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PROPOSITIONAL AND PREDICATE CALCULUSES
BASED ON COMBINATORY LOGIC

M. W. BUNDER

In this article we shall establish various propositional and predicate
calculuses based on combinatory logic (see [4]) with suitable restrictions
on the variables. These restrictions are needed to avoid Curry’s paradox
([4] pp. 258, 259). We require, Rule E, the rule of restricted generality:

Exy, xutyu,

and the iterated deduction theorem for =.
If Xo X3y« . ., Xu " Y wheve no w, occurs in any X; for j <k, and if for all
k< m Xo, X3y ooy Xp b L([pt1] o), then XoHX, Dy 0 X Oy Y

From this deduction theorem we obtain deduction theorems for implication
(P or D) and for universal generality (IT or EE).

If X, X1y« « o, Xn " Y and if for all k< m Xy, Xy, . . ., Xp -H(X,y,) then
X,FX, D X, ...D0Y.

If Xo, X15 - -« Xt Yu for all u, and u does not occur in any Xj, then
X0y X1y ... XH1TY.

—

The deduction theorem for E was proved from certain axioms in [2], the
other two are derived from it.
If we then take the additional axiom

Axiom PH. FHx Oy . Hy Oy H(x D ),

we obtain all of the absolute (or intuitionistic) calculus of pure implication.

—

If we then introduce a slightly more complex axiom connecting = and H,

1. In {2] L was defined as FAH or B(EZA(BH)) and HX was interpreted as ‘X is a
proposition.'’ Here however we take L as primitive and define H by BLK. If we
have L = FAH and H primitive, we need either Axiom 2 or Axiom 8 (—LA) of [2] to
prove Theorem 3 below. Xu D, Yu stands for EXY. Note that this form of the
deduction theorem avoids the Kleene-Rosser paradox (See [3]).
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which entails Axiom PH, we can define in terms of E all the propositional
connectives and quantifiers, in such a way that the complete intuitionistic
predicate calculus can be established with suitable restrictions. We then
have classical calculus if we adjoin an axiom expressing Peirce’s Law.

1. Pure Implicational Logic It is well known that pure implicational
intuitionistic logic can be axiomatically based on modus ponens and two
axiom schemes. Modus ponens follows directly from Rule = and restricted
versions of the axiom schemes follow from Axiom PH, the deduction
theorem for implication and modus ponens:

Theorem 1. Hx,Hy~xD.y D x.
Theorem 2. Hx,Hy,Hz+-xD .y D 2z:2:xD2y.D.xD 2,

We can therefore state a more general theorem:

Theorem 3. If X is a theovem of pure implicational intuitionistic logic and
X1, X2, ..., Xz ave the free propositional variables in X, then Hx,, Hx,, . .
Hxn X is a theovem of the present system.?

)

2. Absolute Propositional Calculus We shall now consider the full intui-
tionistic propositional calculus. In such a system, conjunction (A), alterna-
tion (V) and negation (—) are independent of each other and of P, All of
these would therefore normally have to be taken as new primitives.
However, it is found that they can be defined in terms of P and some
extraneous (to the propositional calculus) obs namely E, H and I.* Negation
will be treated in the next section; here we will treat the absolute or
positive intuitionistic system.

Definition A. A=[x,y]HzD:.(x2.yD2) D z.
Definition V. V= [x,y]Hz Dz : (x D 2) D.(y D 2) D 2.

Using these, and Axiom 7, +LH, of [2] we can prove the basic axioms
needed for A and V in intuitionistic logic. In order to accomplish this,
theorems concerning the propositionality of A and V are needed; and since,
so far, we only have an axiom to give us H(Pxy), and A and V are defined in
terms of E, an axiom for H(Exy) is needed. For it, we will take a form
which will lead to what we had for P in Axiom A7 of [1].

Axiom 9. FLx Dx. FxHy Dy H(Exy).
This leads to the following results.

Theorem 4. Lx, FxHy ~H(Exy).

