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POSSIBILITY PRE-SUPPOSITION FREE LOGICS

RODERIC A. GIRLE

Presupposition-free logics are usually taken to be free of existential
presuppositions. Allowing individual constants (what we will call 'free
variables' in this paper) not to designate is usually taken as allowing them
not to designate some individual in a domain of existing individuals. One
standard move that has been used in such a situation is then to have the
non-existence designating free variables designate something else such as
an individual in a domain disjoint from the domain of existing individuals.
This move could be seen as a move to allowing non-existence designating
free variables to designate imaginary, or fictional, or possible but
non-existent individuals.

The question can then arise as to whether or not an existential
presupposition free logic has a possibility presupposition. It would
certainly be so if the free variables must designate an individual either in
the domain of existing individuals or in the domain of possible but non-
existent individuals. Since presupposition free logics were first designed
to eliminate existential presupposition it would be interesting to see what
are the results of designing possibility presupposition-free logics.

One crucial feature of standard presupposition free logics is that the
quantifiers range only over the domain of existing individuals, whereas free
variables may designate any individual in either the existence domain or
the domain of possible but non-existent individuals. In order to proceed
towards a set of possibility presupposition-free logics, we could introduce
quantifiers to range over a domain of possible individuals, which would
include the set of existent individuals, and we could have the free variables
designating any individual in either the domain of possible individuals or in
a domain of impossible individuals (which would be disjoint from the
possibility domain).

As far as the truth of statements is concerned we could assume that
all statements without free variables or with free variables designating
possible individuals will come under the standard truth conditions. State-
ments containing free variables that designate impossible individuals could
then be treated in a range of ways parallel to those set out by Leblanc and
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Thomason.1 We could then consider the three options such that (a) all
atomic statements are arbitrarily assigned T or F and the truth value of
non-atomic ones is determined by the standard semantical rules of truth,
(b) all statements containing free variables designating impossible in-
dividuals are T, or (c) all statements containing free variables designating
impossible individuals are F.

Although we could proceed in such a fashion, we will not. Instead, we
will relate some syntactic systems to the model system type of semantics
advocated by Hintikka. So we will be concerned about whether statements
are satisfiable or not satisfiable. A set of formulae is satisfiable if and
only if it can be imbedded in a set which satisfies certain conditions. Any
particular formula is satisfiable if and only if its unit set is.

The conditions referred to can be seen as criteria of consistency, or
as criteria for a coherent state description. A satisfiable statement is then
one which is consistent, or one which can be part of a coherent state
description. In particular we will be concerned with imbedding sets of
formulae in maximal sets, or maximally extended state descriptions.
These latter have been called maximal consistent novels.

As far as the satisfiability of statements is concerned we will assume
that all statements without free variables fall under standard conditions
(C . ~) and (C .3) set out below.2 Our main interest will be with statements
containing free variables, in particular, with the statements of a range of
formal systems QH = (0 ^i < 15). In all of QH= statements of the form
(Σx)(x = a) translate as: ua is possible" or, "there is at least one possible
individual identical with α"; those of the form ~(Σx)(x = a) translate as:
"a is impossible."

If a statement contains the free individual variable a there will be
several options open as regards the satisfiability of the statement. These
options can be outlined in terms of trying to imbed the unit set of the
statement in a maximal set containing either (Σx)(x = a) and not ~(Σx)(x=a),
or ~(Σx)(x = a), or neither (Σx)(x = a) nor ~(Σx)(x = a). In the case of the
first alternative, where a is possible, we will consider satisfiability under
purely standard conditions. A statement and its negation cannot both be
satisfiable. In the case of the second alternative, where a is impossible,
we will consider two kinds of satisfiability: (a) if the unit set of any
formula A can be imbedded in λ, then the unit set of ~A cannot; (b) the unit
set of any formula containing a can be imbedded in a set λ. In the case of
the third alternative; (c) the unit set of any formula containing a cannot be
imbedded in a set λ.

One way of seeing these options would be to say that (a) is where
statements about impossible objects are consistent or inconsistent in
exactly the same way as statements about possible objects; (b) is where

1. Leblanc, H., and R. H. Thomason, "Completeness theorems for some presuppo-
sition-free logics," Fundamenta Mathematicae, vol. 62 (1968), p. 126.

2. See page 56 below.
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any statement about impossible objects is consistent; (c) is where no

statement about impossible objects is consistent.

Amongst the sixteen QH= there are seven where a is never impossible.

(i = 0 or 3 or 4 or 7 or 8 or 11 or 14), and so they all fall under the first

alternative. There are three (i - 1 or 2 or 12) where statements are

handled in the spirit of (a) above. There are three (i = 5 or 6 or 13) where

statements are handled in the spirit of (b) above. There are three (i = 9 or

10 or 15) where statements are handled in the spirit of (c) above.

NOTE: Case (a) presents us with certain difficulties of interpretation if

we see this case as outlined above. It would be contended that for some

predicate P: (Pa & ~ Pa) Ξ ~(Σx)(x ~ a). In such a situation we can hardly

accept our interpretation of case (a).3 Routley suggests that such prob-

lematic^ situations could be dealt with by means of predicate negation:

(Pa & Pa) = ~(Σx)(x = a), where ~~ represents predicate negation.

1 Primitive Symbols:

improper symbols o ~ Π .( )

bound variables x09 y0, z09 xl9 yl9 zu x2, . . .

free variables a09 b0, c0, al9 bl9 cl9 a2, . . .

propositional variables p0, q09 r0, pl9 ql9 rl9 p2, . . .

n-ary predicate variables (n > 1) Fo

w, Go

w, H%, Ff, Gn

u H?, F?, . . .

predicate constants -, E.

2 Formation Rules:

(i) A propositional variable standing alone is a wff.

(ii) If Fn is an n-ary predicate variable, and if al9 . . .9an are n free

variables (not necessarily distinct) then ^ ^ . . . ^ i s a wff.

(iii) If a is any free variable then Ea is a wff.

(iv) If a and b are any free variables (not necessarily distinct) then a = b

is a wff.

Wffs according to (i)-(iv) are atomic wffs.

(v) If A is a wff, so is ~A.

(vi) If A and B are wffs, so is (A D B).

(vii) If A is a wff and x is any bound variable, then (Ux)(A(x/a)) is a wff,

where: If A is a wff and X is a variable free or bound and Y is a

variable free or bound, then A(X/Ϋ) is the result of substituting X

for zero or more occurrences of Y in A (we will also use A(X/Y)

where A(X/Y) is the result of substituting X for every occurrence of

Y in A).

