to the principle, "You check your
definitions and I'll check mine." The reader with similar prejudices is
invited to look again at the pictures above which will at least make it
plausible to him that we have done our part of the job.)
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Where B is a formula of RQ with at most one free apparent variable x,
an instance of B is any sentence B(a/x), where a is a real variable of RQ.
(Note that our definitions yield, where B is itself a sentence, B itself as
sole instance.) We are now going to construct for I((x)B) an analogue to the
truth-partition tables of [20]; we shall then use these tables to give us
essential information in verifying A12-A16 on /*, given the remarks of the
last paragraph. As in [20], we partition D into sets T, N, and F, where an
element a of D belongs (a) to T if and only if 1 ^ a and 1 φ -α, (b) to N if
and only if 1 — a and 1 — -α, and (c) to F if and only if 1 ^ a and 1 ^ -a.
((a)-(c) are exhaustive by the primeness of Φ and excluded middle, since
because 1 — a v -a, 1 ^ α or 1 ^ -α. We note that P = T u N, where P is the
P-filter of Φ, and we note for future reference that P is also the P-filter
of Φ*.)

The value under / of a sentence (x)B of RQ is partially determined by
the value under / as indicated in the following table:

Distribution of instances of B Value of (x)B under
under / / is in

(1) All instances are in T T u N
(2) Some instance is in N, none are in F N
(3) Some instance is in F F

Justification of (l)-(3) is as follows: since / is an RQ-interpretation,
I((x)B) e P if and only if / carries each instance of B into a member of P;
This justifies (1), (3), and partially justifies (2). To complete the justifica-
tion of (2), suppose for reductio that Br is an instance of B which belongs to
N under / but that I((x)B) e T. But then, since Br e N, 1 ^ -I(B') < -I((x)B)
(since A12 is valid on / and applying Lemma 1), which contradicts I((x)B) e T.

We note that after splitting the resultant monoid φ* is partitioned into
Γ, N, -N, and F, where T, N, and F are as defined for D and -N is as
above. (The reader may test these concepts by reference once more to the
sample monoids pictured above; in both cases ae Γ, -a = -*ae F, -leN,
and -*le -N.)

We can now construct a corresponding table for/*.

Distribution of instances of B Value of (x)B under
under I* /* is in

(1) All instances are in Γ T u N
(2) Some instance is in N, none are in F U -N N
(2r) Some instance is in -N, none are in F -N
(3) Some instance is in F F

Justification of the new table is immediate from the old table and the
definition of I*{(x)B)) note in particular that if all instances B{a/x) of B are
in T under /* they are also all in Γ under /, on our observation that
l(B(a/x)) = hU*(B(a/x))).

We return to our examination of the fate of A12-A16 under /*. The
observations made at the beginning of this proof reduce this to the problem
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of showing, for each axiom B^ C, that the case I*(B) e N, /*(C) e -N does
not arise; for otherwise, since / is on assumption an RQ-interpretation and
hence makes all RQ-axioms turn out true, by (b) above, since I(B) =
h(l*(B)) =2 h(j*(C)) = I(C), I*(B) ^* I*(C) and so 1 <* I*(B - C). Accordingly
we may finish the proof that each sentence A12-A16 is true on /* in Φ* by
assuming for reductio that its antecedent is in N and its consequent in -N
under /* and deriving in each case a contradiction. (Define = > * on Φ* by

a==>* b = -Ha .* -*6).)

Ad A12. Assume I*((x)A) e N but /*(A') e -N for an instance of A. This
contradicts (2r) of the table if no instance A" of A is in F; otherwise it
contradicts (3).

Ad A13. Suppose I*((x) (A -> B))eN, I*(((x)A — (x)B)) e -N. Then
/*((ΛΓ)A)=Φ* I*((X)B) e -N, whence by properties of h and Lemma 1,1((x)A) ^
I((x)B) but 7*((ΛΓ)A) £*I*((X)B); in view of (a) and (b) above, I*((x)A) e N but
I*((x)B) e -N. This yields the conclusion that all instances of A and A —> B
respectively are true on /* but that some instance of B is not true on/*,
consulting the table; since the R-interpretation/* respects modus ponens,
this is a contradiction.

Ad A14. If x is not free in A, 1 - I(A)<=#>I((x)A), whence by Lemma 1,
/(A) = I((x)A); since A is by definition the sole instance of A when x is not
free in A, we see that /*(A) = I*((x)A) by (i)-(ii) above, which makes
untenable the hypothesis that /*(A) e N and /*((AΓ)A) e -iV.