Corollary 4.1. If FH(xw) for all u, then -H(Ilx).
Corollary 4.2. If xu —H(yw) for all u then Lx+H(Exy).
Theorem 5. Px(Hy), Hx -H(x D y).

2. This is proved fully in Theorem 25.

3. Such definitions of A and V occur in LeSniewski’s protothetics and related
domains, but the definitions given here are suggested in principle by Ono [7].
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Proof. Put Kx for x and Ky for y in Corollary 4.2. Now if x+Hy, then
L(Kx)-H(x D y) and the result follows by H= BLK and the deduction
theorem for P.

Corollary 5.1. =F, HHHP.

An alternative to Axiom 9, which also gives the corollary to Theorem
5, is

Axiom 9. FLx O, . Ly D, HExy).

However, the other form seems to fit the three-valued tables of [2] more
closely. Now we come to the theorem for H(A xy).

Theorem 6. Hx, Px(Hy)-H(Axy).

Proof. x, Px(Hy)=Hy, so Hz, x, Px(Hy)~H(y D z) by Theorem 5; hence by
the deduction theorem for P, Hz, Hx, Px(Hy) - Px(H(y D 2)). Therefore by
Theorem 5 again, Hz, Hx, Px(Hy) ~H(x .y D x). Then Hz, Hx, Px(Hy)+
H((x 2.y D 2) D z), hence by the deduction theorem and ~LH, Hx, Px(Hy)
FHH([z] . (x D. » D 2) D 2). Thus by Theorem 4, Hx, Px(Hy) - H(AxY).

Corollary 6.1. Hx, Hy ~H(Axy).
Now the remaining results for A can be proved.
Theorem 7. Axy,Hx, Hyrx.
Proof. By definition A and Rule E,
Axy,Hx,Hz, x D .y D z+z. (1)
Then putting x for z and using Theorem 1, we get Axy, Hx, Hy - x.

Theorem 8. Axy,Hx, Hy+y.
Pyroof. We have Hy+y D y, so by Theorem 1, Hx, Hy+x>.y 2 v, and
putting v for z in (1) gives the result.

Theorem 9. x, y+Axy.

Pyoof. By modus ponens, x,y,x 2.y 2 z+z, and as Hx,Hy, Hz-H(x D.
y D z), we have by Axiom 6 and the deduction theorem for P,* x, y, Hzr
(x D.yD2) Dz, The result then follows by the deduction theorem and
Definition A.

It can be seen from the three-valued tables that the conditions for
H(Vxy), should not be the same as those for H(Pxy) and H(Axy), in fact we
need FHx and -P(—x)(Hy). As we have no negation as yet, we can only
prove Hx, Hy~H(Vxy). We can also prove the three other basic rules
for V.

Theorem 10. Hx, Hy —H(Vxy).
Pyoof. Hx,Hy,Hz+H((x 2 2) O.(y D 2) D 2), so by ~LH, Theorem 4, and
Definition V, we get the result.

4. Axiom 6 of [2] is FEIH.
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Theorem 11. Hy, x+Vxy.

Proof. %, x 2 z+ 2z, so by Theorem 1 and Axiom 6,Hz,Hy, x, xD z+~(y D
z) D zand Hy, x,Hz-x2 2z .D. (y D 2) D 2. Therefore, Hy, x+Hz D>, . x D
z .2 .(y D 2) D z, which is the required result.

Theorem 12. Hx, y+~Vxy.
Proof. y,y> z+z,s0 y,Hz-yD 2>, 2z, and by Theorem 1, Hx, y, Hz
XD z:D:y>D 2z .D, 2. Thus, as in Theorem 11, Hx, y -Vxy.

Theorem 13. Vxy,x 2D 2,y D z,Hz 2.
Proof. By Definition V we get the result.

3. Negation To this positive system we now add negation, which can also
be defined. As a result, as we shall see, we obtain the full intuitionistic
calculus. Consider the ob EHI. As -LH and Hx+~H(lx), and so ~-FHHI, we
get FH(EHI!). Now for all x, EHI, Hx - x; so by the deduction theorem for P,
Hx+=EHI D x.