3 Axiom Schemata:

1 A3 (BO A)

2 A o (B o c) o. A Ί B o. A o C

3 ~A 3 ~JB ^ . B DA

4 A o (Ux)A provided x does not occur in A

5 (Ux)(A 3 B) 3. (ΠΛΓ) A O (Ux)B

3. R. Routley, "Some things do not exist," Notre Dame Journal of Formal Logic,

vol. 7 (1966), p. 260.
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5a (Ux)(A D B) 3 . (Tlx) A 3 (Ux)B, provided x does occur in B

6 (Σy)(y = α) 3 . (Π*)A D A(α/*)

6a (Σ;y)(;y = α) D. (Π#)A D A(a/x), provided x does occur in A

7 (Hx)A o A(a/x)

7a (ΐlx)A 3 A(a/x), provided x does occur in A

8 (Ux)(Σy)(y = x)

9 a = a

10 a = b z>. A D A(b//a)

11 £α D. (Zy)(y = α)4

Rules:

Rl. A,A^B-*B

Rl.a A, A ^> B —* B provided every free variable in A is in B

R2. A —» (ΠΛΓ)(A(ΛΓ/«)) provided x does not occur in A

R3. ΛL, ~i4 — 5

We adopt the convention that if au a2, . . ., an (n ̂  1) are the distinct free

variables in A, then a(A) is: (ΣJ?)(J; = ax) =>. (Σy)(y = a2) ^ . . . . = > . (Σy)(3; =

α») ^ ^

R4: α?(α(A)) — Qf(A)

4 The QH= Systems: Where (0 ^i ^ 15) the systems QH= can be axioma-

tized using sets of axiom schema and rules as follows (we shall use α(l),

α(2), . . ., a(ll) to stand for a(A)> a(B), . . ., a(K) where A, B, . . ., K are

axiom schema 1, 2, . . ., 11 respectively): Let

5 ={1, 2 , 3 , 4 , 5 , 9 , 10, 11}

Sr ={1, 2, 3, 5a, 9, 10, 11}

S" = {ad), α(2), α(3), α(4)f α(5), flf(9), α(10), α(ll)}

S f Γ f = {α(l), α(2), α(3), α(5a), α(9), α(10), α(ll)}

QH^ =S u{7; Rl, R2; 8}

QMk =S u{6; Rl, R2}

QH= = S U {6a; Rl, R2}

QH= =S U{7; Rla, R2; 8}

QH^ = S ϋ {7a; Rla, R2; 8}

QH= = S ϋ { 6 ; Rla, R2}

QH= = S U {6a; Rla, R2}

QH= = S" U {α(7); Rl, R2, R3, R4; 8}

QH= = S" U {α(7a); Rl, R2, R3, R4; 8}

QH= = S" U {α(6); Rl, R2, R3, R4}

QHi0 = S " U {α(6a); Rl, R2, R3, R4}

Q H = = S f U {7; Rl, R2; 8}

QHk2 = s' u {6a; Rl, R2}

4. The convention for bracketing is as in: Church, A., Introduction to Mathematical
Logic, vol. 1, Princeton University Press, New Jersey (1956), p. 42.



POSSIBILITY PRE-SUPPOSITION FREE LOGICS 49

QH=3 = Sr U {6a; Rla, R2}
QH^4 = S'" u {α(7a); Rl, R2, R3, R4; 8}
QH^5 = S"' u {α(βa); Rl, R2, R3, R4}
(We use U for set theoretic union and Π for set theoretic intersection.)

5A The consistency of a formula with respect to a given system S, i.e.,
S- consistency

A formula, A, of any system S (e.g., QH=) is consistent with respect to S,
S-consistent, iff ~A is not a thesis of S. (ζ-\sA

y is {A is not a thesis of S};
'hsA' is ζA is a thesis of S9: so S-consistent (A) .=. H S ~A.)

The consistency of a set of formulae of S, not S-consistency

A finite set of formulae of S, \AU . . ,,An} is consistent iff-ίs-,^ & . . .

Also, if Λ is an infinite set of formulae of S, Λ is consistent iff it
contains no inconsistent finite subset of formulae, i.e., if for all Λ1, Λ1 c Λ
and Λ1 = {Aί9 . . ., An} then, if h s~(A! & . . . &An), then Λ is inconsistent
(in this paper we shall simplify VQ Hi' to 'μ.', and (-*QHi9 to Ή / ) .

5B The a consistency of a formula with respect to the systems QH=
(7 ^i ^10 orz = 14 or 15):

A formula, A, of any QH= (7 ^i ^ 10 or i - 14 or 15) system is a consistent
with respect to the relevant QH=, QH= a consistent, iff a(~A) is not a thesis
of QH=: QH= a consistent {A) .=. -*ia(~A). It follows that if A contains no
free variables that QH= a consistent (A) .Ξ, QH= consistent (A).

The a consistency of a set of formulae of QH=, not QH= a consistency:

A finite set of formulae of QH=, {Ax, . . ., An} is a consistent iff Ht α(~04i &
. . . & An)).

Also, if Λ is an infinite set of formulae of QH=, Λ is a consistent iff it
contains no not a consistent finite subset of formulae, i.e., if for all Λ',Λf CΛ
and Λ' = {Aly . . ., An} then, if K a(~(A1 & . . . & A*)), then Λ is not α con-
sistent.

5C A T-consistent set of formulae of QH= is constructed by forming the
union of a consistent set of formulae of QH= with a set of all the formulae
of QH= containing any* free variable a for which there is a formula of the
form ~{Σy)(y = a) in the consistent set. Similarly, but conversely, an
F-consistent set of formulae of QH= is that subset of a consistent set which
remains when all the formulae containing any free variable a, for which
there is a formula of the form ~(Σy)(y = a) in the set, are removed.

6 In order to show a system S complete, we show that if a formula A is
S-valid, then \-sA; or, for every S-consistent formula there is a verifying
(or satisfying) S Model; or, in the case of systems QH= (7 ^i ** 10 or i = 14
or 15) for every QH= a consistent formula there is a satisfying S Model.

Procedure: for the systems QH= (0 ^i ^6 or 11 ^i ** 13) we construct a
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maximal consistent set of formulae of QH= which contains A; and in the
case of 0 ^ / < 2 or i = 11 or 12 we form a QH= Model which satisfies every
formula of the set, and hence A itself; and in the case 3 < i < 6 or i = 13 we
construct a maximal T-consistent set of formulae of QH= which contains A,
and form a QH= Model which satisfies every formula of the set, and hence
A itself; for the systems QH= (7 ^ί ^ 10 or i= 14 or 15) we construct a
maximal a consistent set of formulae of QH= and thence a maximal Fα
consistent set of formulae which contains QH= a consistent A, and form a
QH= Model which satisfies every formula of the set, and hence A itself.

7A A maximal consistent set is one such that for every formula A of S, at
least one of A or ~A is in the set; or, a set of formulae of S is maximally
consistent iff it is consistent, and every formula of S not in it is incon-
sistent with it.

If we are given an S-consistent formula, A, we can always construct a
maximal consistent set, SΓ, which contains A, (in this paper we shall denote
a maximal consistent set for any system QH= (0 ^i <6 or 11 ^ί ^ 13) by
T ) . We arrange all the formulae of S in order: Au A2, A3, . . ., An> . . .
(1 *ζn). We construct SΓ by forming a series of sets, SΓO, ST1}

 SΓ2, . . .,
sTn, . . . (1 < n) as follows:

sTι = {A} u {Aj, if Hs ~ (A & Ax), but if hs ~ (A & AJ then SΓ1 = {A} = SΓO.