Ad A15. Suppose /*((#)(A v5)) e N, I*(A v (x)B) e -N, where # is not free
in A. By the table, all instances of AvB are true on /*; this means that
either the sentence A is true on /* or else for each instance Br of B, Br is
true on /*; the reason is that since $ is a prime DeMorgan monoid its
P-filter, which coincides with the P-filter of Φ*, is prime. If A is true on
/*, by A6 and the respect which /* shows for modus ponens, so is A v (x)B, a
contradiction; accordingly we assume instead that each instance Bf of B is
true on /*. But then by the table (x)B is true on /* also, whence so again is
A v (x)B true on/*, which is still a contradiction. This exhausts the cases
and establishes the truth on/* of A15.

Ad A16. Suppose I*((x)A & (x)B) e N but /*((#)(A & B)) e -N. By the
table, there is an instance A' & Br of A & B which is not true on /*. It
follows by the filterhood of P that at least one of A', B' is not true on/*,
whence by the table it follows that at least one of {x)A, (x)B is not true on
/*, whence by the filterhood of P once more it follows that (x)A & (x)B is
not true on /*, which is the desired contradiction.

We have now proved that if a sentence of RQ is of the form A12-A16, it
is true on/*. In constructing our tables we have by the way proved (1) of
the definition of RQ-interpretion as well, since inspection shows that if
each instance of a formula B of RQ with one free variable is true on /*, so
also is (x)B true on /*, and conversely. Given this information, and knowing
that all sentences A1-A16 are true on /*, it is clear that all closures of
formulas of the form A1-A16 are true on /*, and, since /* respects the
rules of modus ponens and adjunction, that all theorems of RQ are true on
the RQ-interpretation/*.
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We conclude the proof of the lemma by observing, for our selected
non-theorem A of RQ, that A is not true, and hence false, on /* in the
normal DeMorgan monoid Φ*. For suppose otherwise. Then 1 — */*(A).
But then since h is a homomorphism from Φ* onto Φ, 1 = h{\) ^&(/*(A)) =
/(A), contradicting the fact that A is not true on /. Accordingly A is not
true on /*. Contraposing and generalizing, if A is true on all RQ-interpre-
tations in normal DeMorgan monoids, A is a theorem of RQ, which was to
be proved.

We gather up the lemmas in our principal theorem.

Theorem 4. The following conditions are equivalent, for every sentence A

o/RQ.

(1) R̂Q A;
(2) A is RQ-valid;
(3) A is normally RQ-valid.

Proof. The equivalence of (1) and (2) is the content of Lemmas 2 and 6, and
the equivalence of (1) and (3) is the content of Lemmas 3 and 7.

We have hinted that Theorem 3 may be viewed for relevant quantifica-
tion theory as a generalization of the classical theorem that every
consistent theory may be extended to a theory rich and maximally con-
sistent. For the relevant logics this has an interesting and non-trivial
converse.

Theorem 5. Let T be a rich, prime RQ-theory. Then T has a completely
normal sub-theory Tr.

Proof. Form the Lindenbaum algebra of T as in the proof of Lemma 6, and
let / assign to each sentence A the corresponding equivalence class in the
algebra. Split the algebra and define 7* in the manner of Lemma 7,
observing that the set of sentences of RQ that are true on /* form a
completely normal RQ-theory and that each of them is also true on /
(though not conversely), completing the proof.

Theorem 5 has a certain philosophical interest, not unrelated to the
raison d'etre of the relevant logics. For we are often told that scientists,
when they run into theories inconsistent either in themselves or in the
wider context of external fact, seek to reshape those theories in order to
preserve as much as possible. We agree here, as we always do, with
Professor Quine—minimum mutilation is the best policy. (Well, almost
always.) Classically, however, minimum mutilation makes no sense—there
is only one inconsistent theory and it asserts everything whatsoever, at
least to the limits of its vocabulary; the best one can do is to cut such a
theory down to one both consistent and complete, and any exhaustive choice
between atomic sentences and their negations will constitute a minimum
mutilation. Obviously any purported repair of an inconsistent arithmetic
which lets us have our choice between 0 = 4 and 0 ^ 4 leaves something to
be desired, though it is difficult on classical grounds to tell exactly what.