The proposition EHI is therefore one which implies any proposition,
and thus EHI can be used as a ‘‘standard false proposition’’ in the sense of
Wajsberg [8], and so negation can be defined in terms of it. Thus we adopt

Definition —. — = CP(EHI).
From this, the two intuitionistic axioms for negation can be derived, as

well as - FHH —.

Theorem 14, ~FHH —.
Pyroof. By Theorem 5, FH(EHI), so Definition — gives, Hx~H(—x). By the
deduction theorem the result follows.

Theorem 15. Hx, Hy-x 2> —y .D. y O —x.

Proof. x O —y, x -—y so by Definition —, x D —y, y, x - EHl. Therefore,
Hx, x O —y, y+—x, and by two applications of the deduction theorem for P,
we get the result.

Note that in the above theorem, we obtained the rule:

Theorem 16. x, —x +EHI,
which will be useful in the later work.

Theorem 17. Hx,Hyr—x>. x D y.
Proof. By Theorem 16 we have —x, x,Hy y, so the result follows by the
deduction theorem for P.

Now that we have obtained all the axioms of intuitionistic propositional
calculus HJ (see [5]) we can state the following general theorem.

Theorem 18. If T is an assertable formula of HJ whose variables are
X1y o o oy Xp, thenHxy, . . . ,Hx, =T is a theovem of this system.

4. Intuitionistic Predicate Calculus In order to establish predicate calculus
results, we need obs which do the work of quantifiers. It is obvious that
[x] (which is not an ob, but a word in the language which has no meaning),
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can serve as a universal quantifier in the sense that, II({x] Xx) or ILX can be
interpreted in the same way as (Vx)Xx, i.e., for all x, Xx holds. However,
the range of such a quantifier may be too wide, so it is preferable to use
Eal[x] as a quantifier, where the ob @ is an indeterminate representing the
fundamental domain. It may be specialized to E, L, A or some other
domain. Some of the usual properties of universal quantification can now
be proved for Ealx].

Theorem 19. La, FaHx, au -Eax O xu.
Proof. Eax, au - xu, so as La,FaHx+H(Eax), the result follows by the
deduction theorem for P.

Theorem 20. La, FaHx, FaHy - Ea(®Pxy) O . Eax D Eay.
Proof. au, Ea(®Pxy), -P(xu)(yu) so

Ea(dPxy), Eax, au -yu. (2)
Now by Theorem 4,
La, FaHx ~H(Eax). 3)

Also FaHx, au+H(xu), and FaHy, au -H(yw); so FaHx, FaHy, aurH(P(xu)
(yu)), and by Theorem 4,

La, FaHx, FaHy -H(Ea(3Pxy)). (4)

Then (2), (3) and (4), one application of the deduction theorem for E and two
of that for P give the result.

Theorem 21. La, HX+X D Ea([u]X), wheve u is not involved in X.
Proof. au, X+KXu, so La, X+Ea((u]X) if u is not involved in X. The
result then follows.

It can be seen that given the interpretation of ‘“(Vx)’’ for ““Ea[x],” in
‘‘classical’”’ notation the following theorems have been obtained with
various sections restricted to being propositions.

I, —(Vx) X(x) .D. X(¢).
NP H(Vx) . X(x) DO Y(x) :D: (Vx) X(x) .D. (Vx) Y(x).
I, —(Vx).Z D (Vx) Z where x is not in Z.

These are simply the axioms for universal quantification as given in [6] or
[5] for an intuitionistic system.

A new ob by means of which existential quantification can be repre-
sented is now defined.

Definition Z. Z = [x,y] .Hz D, .(xu Dy.yu D 2) D z.

Taking the range of quantification as a, as before, Za[x] can be taken as the
existential quantifier, in the sense that, Za([x] Xx) can be interpreted in the
same way as (Jx) Xx, i.e., as ‘‘There exists an x such that Xx.”> Now some
properties of this form of existential quantification are proved.