So, for each subsequent set: given sTn

sΓ«+i = SΓW U {An+j} if π s ~ (ATn & An+1), where ATn is the conjunction of wffs
in sTn, otherwise

Finally, SΓ is the set of all the formulae in SΓO, SΓ\, SΓ 2, . . . , sTn, . . . (1 <«).
Clearly, each set in the series is consistent because SΓO is consistent, and
each SΓW + 1 is consistent if sTn is.

Proof: Let SΛ be any finite subset of 5Γ, and let An be the last formula to
have been included in SΛ. Then SΛ is a subset of SΓW. But SΓW is consistent,
therefore SΛ is consistent. Hence 5 Γ contains no finite inconsistent subsets,
and is therefore itself consistent. Moreover, SΓ is maximal: consider any
formula Am which is consistent with SΓ, since Am is consistent with SΓ it is
consistent with any subset of SΓ, and in particular with SΓOT_1; therefore, in
the construction of SΓ it will have been added to SΓO T.1 to form sΓm, and so
is in SΓ.

7B A maximal T-consistent set is the union of a maximal consistent set
and a set of all the formulae containing any free variable a for which there
is a formula of the form ~(Σy)(y= a) in the maximal consistent set.

If we are given an S Consistent formula, A, we can set about construct-
ing SΓ. But, when we order the formulae of S: A1,A2,A3, . . .,An, . . .
(1 ^n), we begin with the formulae of the forms (Σy)(y = a) and ~(Σy)(y = a)
as follows: (Σy)Cv = α0), ~(Σy)Cv = α0), {Σy)(y = aι),~(Σy)(y = aj, (Σy)(y = a2),
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~(Σy)(y = a2) . . ., (Σy)(y = On), ~(Σy)(y = On), . . . (n^ 0 ) . So w e c o n s t r u c t

a s e r i e s of s e t s SΓO, SΓO O, SΓO 1, s Γ 0 2 , . . ., SΓOW, . . . (0 ^ n) a s follows

S Γ 0 = {A}
sT00 = {A}u{(Σy)(y=a0)}iί HS~(A& (Σy)(y= ao))9 but iί h s~(A & (Σy)(y = a0))
then
SΓ 0 0 = {A},
srol=

sToou{~(Σy)(y=ao)}iϊ-is~(A&~(Σy)(y=ao))9butiϊ h ~(A&~(Σy)(y =
a0)) then

1 0 1 ~ A00

So, given SΓO 2 w . 1

SΓ0 2 w = SΓ0 2«-i U {(Σ yM y = <%„)} if H s ~ ( £ ' & (Σ y) (3; = β2w)), where B' is
the conjunction of formulae in SΓO 2 w-i, but if hs ~(i?' & (Σy)(y = α2w)) then

A 02/2 "" -1 0 2«-l>
sΓo 2n+i = sr02n U {~(Σy)0; = «2w)} if 5 " is the conjunction of formulae in
s Γ 0 2 w , and if H s ~ ( £ " & ~{Σy)(y = a2n)), but if h s ~ ( 5 " & - ( Σ yHj; = α2w)) then

1 0 2«+l - J- 02«

SΓX is the set of all the formulae in SΓO, SΓOO, SΓO1,
 SΓO2, . . . , SΓOW, . . . (0 < ή).

We then proceed to construct SΓ from T 1 }

 SΓ2, SΓ3, . . .,
 sTn, . . . (1 < w) as

in 7A above.
Furthermore, since it is the case that iff ~(Σy)(y = On) e SΓ\, then

~(Σ;y)(;y = an) e sΓ02n, because of the ordering as set out above, we construct
a set of formulae sγ in the following way:

Iff ~(Σy)(y = an)e sT02n, there are in a set s

Ύon all the wffs of S in which
occur the free variable an.

 sγ is the set of all the formulae in sy0 1,
 syo2> sy03,

. . . , s

r o w , . . . ( w ^ l ) .
The set T s Γ , which is the union of SΓ and sγ is the maximal T-

consistent set with respect to S, constructed from the given S consistent
formula A. In this paper we will denote a maximal T-consistent set for any
system QH= (0 ^i <6 or 11 ^i ^ 13) by T T , where T T = T u V

Similarly, a maximal F consistent set is that subset of a maximal
consistent set which remains when all the formulae containing any free
variable, a, for which there is a formula of the form ~(Σ;y)(:y = «), in a
maximal consistent set are removed. We proceed as above to construct SΓ
and sγ.

Then, the set F s Γ = SΓ - ( s

r n
 SΓ) = SΓ - s

γ.

7C A set of formulae of S is maximally a consistent iff it is a consistent,
and every formula of S not in it is not a consistent with it. Given an S a
consistent formula, A, we can construct a maximal a consistent set, α 5Γ,
which contains A, (in this paper we shall denote a maximal a consistent set
for systems QH= (7 ^ί ^ 10 or i = 14 or 15) by *'Γ) by steps parallel to
those in 7A for maximal consistent sets except that:

^ Γ i = {A} u {A,} if π s α ( ~ (A & AJ), but if hs α(~ (A & A,)) then
αs-τ-1 _ asπ

1 1 - Lo
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and thence with the obvious modifications in both construction and proof.
And in a manner parallel to 7B we can construct a maximal Fa consistent
set. We denote a maximal Fa consistent set for any system QH= (7 < i < 10
or i = 14 or 15) by F T , where F T = T -(zy Π T) and *γ has been constructed
as T was constructed. It also follows that if we construct F T by beginning
with some QH= a Consistent formula A, then Ae F T (7 < i ^ 10 or i = 14
or 15).

Proof: There are two cases to be considered:
(a) where A contains no free variables: since T o = {A} and therefore Ae T
and At*γ then Ae¥iT;
(b) where A contains free variables: let the free variables in A be al9

a2y . . ., an (n ̂  1), if Ae T and A/ F l Γ then Ae ιy so, by construction of *γ9

at least one of

~(Zy)(y = fli), ~(Σy)(y = a2), . . ., ~(Σy)(y = On) (n > 1) is in 'Γ.

Therefore K a(~(A & (Σy)(y = <*„))) because h. α(~((Σ;y)(;y = α«) & ~(Σy) (y =
α«))) and by the construction of ZΓ, (Σ^)(3; = On) is earlier in the ordering than
~(Σ^)(^ = On). I.e., K α((Σy)(y = α») => ~A), i.e., K (Σy)(y = α») 3 - A by R4,
i.e., not a Consistent (A) contrary to hypothesis.

8 We now show some properties of maximal consistent sets and maximal a
consistent sets.

Lemma \i (where 0 ^i ^ 2 or ί = 11 or 12). If *Γ is maximal consistent
then for any wff A, A and ~A are not both in *Γ.