On the other hand, for logics like RQ which admit non-trivial
inconsistent theories, minimum mutilation does make sense; if a theory
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has carelessly asserted both a sentence and its negation, take one out; on

the other hand, where that theory has distinguished between a sentence and

its negation by asserting one but not the other, to mutilate minimally is

surely to preserve that distinction. The limiting case, corresponding to the

classical inconsistent theory, is the theory which is both rich and prime;

the content of Theorem 5 is that we can always preserve the distinction

between truths and falsehoods which such a theory makes while improving

it to distinguish always between truths and falsehoods. Thus, γ holds

for RQ.

Theorem 6. Suppose ^A and ^QAVB. Then ^QB.

Proof. Assume the hypothesis but not ^QB. There is then by Theorem 4 a

normal DeMorgan monoid Φ and an RQ-interpretation / which makes each

of B, A, A vB true; but the conjunction of these three sentences, being the

negation of a purely truth-functional tautology, relevantly implies the

sentential constant f, so that in Φ, 1 —/(f) = -1, contradicting the con-

sistency and hence the normality of Φ, and ending the proof of y.

5. Back in the beginning of the paper we hinted that its results might prove

useful; in conclusion we broaden the hint. For though we have found it a

virtue in the relevant logics that they admit non-trivial inconsistent

theories, we see in them also a vehicle for consistency proofs. The

essential idea hinges on γ.

Hubert, it will be recalled, sought to prove the consistency of a

formalized arithmetic by establishing the existence of an underivable

sentence; because of the classical looseness about what counts as a logical

consequence of a contradiction, any old sentence, say 527 = 619, would have

done; indeed the sentential variable F°, if present in the language, would

have done.

Hubert's program had its nose tweaked by Gόdel, as we all admiringly

recall, from which it might be concluded that it is difficult for theories of

minimal complexity, like arithmetic, to establish that there are underivable

sentences. So it is, so long as our theory of entailment is classical. But it

is not hard, on as small a modification of that notion as RQ represents

(and, despite the fuss pro and con sometimes heard among the brotherhood,

RQ is the product of minimum mutilation—as neutrals in the contest

between Anderson and Belnap and their critics, we can testify that the only

classical theorems missing from RQ are those which Whitehead and

Russell threw into Principia Mathematica to provide a welcome comic

relief), to show that any RQ-theory may be trivially extended so that F° is

underivable.

In fact, let 3 be the chain pictured at the end of section 3 whose

members are a, 1, and -a, letting 1 be the identity and completing the

definition of . by setting (-a)2 = a.-a = -α and a2 = a.17 Let T be any

17. This is the 3-point Sugihara matrix of [11].
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RQ-theory, as inconsistent as you please, such that F° does not occur in the
vocabulary of Γ. Expand the vocabulary to include F°9 and let Tr be the
smallest RQ-theory in the expanded vocabulary which contains T.

Observation. Tf is absolutely consistent; i.e., there is a sentence in the
vocabulary of Γ', namely F°, such that F°^TT.

Proof. Let / be that RQ-interpretation in 3 whose value for each atomic
sentence B in the vocabulary of T is 1 and such that I(F°) = -a. Clearly the
set of sentences true on / is an RQ-theory Ttf which fails to contain F° but
which contains every sentence in the vocabulary of T and hence in
particular every sentence in Γ. By definition Γ c Tr c Γ f f, ending the
proof.

Our observation is, among other things, a quick proof (not that one is
needed) that the classical predicate calculus is consistent. For as noted
above, RQ exactly contains the predicate calculus in &, v, -, and the
quantifiers. Entering a definition of the material conditional D, not to be
confused with the genuine though flabby conditional ^ of D5, we have

D6. A D 5 =df AvB.

The definition yields the following amusing theorem scheme. 1 8

Tl . H R Q fDA.

By Tl and the admissibility in RQ of modus ponens for D, if RQ were
inconsistent, F° would be a theorem; furthermore, since f is classical, and
since RQ contains the predicate calculus, only if f is a theorem of RQ is f a
classical theorem. But by our observation F° is not a theorem of RQ;
accordingly classical logic is consistent.

The above argument was only for practice; the appealing thing about it
is that it looks general. Take any axiomatic theory S formulated in
first-order classical logic; we may assume modus ponens for D as sole
rule. If the consistency of S is in doubt, try the following recipe.

(1) Reformulate the axioms of S in RQ, putting —> (or perhaps D) for
those occurrences of D which are to be taken as genuine conditionals.

(2) Close the reformulated set of axioms under the rules of RQ, getting
an RQ-theory T.