Theorem 22. La, FaHx -H(Zax).
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Proof. FaHx, au, Hz -H(xu D z), so by the deduction theorem, FaHx, La,
Hz -FaH([u].xu 2 2); so by Theorem 4 with a for x and [«].xu D z for y,

La, FaHx, Hz -H(au Du . xu D z), (1)

and then La, FaHx, Hz —H((au D, . xu D 2) D z). Then as ~LH, we have as
above La, FaHx ~H(Hz D, . (au D, . xu D z) D z). We have then La, FaHx+
H(Zax). Q.E.D.

Theorem 23. La, av, FaHx+~xv O Zax.

Proof. By (1) in the proof of Theorem 22, La, FaHx, Hz -H(au D4 . xu D z).
Therefore, La, FaHx, Hz, av, xv(au Du . xu D 2) D 2, by the deduction
theorem for P. By the deduction theorem for E and -LH, La, FaHx, av,
xv+ Zax; and as FaHx, av -H(xv), we have La, FaHx, av, ~xv DO Zax.

Theorem 24. La, FaHx, Hy ~(Ea[u].xu D y) D. Zax D y.

Proof. Tax,Hy - (au O,.xu D y) Dy, so (Ea[u].xu D y), Zax, Hy ~y. Hence
by Theorem 22, step (1) in the proof of that theorem, and the deduction
theorem for P, La, FaHx, Hy - (Ealu].xu D y) D. Zax D y.

Theorems 23 and 24 correspond to the following predicate axioms from
[5]:

ToFA() DO, (3x) A(x),
Z,H(Vx) . A(x) D C :D2: (Ix) Alx) .D. C.

As we have no restrictions on ¢ in the above theorems, they all hold in the
case where a is an ‘‘empty universe.’”’ Suppose we consider for the
moment that a is B—(WQ). Then in Theorems 19 and 23 the premises au
and av will not hold so these theorems become vacuous.

5. A General Theovem on Predicate Calculus 1t is shown in [5] that II,,
P, I1,, Z,, and Z,, together with Rule P and a rule for generalization, plus
the propositional calculus axioms, are sufficient for all of the intuitionistic
predicate calculus. Here we have under certain restrictions propositional
calculus, II,, IIP, II,, Z,, Z;, Rule P and also a rule of generalization:

Rule Ea. If aut xu then La - Eax.

Thus any theorem of intuitionistic predicate calculus should be obtainable
here, with certain restrictions on the variables. This we shall prove below.
Also if we add Peirce’s law, which does not alter the proof, we have the
corresponding theorem for classical predicate calculus (see Theorem 26).

Before stating this theorem we shall specify what we mean by
predicate calculus. It is a formal system formulated as follows:

The primitive notions are individual variables, propositional variables,
functional variables of any degree and predicate variables of any degree.®

We define a class of terms inductively as follows: Individual variables

5. The degree is the number of arguments a predicate ranges over or the number of
arguments a function has.



PROPOSITIONAL AND PREDICATE CALCULUSES 31

are terms; if f is an wn-adic functional variable and ¢,, . . ., {, are terms
then f(¢,, . . .t,) is a term.

Formulas are defined inductively as follows: Propositional variables
are formulas; if g is an n-adic predicate variable and ¢,, . . . , {, are terms
then g(t,,...,¢,) is a formula. If A and B are formulas then —A, 4 OB,
ArB, AvB, (Vx)A and (3x)A are formulas.

Certain of these formulas we will designate as axiom schemes. We
will take the ones for the propositional calculus (in [5]) as well as the five
mentioned above. Also we will have modus ponens and the rule of generali-
zation.

We now formulate a translation from the predicate logic to the
combinatory system.

If ¢t is a term, its translation is an ob £’ such that; if £ is an individual

variable, t'is ¢; if £ is f(ty, . . . , ta), ' is ft] . . . tn.
If X is a formula, its translation X’ is defined thus: if X is a
propositional variable, X' is X; if X isg(t,, ..., t), X'is gt ... tn; if X

is =Y, X'"is =Y'; if X is YvZ,X"is VY'Z'; if X is YA Z, X"is AY'Z"; if X
is YD Z,X'is PY'Z"; if X is (Vx)A(x), X' is Ea[x](A(x))"; if X is (3x) A(x),
X'"is Za[x](Ax))".