Proof: If A and ~A were both in *Γ, and if B were the conjunction of
formulae in some finite subset of *Γ, then {B, A, ~A} is consistent, i.e.,
K ~{B & (A & ~A)), but this is not so, because from axioms 1, 2, 3 and Rl
K ~(B & (A & ~ A)). So, not both A and - A are in T .

Lemma lz (where 3 < i ^ 6 or z = 13). If *T is maximal consistent then for
any wff A which contains no free variables A and ~A are not both in ZΓ.

Lemma 2i (where 0 < i < 6 or 11 < i < 13). If ιT is maximal consistent then
for any wff A either A or ~A is in T . The proof of this lemma may be
retrieved from Hughes & Cresswell,5 with suitable modifications for each
QH=έ.

Similarly:

Lemma 2i (where 7 < i < 10 or i = 14 or 15). If *Γ is maximal a consistent
then for any wff A either A or ~A is in T .

Lemma 3i (where 0 ^ i ^ 2 or i = 11 or 12). If *Γ is maximal consistent
relative to QH= then for any wffs A and B, if Ae T and (A ^> B)e ZΓ then
Be T .

5. Hughes, G. E., and M. J. Cresswell, An Introduction to Modal Logic, Methuen,
London (1968), p. 152.
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The proof of this lemma may be retrieved from Hughes & Cresswell,6 and
then modified to prove:

Lemma 3ί (where 3 ̂  i ^ 6 or i = 13). If T is maximal consistent relative
to QH= then for any wffs A and B, provided that every free variable in A is
in B,ifAe T and {A z> B) e T then Be T .

L e m m a 3z (where 7 ^ i < 10 o r i = 14 or 15). If T is maximal a consistent

relative to QH= then for any wffs A and B, if Ae T and {A D B) e T, £/zew

Lemma 4z (where i = 0 or 3 or 4 or 11). If *Γ is maximal consistent rela-
tive to QH= then T contains no formulae of the form ~(Σy)(y = a).

Proof: Since K ~ ( ~ (Σj>)(3> = a) &, a = a) there will be a subset of every
maximal consistent set with which ~(Σy)(y = a) is inconsistent.

Similarly:

Lemma 4i (where i = 7 or 8 or 14). /f T /s maximal a consistent relative
to QH= then T contains no formulae of the form ~ (Σ;y)(j> = α).

From this lemma and the respective Lemma 2i, it follows that every
axiom is in every T. Furthermore that for every free variable a,(Σy)(y =
a) e T, when i = 0 or 3 or 4 or 7 or 8 or 11 or 14.

Lemma 4Λi (when 7 ^ i < 10 or i = 14 or 15). If T is maximal a consistent,
then not both (Σy)(y = a) and ~(Σy)(y = a) are in T, provided (Σy)(y = a)
occurs before ~(Σy)(y = a) in the ordering of QH= formulae.

Proof: If (Σy)(y = a) and ~(Σ;y)(3; = a) were both in T, when T was being
constructed one of the formulae must have occurred before the other in the
series of formulae of QH=. Assume that there was a set Twsuch that B was
the conjunction of wffs in Tw. Let (Σy)(y = a) be the n + Γst formula and
~(Σy)(y = a) be the n + 2'nd formula.

Assume that H.αr(~(£& (Σy)(y = a))) so (Σy)(y = a) e %+,. So %+2 =
T w + 1 u {~(Σy)(y = a)} if H.α(~(JB& (Σy) (y = fl) & -(Σv)(^ = «))) but if
κ α ( ~ ( 5 & (Σ^Xv = α) & ~(Σy)(y = α))) then T ^ = ZΓW+1 and ~(Σy)(y = a) ί
T Λ + 1 nor of T. Now κα(~(5 & (Σv)(j; = a) &~(Σy)(y = a))). So if (Σy)(y = a)
preceded ~(Σy)(y = a) in the ordering of QH= formulae not both were in T.
It can easily be shown that the converse is also the case.

9 Beginning with any QH= consistent (A) when 0 ^i ^6 or 11 <z ̂  13, or
with any QH= a consistent (A) when 7 ^i ^ 10 or i = 14 or 15, we construct
a single set, T, of formulae of QH=. We also require that %T shall have
what we call the P, -property.

A set, Λ, is said to have the P t -property iff for every wff of some
given form, α ,̂ in Λ there is also in Λ some wff of the form /3t :

6. Ibid., p. 153.
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(a) When i = 0 or 3 or 11, α* is (Σx)(~B) and β, is ~B(a/x) for some a.
(b) When i = 1 or 5 or 12 or 13, α?f is (Σx)(~B) and ft is (Σy)(y = <?)=>
~B{a/x) for some α.
(c) When z = 2 or 6, α, is (ΣΛΓ)(~£) provided AT occurs in B and ft is (Σy)(y =
a) => ~B(a/x) for some α.
(d) When z = 4, α, is (Σx)(~B) provided x occurs in B and ft- is ~B{a/x) for
some α.
(e) When i = 7, αf is a(Σx){~B) and ft is α(-E(α/j)) for some a.
(f) When i = 9 or 15, αf is C*(ΣAΓ)(~5) and ft is a((Σy)(y = a) 3 ~B(fl/x)) for
some #.
(g) When 2 = 10, α, is O?(ΣΛΓ)(~.B) provided ΛΓ occurs in 2? and β, is as when
f = 9 or 15.
(h) When i = 8 or 14, α, is « ( Σ ^ ) ( ^ J B ) provided ΛΓ occurs in B and β, is as
when i = 7.

To ensure that *Γ has the P, -property, we begin with some definitions:

(i) Any wff of the form α,- 3 β, (given the forms ce,- and ]8f ) we shall call a
Pi-formula with respect to a, or a Pf-formula.

(ii) All P* -formulae which differ only in that each is a P, -formula with
respect to a different free variable will be said to have the same
Pi-form. Clearly, Pz -forms, for each i, are enumerable,

(iii) Let the Pj-forms be enumerated thus: ^ , 2 P , , 3 P ; , . . ., nVi, . . . and
put Pi = {x/(3f)(x = 1Pi)}.

Then a set of wffs has the P^-property iff it is a superset of a selection
set for P{.

It is easy to show that if a maximal consistent set, Λ, of QH=, has the
P;-property, it also has the P;-property. For suppose that α, is in Λ: Since
Λ has the P^-property, there is in Λ, for some free variable a, α,- D βi9 so
by Lemma 3i9 ft is in Λ.

10 For a given QH= consistent (A) when 0 ^i <6 or 11 <z ^ 13, or for a
given QH= α consistent (A) when 7 ^ z < 10 or ί = 14 or 15, we construct *Γ
as follows (with provision for constructing either TzΓ or F T): We begin
with A.

(a) Taking the P,-forms as enumerated in 9 (iii) above, we then add, for
each one of them in that order, a Pf-formula for some a which does not
occur anywhere else in that P^-formula, nor in any preceding Pf -formula,
nor in A. Since we have an unlimited supply of free variables at our
disposal, and since at each stage only a finite number of formulae are
already in the set, there will always be a fresh variable available for this
purpose.

