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SUBSTITUTIONS FOR PREDICATE VARIABLES AND
FUNCTIONAL VARIABLES

HUBERT H. SCHNEIDER

The customary descriptions regarding substitution for predicate vari-
ables are quite involved and sometimes more restrictive than would be
necessary. A precise statement of the conditions under which this type of
substitution is permissible is very complex and often has been inadequate
in rendering a validity-preserving substitution rule (for a detailed account
with references see Church [1], pp. 289-290). Some of the difficulties arise
from the restrictions placed on the formation rules for (well-formed)
formulas; these restrictions range from the inadmissibility of vacuous
quantifiers or quantifiers within the scope of quantifiers using the same
variables, to the requirement that no variable may occur free and bound in
the same formula. Although such restrictions placed on formulas appear
to be impractical in many respects, even less restrictive formulation rules
do not eliminate the complications inherent in the process involving
substitution for predicate variables. Additional difficulties occur when an
adequate formulation of substitution for functional variables is considered.

In this paper* we present recursive definitions of substitution for
predicate variables as well as for functional variables which seem to be at
least as general as the usual formulations and which at the same time
avoid complex descriptions. The scope of our definition of substitution for
predicate variables is essentially the same as the description given by
Church [1], pp. 192-193. The adequacy of our formulations for both types
of substitution will be established by showing that each type of substitution
preserves validity.

1 The formal language

1.1 The l is t of primitive symbols of our formal language includes

*A description of both types of substitution was first presented at the 1974 meeting of the As-
sociation for Symbolic Logic in New York [3].
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(1) a denumerable set of individual variables
(2) a countable set of individual constants
(3) for each integer « > 0 a countable set of n-ary functional variables
(4) for each integer w ^ O a countable set of w-ary predicate variables
(5) the identity symbol =
(6) the propositional connectives Ί and Λ
(7) the universal quantifier V
(8) the parentheses (, ).

Other propositional connectives and the existential quantifier may be intro-
duced by definition in the customary manner; our further formulations are
easily modified to accommodate these additional symbols.

1.2 Terms are defined inductively as follows:

(1) Each individual variable and each individual constant is a term (of
length 1).

(2) If/ is an rc-ary functional variable and tl9 . . ., tn are terms (of
lengths ml9 . . ., mn, respectively) then ftλ . . . tn is a term (of
length mv + . . . + mn + 1).

Atomic formulas are defined as follows:

(1) Each 0-ary predicate variable is an atomic formula.
(2) If tl9 . . ., tn are terms and P is an w-ary predicate variable then

Ptλ . . . tn is an atomic formula.
(3) If tx and t2 are terms then tλ = t2 is an atomic formula.

Formulas are defined inductively by the following conditions:

(1) Each atomic formula is a formula (of rank 0).
(2) If B is a formula (of rank n) then (IB) is a formula (of rank n + 1).
(3) If B and C are formulas (of ranks m and n, respectively) then

(B ΛC) is a formula (of rank m + n + 1).
(4) If B is a formula (of rank n) and x is any individual variable then

(VΛ JB) is a formula (of rank n + 1).

1.3 If ô is any term in which each occurrence of the individual variable x
is replaced simultaneously by the term t, then the resulting term will be
indicated by to[x/t]. Furthermore, we shall write to[xn/tn] in place of
^o[#iΛi] [x2/t2] . [xn/tn]- Note that if xl9 . . ., xn are distinct individual
variables not occurring in any of the terms tl9 . . ., tn then to[xn/tn] can be
obtained by simultaneous replacements of tl9 . . ., tn for xl9 . . ., xn,
respectively, in t0.

The notion of free occurrence of a term ί in a formula A can be
described inductively according to the rank of A as follows:

(1) Any occurrence of a term t in an atomic formula is free.
(2) If t occurs free in the formula B then t occurs free in the formula

(IB).
(3) If t occurs free in the formula B or in the formula C then t occurs

free in the formula (B Λ C ) .
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(4) If t occurs free in the formula B and x is an individual variable not
occurring in t, then t occurs free in the formula (WxB).

An occurrence of an individual variable in a formula which is not a free
occurrence is said to be a bound occurrence.

If A is any formula, x any individual variable, and t any term, and
there exists a formula B which is the result of replacing in A each free
occurrence of x by a free occurrence of t, then B is said to be obtained from
A by a free substitution of t for x, abbreviated: SfA(x/t)B. An inductive
definition oίSfA(x/t)B is:

(1) If A is an atomic formula and B results from A upon simultane-
ously replacing in A each occurrence of x by t, then Si A (x/t)B.