With each ob of the combinatory system obtained in this way, we

associate a sequence of obs called the set of grammatical conditions for it.
Given an ob T this set contains the following:
(i) La, (ii) ax for each individual variable x in T, (iii) Hy for each proposi-
tional variable y in T, (iv) F,a . .. aHz® (with n a’s) for each predicate
variable z of degree n in T, and (v) Fna . . .at (with m + 1a’s) for each
functional variable ¢ of degree m in T. Now we prove three lemmas which
will be used in the proof of the theorem.

Lemma 1. If tis a term and N is the set of grammatical conditions for t',
then, N+at'.

Proof. The proof is by induction on the structure of ¢. If £ is a primitive
term it is an individual variable and so N will be at’ and therefore N+ at’.

Now we assume that the lemma holds for terms ¢, .. ., f; involved in
forming ¢’ = wt{ . . . t; where w is a functional variable of degree #. Now
by the hypothesis of the induction N; at,-' (1 <i < k) where N; is the set of
grammatical conditions for t;. Therefore Fpa .. .aw, Ny,. .., Ny a(w, .
ty) and as Fpa . . . aw, Ny, . . . , N, must make up N, N+at'.

Lemma 2. If U is a formula and N is the set of grammatical conditions for
U, then N-HU'.

Proof. The proof is by induction on the structure of U.

If Uis a prime formula U’ takes the form pt; . . . t,. We then have in
the N appropriate to U', Fpa ... aHp, and Ny, . . . , Nn, the sets of gram-
matical conditions for the terms ¢, ..., t,. But by Lemma 1, N, at/.

6. Fix;xoxg=Fxjxoxzand FpraX1%z . o - Xpyo¥nis = FpXp o o o X (FXp1 X 542)Xnes.
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Therefore N+H(pt{, . . . ,ts). That is, N-HU'. Alternatively U can be a
propositional variable. Then also NF-HU’. This can be regarded as the
case m = 0 of the above case.

Now we consider in the inductive step formulas made up by means of
subeirmulas, for which the theorem is assumed, and connectives or
quantifiers. If U= U, D U, where we have N, -HU; and N,-HU;, and where
N, and N, are sets of grammatical conditions for U, and U,, then N,
N, =H(PU{U;). Thus N+HU'.

A similar argument holds if U is U,v U, or U; A U, and the case where
U is —U, is trivial.

If U= (Vx)U,(x) we have N, -H(Ulx) where N, includes N and ax, and U,
is [x](Uy(»))’. Thus N, ax +~H(U;x) and so as N includes La, N+ FaHU,,
which by Axiom 9 gives ~H(EaU{). Similarly we get the case for existential
quantification. Thus we have completed the induction and we have proved,
NFHU'.

Lemma 3. If N+T' wheve N is a set of grammatical conditions which
includes M, the set of grammatical conditions for T', then, provided a is
nonempty, M+T'.

Proof. Consider the grammatical conditions in N which are not in M.
These will be conditions on variables not in T'. If there is a condition of
the form au, replace u by a (constant) member of a (here we assume that a
is nonempty). If there is a condition of the form Hy replace y by QKK.” If
there is a condition of the form F,a ... aHz (with » a’s) replace z by
K(K(...(WQl) ...) where there are n K’s. If there is a condition of the
form F,a ...aw (with n + 1 a’s) replace w by K(K(. .. (KU) ...)) where
there are n K’s and where U is a member of a. The extra conditions in N
are thus true and can be removed.

Corollary. If M is the set of grammatical conditions for T' and N is the set
of grammatical conditions for S' then if T' =S'" and M +T', N-S',

Proof. We obtain immediately M +~S’. We then remove conditions in M that
are not in N by means of Lemma 3 and add conditions in N that are not
in M.
Now we can state the theorem.

Theorem 25. Let T be an assevtible formula of the intuitionistic puve fivst
ovder predicate calculus with individuals, predicate and functional wvari-
ables. Let a be nonempty and let M be the set of grammatical conditions
for T', the translation of T into the combinatory system. Then in the
present system, M+~T"'.

