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A FORMAL CHARACTERIZATION OF ORDINAL NUMBERS

NICHOLAS J. DE LILLO

In this paper we present the axioms for a first-order finitely
axiomatized theory ORD, some of whose models are relational systems &
with the following particular characteristics:

(i) S, the domain of discourse of &, is any ordinal number;
and

(ii) each primitive relation symbol of the alphabet of ORD is interpreted in
& in the standard manner.

Of special importance is the fact, demonstrated below, that ORD is an
example of a theory in which the proof-theoretic notions of explicit and
implicit definability, as stated in Beth [1], [2] and Smullyan [3], may be
illustrated.

1 Basic Concepts. Let T be a first-order theory whose non-logical axioms
are the set of sentences denoted by I',. Let P, P;, P, ... be the relation
symbols of the alphabet of T which occur in at least one member of I',. In
addition, P will be assumed to be an z-place relation symbol for some
positive integer .

P is explicitly definable from P;, P, ...in T if there exists a
wif U(xy, %3, . . ., %,), all of whose relation symbols occur in the list
Py, P, .. ., such that

To (VX )(V3) « . o (V) [Pley, Xgy v o oy %) 2 Ulxy, %oy v . oy %))

Let P' be a relation symbol of the alphabet of 7' having the same
number of places as P. Assume P’ does not occur in Iy, and let I'§ be the
result of substituting P’ for P in every sentence of I’y in which P appears.

P is implicitly definable from P, P, . . .in T if
1"0 U 1"6 *—(Vxx)(‘v’xz) LR (vxn) [P(xb xz, LS ] xn) : P'(xh x29 .. ',x")]'

2 The Theory ORD. The first-order theory ORD is, basically, a theory
with equality, such that the four binary relation symbols, =, C, C, and €
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exhaust the list of non-logical symbols in its alphabet. The set I, of
non-logical axioms of ORD consists of the following ten members:

ORD 1 (Va)(V3)(V2) [((x c 9) rly C2)) — (x € 2)];

ORD 2 (V%) [~(xC %)];

ORD 3 (V#)(Vy) [(x Cy) - ~(y € #)];

ORD 4 (VA)(VY) [(x Sy vy Cx)vix=y)];

ORD 5 (Va)(Vy) [(x C ) 2 ([(V2) [(2 %) — (2 S y)]ra~(x = p)]v(x = ))];
ORD 6 (VA)(V9)(Va)(Vu) [(x = 9) = [(z =) — [(x € 2) — (y € W)]]];

ORD 7 (Va)(Vy)(Va)(Ve) [(x = y) = [( = w) — [(x € 2) = (v c W]]];

ORD 8 (V) (Vy)(V2)(Vu) [(x =) = [(z = u) — [(x = 2) = (v = W)]]];

ORD 9 (Vx) [x C x];

ORD 10 (V) [x = x].

3 Ilustration of Explicit and Implicit Definability in ORD. Using the
notation of the last section, take for P the relation symbol C and for P’ the
relation symbol €. Then the set T consists of

ORD'1 (VX)(V¥)(V2) [((xey) a(ye 2) — (xe 2)];

ORD' 2 (Vx) [~(xex)];

ORD’ 3 (Vx)(Vy) [(xey) — ~(yex)];

ORD' 4 (V2)(Vy) [(xey) v(yex)vix = ];

ORD'5 (Vx)(Vy) [(x C ) & (((V2) [(ze x) = (ze p)]a~(x = 9)]v(x = 9)];
ORD' 6 (Vx)(V))(V2)(Vu) [(x = 9) — [(z = w) — [(xe 2) — (ye w)]]];

and where ORD' = ORD » for n=17, 8, 9, 10.
We then have the following

Theorem 1: With P, P', T, and I'} so descvibed, P is implicitly definable in
ORD by U(x, v), where U(x, y) is the wff [(x C y) A ~(x = y)].

Theorem II: With P, P', Ty,and T} so described, P is implicitly definable
in ORD, i.e., from ToUT} it is possible to deduce (Vx)(Vy) [(x C y)=(xe v)].

In proving each of these theorems, we omit the details of formal logic,
and merely indicate how each step follows from preceding ones by invoking
the appropriate member of I, or I'). It should, however, be pointed out that
a proof of each completely within the syntax of ORD is possible.