(b) We then construct f*Γ0 thus:

oo'Γ = {A} . . .

o ί T (i > 0) = o(/-i) *Γ U {aj ^ βl}9 where a\ is the j'th wff of form αf, , and
the lα in β\ does not occur in at nor in any member of 0(ί -i)fΓ.
*Γo is the union of all the 0/

 f*Γ'sϋ > 0).
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T is then constructed from T o and all the wffs of QH= in some

standard ordering such as is set out in 7B or 7C above (ensuring that for

pairs of formulae of the forms (Σy)(y=a) and ~(Σy)(y = a) the former

occur before the latter in the ordering of the formulae). Clearly, T o will

be consistent if each *Γ is, or will be a consistent if each 0 ; 'Γ is, and so *Γ

will be consistent when 0 ^ ί ** 6 or 11 ^ i < 13 and ιT will be a consistent

when 7 ^ i ^ 10 or i = 14 or 15.

(c) When 3 < i ^ 6 or i = 13, we then construct TzΓ; and when 7 ^ i < 10 or

i = 14 or 15, we construct F 'Γ.

11 To show that the set obtained when all the P, formulae are added is

^consistent (where /consistent is consistent when 0 ^i ^6 or 11 ^i ** 13,

and ,-consistent is a consistent when 7 ^ i ^ 10 or i = 14 or 15): Since {A}

is ^consistent by hypothesis, we prove the following lemma:

Lemma 5 If *A is an ^consistent set of wffs, then ιA u {aj ^ β{} is icon-

sistent provided aj does not occur in 'Λ or aj, and when 3 ^ i ^ 6 or i = 13

provided that every free variable in β\ other than aj is in *Λ, (a) ivhen i is

0 or 3 or 11: a proof for this case can be obtained from Hughes &

Cresswell-,7 (b) when i is 1 or 5 or 12 or 13.

Proof: Let *Λf be any finite subset of *Λ, then we prove that iAt u

{(Σx) ~ £ 3 . (Σx)(x = aj) D ~B(dj/x)} is consistent. Assume that it is not;

(let F be the conjunction of wffs in 'Λ') then κ ~ ( F & ((Σx) ~J33. (ΣΛΓ)(ΛΓ =

αy) ^ ~B(aj/x))).

So K F => ~ ((Σ.r) ~B^>. (Σx)(x = aj) 3 - B(df/x))

S o h n (πy) ~((Σ^) ~ £ 3 . (Σx)(AΓ=y) D ~ J5(>'/x))

So h
{
(Σy)((Σx) ~B^. (Σx)(x = y) D ~J5(3;/AΓ)) ̂  - F. Since h.(Σy)((Σx) -

5 >̂. (Σx)(x = 3;) D ̂  JB(J>/Λ;))** by Rl when z = 1 or 12 or Rla when i = 5 or

13 h - F

so (F& ~F)e 'Λ

**(ΠΛΓ) B^>.(Xx)(x=a)^> B(a/x) Axiom 6

(Πx) 5 D. (Π3;)(Σ^)(JC = v) D (Πv)5(vA) R2 Axiom 4

(Πy) J5 & (Π3;)(ΣΛΓ)(ΛΓ = 3;) -D. (Uy)B(y/x) def of &

since (IΓy)(5 & (Σx)(x = v)) z>. (Πj;) 5 & (Π.v)(Σ#)(# = y)

so (Uy)(B & (Σ^)(x = y)) D (Π>')^(vA)

(Σy) - 5 D . (Σy)((Σ^)(Λ = v) D - 5 )

(Σ«)[(Σ^) ~ ^ . (Σ.r)U = 2) D ~B(z/y)]

so fΛ is inconsistent, contrary to hypothesis

so Lemma 5 holds.

(c) when i = 2 or 6: 6;y modification of case (b) above.

(d) wftew z = 4: δ^ modification of case (a) above.

(e), (f), (g) α/zd (h): 63' modification of cases (a), (b), (c) and (d), respec-

tively.

7. /δzrf., p. 160.
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12 For a proof of the Completeness of QH= (0 ^ i < 15) we show that we can
construct a verifying QH= model (on 'Model) for A, if A is QH= Consistent
(A) (0 ^i <6 or 11 ̂ i ^ 13), or if A is QH= α consistent (A) (7 ^i ^ 10 or
z = 14 or 15). Consider a Hintikka type model as follows:

(*il, C{) is an 'Model, where Ώ is a model system such that, when
0 **i <2 or 11 ̂ i < 12, the system contains one maximal model set *μ, i.e.,
Ώ = {'μ}, and when 3 ^i < 10 or 13 ^ i ^ 15, the system is an ordered pair
of model sets *μ and *μ', i.e., *Ω = (μ*, tμt); and C,- is a set of consistency
rules for deciding which formulae of QH= can be included (or embedded) in
*μ and iμ\ with or without 'μ's having some given membership, such given
membership having been subject to the same set C, .

The basic concept is that of satisfiability (or ve r if lability):

A e V .Ξ. 'Satisfiable (A)

when 0 < i < 2 or 11 < i < 12; or

Ae [tμ - ( f μ f Π fμ)] .=. 'Satisfiable (A)

when 7 < z ̂  10 or i - 14 or 15 or

Ae [ {μ U V ] .Ξ. 'Satisfiable (A)

when 3 < i <6 or ΐ = 13.

The membership of C, is drawn from the following conditions:

(C.~) if μ contains an atomic formula it does not contain its negation.

(C.3) If(A^>B)eμ, then either ~A e μ or, Be μ, or δoί/z.
(C.~Σ) //-(ΣΛΓ) Aeμ, then (Tlx) ~Aeμ.
(C.-Π) 7/-(ΠΛ;) Aeμ, ίtew (ΣΛΓ) ~Aeμ.
(C.selfΦ) μ does not contain any formula of the form ~(a = a).
(C. =) If Aeμ9 (a= b) e μ, and A is like B except for the interchange of a

and b at some (or all) of their occurrences, then Be μ, provided

that A and B are atomic formulae or identities.