Proof. We shall show that substitution can be carried out in the com-

7. QXX is interpreted as X = X. QKK is an axiom in [2].
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binatory system, on the ‘‘axiom schemes,’’® just as it can be in the predi-
cate calculus, and retaining the correct grammatical conditions.

Consider the case where T is an instance of the first axiom scheme,
viz. =X D. Y2 X. The translation of T is PX'(PY’X'), and by Rule E and
Theorem 1 we have, HY', HX'-PX'(PY'X’'). Now as M contains the
grammatical conditions for X' and Y’ the result follows by Lemma 2.

Similarly we can establish the result for the other propositional
calculus axioms, using Theorem 2, the theorems listed after Theorem 13,
and Theorems 15 and 17.

Now consider the axiom scheme II,. Let T be an instance of this, viz.
(Vo) X(v) O X(U). In this case T'is P(EaX")(X'U’), where X'is [v](X (v))".
Substituting X' for x in Theorem 19 we have La, FaHX', au -ZaX' D X'u,
where we take u to be a variable not involved in T'. As M will contain La
and the grammatical conditions for X', we have by Lemma 2,

M, aur+-EaX'D X'u. (1)

If X'u does not involve u, T' does not involve u# and by Lemma 3 we can
drop the premise au and by substituting U’ for u in the resulting statement
we have the required result. If X'z does involve u, T' will involve all the
variables in U’. Hence by Lemma 1, M+au'’. Using this, and (1) with U’
substituted for v, we obtain the result.

Similar results follow for the remaining axiom schemes, using
Theorems 20, 21, 23 and 24.

Now we proceed to prove by induction that the translation of any
theorem of the predicate calculus, with its grammatical conditions is
assertible in the combinatory system.

We already have the result if T is (a substitution instance of) an axiom
scheme; if T is not that, we will replace every use of an axiom in its proof,
by the theorem which is the translation of the axiom and any use of modus
ponens and generalization by Rules P and Za.

Assume, now, in a deductive step that all steps in the proof of T up to
the kth (these are all theorems of the predicate calculus) obey the theorem.
Let the translation of these steps be T,, T,, ..., T, and their sets of
grammatical conditions M,, M,, . .., M,. The next step, T4, then comes
from two previous steps T; and T;(=T; 2 Ty41), or from T; and generaliza-
tion so that Tyy, = Ealu]T;.

In the first case we obtain from M;+T; O T,y,, and M; =T;, that
M]' FTp4y a8 M; C M]'.

Also My, € M;, so by Lemma 3 from M; we can drop all the gram-
matical conditions for variables not in Tp4;. Thus Mgy FTey.

In the case of generalization, 7; must contain all the free variables in
Ty41, plus an extra one say u, over which the generalization is made. So M;
consists of M., and qu. Now as the theorem holds for T;, My, au -T;

8. It is also possible to prove this theorem in systems having a primitive substitu-
tion rule and axioms rather than axiom schemes.
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so by Rule Ea, since Ea([u]T;) = Typiy, and La is part of My, Myqy - Ty
Thus the theorem is proved for all cases.

The theorem can be extended to higher order predicate calculuses, for
example if we include a predicate variable z ranging over individuals,
propositions, and other predicates we would have to include in the
sequence M:

Foa...aH...H(Fa..aH. . H(Fja..) ...H(F,..H) ... Hz

where the total number of variables is % and there is an a for each
individual variable, a H for each propositional variable and an appropriate
F;a..aH..H(..) ...Hfor each predicate variable that z ranges over.

6. Classical Propositional and Predicate Calculus The system we have
developed in the previous sections can be extended to a classical system by
simply introducing Peirce’s Law.

Axiom 13. FHy Dy Hx D (x D y) D x. D x.

The addition of the axiom obviously will not affect the proof of Theorem 25,
so it can easily be extended to the classical system.

Theorem 26. If Axiom 13 is adjoined Theovem 25 holds for the classical
system.
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