(3) Prove in T the original axioms of S.
(4) Find a sentence in the vocabulary of T underivable in Γ. If

necessary, add a new sentential variable F° to the vocabulary of Γ. By our
observation, F° will be underivable in the inessential extension Tf of T.

18. For Anderson, who in [1] uses 'V for ({p)p', even f -* A is not amusing. In view
of our own past usage, we wish he had used 'F ' for his notion, which stands for
the falsest proposition around—the one which entails everything; building on
earlier remarks, we note that our T stands intuitively for the disjunction of all
false propositions—i.e., the one entailed by but not necessarily entailing an
arbitrary falsehood—the falsehood most nearly true, if you please, and thus
deserving to be uttered in a softer voice and written in a lower case.
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(5) Prove that modus ponens for D is an admissible rule of T (or of Tτ

if we did not find an underivable sentence in T under (4)).
If we can carry out each of steps (l)-(5), we shall have our proof that

the classical first-order theory S is consistent. Our sample proof of the
consistency of the pure predicate calculus illuminates the suggested
strategy. The step (1) of reformulation is essentially encompassed in the
logical axioms of RQ themselves in this case; since modus ponens for r
holds not as a primitive rule of RQ but, as Anderson puts it, as a kind of
lucky accident, note that it would not have done to have weakened arrows to
underlined horseshoes indiscriminately in A1-A16, despite the fact that
with γ and D6 these form a more than sufficient set for the classical
predicate calculus; the point is that to prove y admissible in RQ the
stronger forms of the logical axioms are required.

The T of step (2) is of course in our sample case just RQ itself. We
sidestepped (3) in the sample, but it would have sufficed to have proved in
RQ any set of classical axioms in the quantifier and truth-functional
connectives which, given y, are classically complete. We used the method
of inessential extension for illustrative purposes under (4); obviously the
method of our observation is directly applicable to RQ, so that in this case
the inessential extension is inessential indeed.

(5) is of course y, and the main point. Once it is shown admissible, all
the theorems of S are, given (3), immediately theorems on direct transla-
tion of Γ. Furthermore the consistency of T, and hence of S, is immedi-
ately assured by the presence under (4) of a single underivable formula,
just as Hubert taught us.

Since y is the main point, the question of proving its admissibility for
an arbitrary consistent RQ-theory T naturally arises. Unfortunately as we
noted in [20] it has a disappointing answer—there are consistent RQ-
theories, including reasonably natural ones, for which γ is nonetheless
inadmissible; take, e.g., the RQ-theory with ίvF° as sole non-logical
axiom.

The fact that y is not admissible for arbitrary RQ-theories is not,
however, to be read as a counsel of despair. For first-order RQ-theories,
at least, Theorem 3 has already accomplished half the job; we can extend
arbitrary RQ-theories to theories both rich and prime, preserving non-
theoremhood for some selected sentence. This yields automatically a
prime DeMorgan monoid Φ and an RQ-interpretation / such that A is false
on /; what remains to apply the technique of the present paper is to split Φ,
which we know how to do, and to use / to define a new RQ-interpretation/*
in the split monoid Φ*, which is where the difficulty lies. Even here,
however, the central task can be located; all the present proof requires to
validate logical axioms is that I(B) = h(I*(B)) for all atomic sentences B;
putting that condition on /* reduces the proof of y for an arbitrary
RQ-theory T to that of defining/* in such a way that non-logical axioms of
T true on / in Φ remain true on /* in Φ*.

Since no such technique will work in general, we leave it to the
interested reader, and to ourselves, so fortuitously to apply it that it works
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in particular cases. We conclude simply by noting the affinity between this

suggested technique and that actually applied by Gentzen in proving the

consistency of arithmetic; cf. [3], For Gentzen so recasts formalized

number theory that its absolute consistency is trivial, inasmuch as the

empty sequent is trivially non-derivable in a Gentzen consecution calculus.

The work then comes in proving the cut theorem, which, if the reader

thinks about it, is for classical theories simply γ in peculiar notation.

Though the techniques involved here would seem to apply essentially no

principles stronger than those which deliver the weak completeness of the

classical first-order functional calculus, and amount in Theorem 4 accord-

ingly to a weak completeness result for RQ, Gδdel's theorem encourages us

to think that the proof of the consistency of real life theories will require

yet more sophisticated twists in the proof of y. But for the moment, dear

reader, we have been through enough together; sufficient unto the day is the

evil thereof.19
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