(C.EΣ) IfEaeμ, then (Σx)(x = a) e μ.
(C.Σ) If (Σx) Ae μ, then A(a/x) e μ for at least one free variable a.
(C.Π) // (ΠΛΓ) A e μ, then A(a/x) e μ.
(C.Σ') If(Σx) Aeμ and x occurs in A, then A(a/x)eμ for at least one

free variable a.
(C.Πf) If (ΠΛΓ) Aeμ and x occurs in A, then A(a/x) e μ.
(C.Σ0) If (Σx) Ae μ, then A(a/x) e μ if (Σx)(x = a) e μ for at least one free

variable a.
(C.Π0) If (Tlx) Aeμ, then if (Σx)(x = a) e μ, then A(a/x) e μ.
(C.Σ«5) and (Clio) are like (C.Σ0) and (C.Π0) respectively with the proviso

that x occur in A.
(C.φe) If ~ (Σy)(y = a) e μ and a occurs in A, then A e μf.
(C.^0 If (A^> B)eμ, then if every free variable in A is in B, then either

~A e μ or Be μ, or both.
(CUV) If (ΠΛΓ) Aeμ and x does not occur in A, then Aeμ.
(C.ΣF) If(Σx) Ae μ and x does not occur in A, then Aeμ.
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(C.ΠG) IfAeμ then (Ux) A e μ, provided x does not occur in A.
(C.ΣG) If Ae μ then (Σx) A e μ, provided x does not occur in A.
(C.ΠV') If (Σχ)(x = a) e μ and (Ux) Aeμ, and x does not occur in A, then

Ae μ.
(C.ΣV) If (Σx)(x = a) e μ and (Σx) A e μ, and x does not occur in A, then

Aeμ.
(C.ΠGf) If (Σx)(x = a)eμ and A e μ then (Tlx)Aeμ, provided x does not

occur in A.
(C.ΠΣ') If (Σx)(x = a) eμ and Aeμ then (Σx)Aeμ, provided x does not

occur in A.
CO = {(C.~), (CD), (C.~Σ), (C.~Π), (C.selfΦ), (C.=), (C.EΣ)}
CO' = {(C.~), (CD'), (C~Σ), (C.~Π), (C.selfΦ), (C. = ), (C.EΣ)}
Co = Cju{(C.Σ), (C.Π), (C.ΠG), (C.ΣG)}
CL = Cί U {(CΣ0), (C.Π0), (C.ΠV), (C.ΣV), (C.ΠG)}
C2 = Ci U {(C.ΣJ), (C.Πί), (C.ΠG), (C.ΣV)}
C3 = Co' U {(C.Σ), (C.Π), (C.ΠG), (C.ΣG), (C.φe)}
C4 = Co' u{(C.Σ'), (C.Π'), (C.ΠG), (C.ΣV), (C.0e)}
C5 = C'o' U{(C.ΣO), (C.Π0), (C.ΠG), (C.ΣF), (C.ΠVf), (C.ΣV1), (C.φe)}
C6 = CO' U {(CΣi), (C.Πί), (C.ΠG), (C.ΣV), (C.φe)}
C7 = Cί U {(C.Σ), (C.Π), (C.ΠG), (C.ΣG)9 (C.φe)}
C8 = Ci U{(C.Σ'), (CΠO, (C.ΠG), (C.ΣV), (C.φe)}
C9 = Cί U {(C.Σ0), (C.Πo), (C.ΠG), (C.ΣV), (C.ΠV), (CΣV), (C.ψe)}
Cio = C'o U {(C.Σi), (C.Πo), (C.ΠG), (C.ΣV), (C.φe)}
Cπ = Cί U {(C.Σ), (C.Π), (C.ΠV), (C.ΣG)}
C12 = Cί U {(C.Σi), (C.Πί), (CΣVf), (C.ΠG')}
C13 = Cr

o

r u{(C.Σί), (C.Πί), (C.ΠG'), (C.ΣV1), (C.φe)}
C14 - Cίu{(C.Σ'), (C.Π'), (C.φe)}
C15 - Cί U {(C.Σi), (C.Πί), (C.ΠG'), (C.Σ V), (C.φe)}

13 Given QH= Consistent (A) when 0 ^i ^6 or 11 <ί < 13 or QH= or Con-
sistent (A) when 7 ^z ^ 10 or i = 14 or 15, we have constructed T such that
A e ίT9 and T T such that A e T lΓ, and F T such that A e FiΓ. So we construct
*Ω as follows:

(A) where 0 ^ i < 2 or z = 11 or 12:

(a) each atomic wff B is *Satisfiable (B) if it is one of the wffs in *Γ, and is
- 'Satisfiable (B) if B is not in fΓ, i.e., Be 'Γ .=. Be {μ.
(b) each wff of the form (Σy)(y = a) is 'Satisfiable (Σy)(y = a) if it is one of
the wffs in 'Γ, and - 'Satisfiable (Σy)(y = a) if it is not in f ϊ .
(c) when i = 1 or 2 or 12, and for every af - (Σy)(y = α, ) e f*Γ and B(aj/x) e iT,
then if (ΠΛΓ) 5e T (x occurring in ^), ''Satisfiable (Ux)B, and if (Πx) B^T,
-'Satisfiable (Ux)B.
(ά) when i = 2 or 12, and when T contains at least one formula of the form
(Σx)(x = a), and also ~B, each wff of the form (Ux)B (where x does not
occur in B) is 'Satisfiable (Hx)B if it is one of the wffs in T.
(e) when i=l or 2, and when T contains no formula of the form (Σ.v)(,v = a)7

and also ~ B, each wff of the form (Πx)B (where x does not occur in B) is
'Satisfiable (Ux)B if it is one of the wffs in T.
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(f) when i = 11, and Be T , each wff of the form (Ux)B (where x does not
occur in B) is ~ 'Satisfiable (Ux)B if it is not one of the wffs in *Γ.
(g) when i = 12, and when *Γ contains no formulae of the form (Σx)(x = a),
then each wff of the form (Ux)B is 'Satisfiable (Ux)B if it is one of the wffs
in T , and -'Satisfiable (Hx)B if it is not.

(B) where 3^i^6oτi= 13:

(a) each atomic wff B is in *μ iff it is in T , i.e., Be *Γ .=. Be 'μ and each
atomic wff B is in *μf iff it is in *y> i e > Be V -=- Be *γ.
(b) each wff of the form (Σχ)(χ = a) is in *μ iff it is in T , and each wff of
the form ~(Σy)(y = a) is in V iff it is in zy
(c) is as for A (c) except that i = 5 or 6 or 13 and for T we have T T .
(d) is as for A (d) except that i = 4 or 6 or 13 and for T we have ΎiT.
(e) is as for A (e) except that i = 5 or 6 and for T we have T T .
(f) is as for A (g) except that 2 = 1 3 and for fΓ we have T / Γ.

(C) where 7 ^i ^ 10 or i = 14 or 15:

(a) each atomic wff B is in *μ iff it is in f*Γ, i.e., Be *μ .=. Be fΓ and each
atomic wff B is in 'μ' ^ it is in ιγ, i.e., Be *μf Ξ Be *γ.
(b) each wff of the form (Σy)(y = a) is in ιμ iff it is in *Γ, and each wff of
the form ~(Σy)(y = a) is in V iff it is in *γ.
(c) is as for A (d) except that i = 8 or 10 or 14 or 15 and for *Γ we have
F 'Γ .
(d) is as for A (e) except that i = 9 or 10 and for T we have F T .
(e) is as for A (g) except that i = 15 and for T we have F T .
(f) when i = 14, each wff of the form (Ux)B (where x does not occur in B) is
'Satisfiable (\[χ)B if (Ux)B is in F T and -'Satisfiable (ϊlx)B if not.