For the proof of Theorem I, first assume that (x C y). If, in addition,
(x = y) is assumed, then these two would yield (x C x) by ORD 6; but (x C x)
is impossible by ORD 2. Thus, (¥ C y) implies ~(x = ). On the other
hand, suppose (¥ C ¥) did not imply (x C »), i.e., suppose both (¥ C y) and
~(x C y) were true. Since ~(x C y) is the case, ~([(V2)[(z Cx) — (2T y)]a
~(x = y)]v(x~y) follows by ORD 5. That is, ([~(V2) [(2C %) — (2 C y)]v
(x = 9)]a~(x = 9)) results from ~(x C y). Since ~(x =~ y) has already been
established, it must also follow that ~(V2) [(z C %) — (z C y)] is true, i.e.,

1. Throughout this paper we adopt the convention of placing the binary relation
symbol between the symbols being related.
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there must exist some w such that (w C x) but ~(w Cy). Hence, some w
exists such that (w Cx) and either (y C w) or (y = w), by ORD 4. Suppose
(y = w) were true. Since (w C x), it would follow that (y C x), which is
impossible by the original assumption that (x € y) and ORD 3. Further-
more, if (y C w) were so, then (¥ C w) coupled with (w C x) would again
yield (y C x) by ORD 1. Since all possibilities have been exhausted, the
conclusion is that it is impossible for (¥ C y) and ~ (¥ C ¥) to hold jointly.
Thus if (¥ C y) is true, then (x C y) follows, i.e., (¥ C y) implies (x C ¥).
Therefore, if (x C y), then both (x C y) and ~ (x = y), i.e.,(x € y) implies
[(xC Pr~(x=].

Conversely, suppose it is the case that both (x C y) and ~(x = y). In
addition, suppose it were false that (x C y). Then, by ORD 4, either (x = y)
or (y C x). But it is immediate that (x = y) is impossible, since it has been
assumed that ~(x = y). Furthermore, suppose (y C x). Since (x C y) has
been assumed, [(V2) [(z C x) — (2 C y)]a~(x = 9)]v(x = y) holds by ORD 5.
Since (y C %), ¥ is a candidate for z, i.e., [(y C x) — (y C )] is possible;
but since (y C x) is assumed, we obtain the conclusion that (y C y), which is
impossible by ORD 2. Hence the assertion that (y C x) produces a con-
tradiction. The only remaining alternative is (x C y), which must hold by
ORD 4. Therefore, [(x C y)a~(x ~y)] implies (x € y), completing the
equivalence and hence the proof of Theorem I.

The proof of Theorem II follows along similar lines. First assume
(x C y) is the case. In order to prove (xe y) is a consequence, ORD' 4 will
be used to eliminate the possibilities (x = y) and (ye x). Indeed, suppose
(x = y) were true; then (¥ C y) would become (¥ C x), which violates ORD 2.
On the other hand, if it were true that (ye x), then (v C %) would follow, for
suppose (z€y) for any z. Then (zey) together with (ye x) would yield
(ze x) by ORD' 1, and hence, by ORD' 5, (y C x), since ~(x = y) has also
been established. Applying ORD 5 with (y C x) established produces the
fact that for all z, [([(zC9) — (2 C ¥)]a~(x=9y)v(x=9)]. But, by virtue
of the fact that ~(x = 9) is true, it would follow that (x C x), since we have
assumed that (x € y). Thus, by ORD’ 4, the only remaining alternative is
(xe y), and so (x C y) implies (xe y).

Conversely, suppose (xe y). Then it cannot be the case that (x = y), for
if so, (x€ y) would become (x¢ x), which is impossible by ORD’ 2. Further-
more, suppose (¥ C x) were so. Then (y C x) would follow, for suppose
(2zC ) for any z. Then, using ORD 1 with (zC y) and (y C x), we get
(zC x); by ORD 5, (y C x) follows, since it is also known that ~(x = y).
Using ORD'’ 5 with (y C x) established, it is the case that for all z,
[{((zey) — (zex)]a~(x=y) v(x = y)], i.e., for all z, (zey) implies (ze€ x).
Since this implication holds for all z, it must certainly hold for z set equal
to x; that is, (xe y) implies (xe x). Thus, (xe x) is deduced from (y C x),
and by ORD 4, the only remaining alternative is (x C y). Hence (xe y)
implies (¥ C y), completing the proof of Theorem II.
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