14 Completeness Theorem: Given 'Satisfaction as defined above, for every
wff, B, there are three cases:

(a) when 0^i^2 or z = 11 or 12, *'Satisfiable (B) or -Satisfiable (B)
according as Be T or BfίιT, respectively.
(b) when 3 < i < 6 or i = 13, 'Satisfiable (B) or ~Satisfiable (B) according
as Be T T or BfίTiT, respectively.
(c) when 7 ^ ί < 10 or i = 14 or 15, 'Satisfiable (B) or -Satisfiable (B)
according as Be F T or JB/ F T, respectively.

Since by hypothesis, when 0 ^ί ^ 6 or 11 ^i < 13 our original QH= Con-
sistent (A) is in T then A is in T T when 3 < i < 6 or i = 13 and so
*Satisfiable (A). Also by hypothesis, when 7 **ί ^10 or i - 1A or 15 our
original QH= J Consistent (A) is in *Γ and by proof 7C is in F ί Γ and so
'Satisfiable (A).

Proof by induction over the construction of QH= (0 < ί < 15) formulae:

Case (a): where 0 ^ i ^ 2 o r i = 11 or 12.

(1) If B is an atomic wff, the theorem holds for B by 13 A (a).

(2) If the theorem holds for a wff B, then it also holds for ~B: If ~Be *Γ,
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then by Lemma \i BflιT, hence -Satisfiable (B), hence ~Be fμ since 'μ is
maximal, so Satisfiable (~B). If ~J3^T, then by Lemma 2% Be T , hence
Satisfiable (B), and by (C.~) -Satisfiable (-J3).
(3) If the theorem holds for wffs B and C, then it also holds for (B D C).
Suppose that (5 => C) e f#Γ then either - .Be 'Γ or Ce*Γ for the following
reason: if neither ~B e *Γ nor C e *Γ, then 5 e f<Γ and - C e £Γ (by Lemma 2z
and the construction of T ) , and so by Lemma 3i, since K £ D (~c ^ - ( £ ^
C)), thus - ( £ =) C); but then (B => C ) / f Γ (by Lemma lz) which contradicts
the supposition. So either ~ 5 e T o r C e ' Γ . Hence either - £ e 'μ or Ce 'μ.
(B => C) can be not Satisfiable only if Be 'μ and - C e *μ (C.3), and since
~ £ e ' μ or C e'μ it follows that Satisfiable (B 3 C). Suppose that (£ z> C ) / T ,
hence £ e T and - C e *Γ. So £ e fμ and - C e 'μ. Thus, by ( C . D ) and ( C . - ) ,
-Satisfiable (J3 z> C).

(4) If the theorem holds for any wff B then it holds for (Ux)B. There are
several cases where (ΐlx)Be T or (Ux)B^tT.

First, there are cases where x occurs in B in (llx)B:

(i) where for every α ; such that (Σy)(y = α ; )e f'Γ then iff B(cij/x)e T w i l l
(Π*)5 e 'Γ;

Proof: 1. Assume ( Σ ^ ) ^ = α ; ) e T and B(aj/x) e 'Γ for every «y, but (iLr) 5 ^
T (with the proviso fulfilled for the relevant T ) . So ~ (Ilx)Be T by Lemma
2i, now by the construction of ιΓ, since *Γ has the relevant P*-property,
and by Lemma 3i ~B(βj/x) e T contrary to hypothesis. So (Ux)Be T .
2. Assume (ΣyH y = α ; ) e T and (Πx) B e ZΓ, then by axioms 6 or 6a or 7 or
7a, and Lemma 3i B{βj/x) e T .

(ii) 1. where there is an a\ such that (Σy)(y = af) e T and ~B{cij/x) e XΓ,
then (Ux)BfίiΓ;

Proof: Assume that there is an αy such that (Σy)(y = a,j) e ;Γ and ~B{cij/x) e
*Γ, but (Ux) Be ιT. By axioms 6 or 6a or 7 or 7a, and Lemma 3i B(dj/x) e T
contrary to hypothesis, so (ϊlx)BfίtT.

2. where there is an α ; such that (Σ;y)(;y = α ; ) € *Γ and (Ux)BiίiT9 then
~B(dj/x) e T : Proof follows at once from the construction of T with
the P^-property and Lemma 3i.

(iii) where for every «/ such that ~(Σy)(y = cij) eιΓ and B(aj/x) e T , then
(ΠΛ:) B(x/aj) is arbitrarily in T or not (except that from Lemma 4/,
i * 0 or 11).

In these three cases, (i) to (iii), we show that if (Πx)Be'Γ then
Satisfiable (Hx)B, and if (Ex)B^T then -Satisfiable (ϊ[χ)B.

In case (i): If (Ux)BeiT under (i) then Satisfiable (Ux)B, i.e.,

(Ilx)Be V

Proof: Assume that for every a\ (Σ^)(v = α, ) and B(aj/x) e T and (ILv)l?/ 'μ,
i.e., since I#μ is maximal, ~ (ΠΛΓ) B{x/a,j) e *μ. So by (C.Σ) when ? is 0 or 11
or (C.Σ0) when z is 1 or 12 or (C.ΣJ) when ί is 2 ~B(af/x)e 'μ. But since
B(aj/x)eίT, Satisfiable B(cij/x). So B{(ij/x)ei\± which is absurd. Sounder
case (i), if (Π#)5e T then Satisfiable (Ux)B.
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If (Ux) B^T under (i) then -Satisfiable (Ux)By i.e., (Ux)B / 'μ.

Proof: Assume that for every aj (Σy)(y=aj) and ~B(aj/x) e fΓ and (Π#) £e *μ
So by assignment 13 A (b) and by (C.Π) when £ is 0 or 11 or (C.Π0) when £ is
1 or 12 or (C.Π )̂ when £ is 2 B(aj/x)eiμ.. But since ^B(aj/x)eiT then
Satisfiable ~B(cij/x), so B(aj/x)^[iμ which is absurd. So under case (i), if
(n#)£/Tthen -Satisfiable (n#)£.

In case (ii): If (Ux)B/iT under (ii) then -Satisfiable {ϊίx)B, i.e.,

Proof: Assume that there is an aj such that (Σy)(y = «7 ) e T and B(βj/x) / T
but that (ΠΛΓ)^€ 'μ.

So by assignment 13 A (b) and by (C.Π) when £ is 0 or 11 or (C.Π0) when
i is 1 or 12 or (C.Π£) when £ is 2 B(ai/x)e % But if B(aί/x)^iV then
-Satisfiable B(cij/x), i.e., Biβj/x)^ which is absurd. So under case (ii),
if (Π#) JB/'Γ then -Satisfiable (ΠΛΓ)B.

If (ΠΛΓ) J5e *Γ, then it is as for either case (i) or case (iii).

In case (iii) if (Ux)BeiT then by 13 A (c) and Lemma 1£ Satisfiable
(Ux)Bf and conversely.

Secondly, there are the cases where x does not occur in B in (Πx)B.
These cases fall into two groups. First, there are the cases where T
contains at least one formula of the form (Σx)(x = a). If £ is 0 or 11, T will
always be of this kind:

(iv) when 0 ^i ^2 or i = 12 if £ e ' Γ then (Ux)BeiT because of KJB 3
(Πx)B(0 ^i < 12) and Lemma 3z or axiom 6 when i = 12.

(v) when i = 0 or 11 if (ΐlx)Be T then Be T (axiom 6 and Lemma 3i).
(vi) when £ = 0 iff (ΠΛΓ).Be T then jBe fΓ.

(vii) (a) when i = 2 or 12 if ~ £ e T then whether (ΠΛΓ) Ee *Γ is arbitrary,
(b) when i= 11, and 5e T, then whether (ΠΛf) -Be T is arbitrary.

The second group of cases are when T does not contain any formula of
the form (Σx)(x = a):

(viii) when i = 1 or 2 if Be *Γ then (Π#) J5e £Γ.
(ix) (a) when i = 1 or 2 or 12 and ~J3e*Γ then whether (ΠΛτ)£e*Γ is

arbitrary,
(b) when £ = 12 and Be *Γ then whether (Ux) Be *Γ is arbitrary.

In these six cases we show that if (Ux) Be T then Satisfiable (Ux)B, and
if (Ux)B^Γthen -Satisfiable (Ux)B.

In case (iv) if (Ux)B^T then -Satisfiable (Ux)B. Assume (Ux)B^T
but (Ux) Be % So by (C.Π) or (CUV) Be 'μ, so 5 e T , but - £ e T by axiom
2, Lemmas 2£ and 3£; which is absurd.

In case (v) if ( Γ L ^ e ' Γ then Satisfiable (Ux)B. Assume (Ux)Be{T and
-(Π#)J3e'μ, so by (C.Σ) - £ e z'μ, i.e., J5/T. But by K(IL*r)£D£ and
Lemma 3£ Be T ; which is absurd.
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In case (vi) it follows from (iv) and (v).

In case (vii) (a) if (Ux) Be **Γ then Satisfiable (Ylx)B by 13 A (d), (g);
(b) if (Ux)Be T then Satisfiable (Πx)B by 13A (f).

In case (viii) if (ΠΛΓ) Bf[T then -Satisfiable (Ux)B as in (iv).

In case (ix) (a) if (ΠΛΓ) Be fΓ then Satisfiable (Ux)B by 13 A (e);
(b) if (Ilx) Be {T then Satisfiable (Ux)B by 13 A (e).

Case (b): where 3 < i ^ 6 o r i = 13.
Proof of the theorem is as in Case (a), except when a formula contains

a free variable, a, which occurs in a formula of the form ~(Σx){x = a) in
T / Γ. Now if ~(Σx){x = a) e T 'Γ, then by the construction of T T every formula
of QH= containing a is in T 'Γ, since every such formula is in *y.< Also, by
13B(b), Lemma 2ί and the construction of T and *y> i f ~(%x)(x = a) e T T
then ~(Σx)(x = a) e *μf, a n d s o > b v (C.φe) every formula containing a is in
*μf, and 'μ' U *μ. So, in the case of the exception, if any formula B
(containing any free variable, #, for which a formula of the form
~(Σ#)(ΛΓ = a) e T T ) is in T l Γ then Satisfiable (B).

Case (c): where 7 ^ί < 10 or i = 14 or 15.
For formulae which contain no free variables it can be shown by means

of proofs parallel to those in Case (a) that if Be'T then Be F T and
Be [<μ - ( V Π <μ)] or if B^T then £ / F T and £/[ f"μ - Cμ f Π Σμ)], and so
Satisfiable (B) or ~ Satisfiable (J5), respectively. For formulae which
contain free variables: if a wff B contains at least one free variable, <z,
such that ~(Σy)(y = a) e T then Beιy and J 3 / F T . By 13C (b) - {Σy)(y = a)e
tμ' and so by (C.φe)Be z"μr and so J5/[J'μ - ( V Π z'μ)] and so -Satisfiable
(J5). Conversely, if a wff 5 contains no free variable, a, such that
~(Σy)(y - a)elT then J 5 e F T and is subject to the same proofs as for
formulae with no free variables such that if Be F T then Satisfiable (B).

Parallels for Case (a)(4).

(iv) when 0 *£i < 10 or i = 12 or 13 or 15.
(v) when i = 0 or 1 or 3 or 5 or 7 or 9 or 11.

(vi) when i = 0 or 1 or 3 or 5 or 7 or 9.
(vii) (a) when i = 2 or 4 or 6 or 8 or 10 or 12 or 15.

(b) when i = 11.
(viii) when i = 1 or 2 or 5 or 6 or 9 or 10.

(ix) (a) when i = 1 or 2 or 5 or 6 or 9 or 10 or 12 or 13 or 15.
(b) when i = 12 or 13 or 15.

15 We have considered the sixteen systems QH= (0 ^i < 15), which are
parallel to the systems in "Completeness theorems for some presupposi-
tions-free logics." 8 The systems QH= ( O ^ i ^ l O ) are parallel to the
systems QC= (0 ^i < 10) which take up the major part of that article.

8. Op. cit.



62 RODERIC A. GIRLE

QH= (11 < i < 15) are parallel to the variant systems set out in the article's
Appendices. The basis of the variance is to be found in the treatment of
the vacuous quantifier.

It must also be pointed out that QH= (0 ^ i ^ 15) are parallel to
QC= (0 ^ i ** 10) and their variants, but are not extensions of the systems.
In the semantics used in this paper we only take cognisance of the situation
where statements about non-existing (possible) objects are consistent or
inconsistent in exactly the same way as statements about existing objects.
Furthermore, our logic is existence presupposition free only in the sense
in which QC= is existence presupposition free. So we can qualify our
statement that the QH= systems are not extensions of the QC= systems to
the extent that we can take the QH= systems to be extensions of QC=. The
question of extending the other QC= systems is now considered.

Let us briefly consider the situation in which we modify QC=, first by
excluding from their Primitive symbols free variables, then renaming the
individual constants "free variables," and then providing model system
semantics for the modified systems. Then we extend the systems, let us
call them MQC=, by the addition of the Π symbol and the axioms in which Π
occurs. Instead of Axiom 11 we would have {Ex){x = a) 3 (Σx)(x = a).

The extensions of MQC= (i is 0 or 3 or 4 or 7 or 8 or 14) are not
interesting because there will be no formulae of the form ~{Ex){x = a) in
any model set. So, nothing consistent can be said about non-existing
objects, whether possible or impossible. Similarly, the extensions of MQC-
where i is 9 or 10 or 15 will rule that everything said about non-existent
objects is inconsistent. The extensions of MQC- where i = 5 or 6 or 13
allow one to say anything whatsoever about non-existent objects, whether
possible or impossible, and to have any such statement counted consistent.
The sum total of these considerations would indicate that the only
non-vacuous extensions of the system MQC= would be in the cases of MQC=
where i is either 1 or 2.
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