(2) If A = (ΊAJ andSfAifr/O-Bi then SfA(x/t)B with B = (ΊBj).

(3) If A = (ΛiAA2), SfA^VO-Bi and S1A2(x/t)B2, then SiA(x/t)B with
£ = (B1hB2).

(4) (a) If A = (V yAJ and x does not occur free in A, then Sf A (x/t)A.
(b) If A = (V yAi), # is free in A, 3; does not occur in t, and

SiA^x/ήB^ thenS1A(x/t)B with B = (VyBj.

We shall indicate by SfA(xn/tn)B that there exist formulas Bl9 . . .,
£„(= B) such that SfAfo/fjBi, . . ., SfjB^ (#„/£„)£w. Note that if xu . . ., xn

are distinct individual variables not occurring in any of the terms
tl9 . . ., tn, then this consecutive free substitution leads to the same result
as a simultaneous free substitution of X{ by U for i = 1, . . ., n.

2 Semantical concepts

2.1 Let ω be any non-empty domain of individuals. / is said to be an
ω-interpretation iff / is a function whose domain consists of all individual
variables, all individual constants, all functional variables, and all predi-
cate variables, and whose range is such that:

I(x)e ω for each individual variable x
I(c) e ω for each individual constant c
Πfn)e ω ω for each w-ary functional variable/"
I(P°)e {T, Fjfor each 0-ary predicate variable P°
I(Pn) c ωw.for each w-ary predicate variable Pnwhere n > 0.

If / is any co-interpretation, x any individual variable, and d any
individual of ω, then Ix denotes the function which coincides with / for all
arguments other than x and for which Iχ(x) = d. Clearly, // is again an
ω-interpretation with /*(/) = /(/) and Iχ(P) = I(P) for any functional variable
/ and any predicate variable P. Furthermore, we note that lj}x) = /, and

According to the above definition, I(t) is already defined for any term t
which is an individual variable or an individual constant; on this basis we
extend the definition i n d u c t i v e l y to any term t by the stipulation:
I(fti . . . *«) = /(/) (/(y, . . ., /(*»))• Induction on the length of the term t0
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shows that for any ω-interpretation /: /£(/) (t0) = I(to[x/t]). This relationship
can be generalized:

Lemma 1 If z1} . . ., zn are distinct individual variables not occurring in
any of the terms tL, . . ., tn, then for any ω-interpretation I and for any
term t0:

Proof: (by induction on the length of t0)

1. (a) If ίo = c then rf A ,

Iz^. zn Vo) ~ 1z1...zn \C)
= I(c)=I(c\zn/t")) = I(t0[z"/tn])

(b) If t0 = x with x Φ Zi for i = 1, . . ., n, then

lZl...zn \tθ) ~ lZl...zn \X)

= I(x) = I(pc[zn/tn]) = I(to[zn/tn])
(c) If t0 = x with x = Zi for some (and hence exactly one) i = 1, . . ., n

= I(fi) since 2/ occurs exactly once among zu . . ., zn

= I(zι [zn/tn]) since z{ does not occur in tl9 . . ., ίw

2. If t0 =ft[ . . . t'r and, by induction hypothesis, for k = 1, . . ., r :

/z^!; ;* / ( / w ) W)=/W[^A W ]), then:

lZl...zn Wo) ~ i-zγΛ.zn \Jl\ . . . tr)
_ τl(t1)...l(tn)(f)(τt(t1)...l(tn)(f) r/(/i)...f(/»)///\\

= I{f){I(t[[zn/f]), . . ., I(t'r[zn/tn])) Induction Hypothesis
= I(ftί[zn/tn] . . . t'r[zn/f}) = I(to[zn/f]).

2.2 Let / be any ω-interpretation; the notion that / is an ω-model of a
formula A, abbreviated ModωlA, is defined inductively according to the
rank of A as follows:

(1) (a) Mod ω /P° iff I(P°) = T
(b) yioάωIPtι . . . t» iff (/(ίj, . . ., I(tn))eI(P)
(c) M o d ω / ^ = t2mi(tj) = I(t2)

(2) Modω7 (IB) iff not Modω/ J5
(3) Modω I (B Λ C) iff Modω 7 5 and Modω / C
(4) Modω7 (VxB) iff Mod ω //5 ' for each de ω.

A formula Λ is said to be ω-valid iff Mod ω /A for each ω-interpreta-
tion 7; A is called valid iff A is ω-valid for each (non-empty) individual
domain ω.

The notions of ω-interpretation and ω-model as formulated here are
adapted from Hermes [2], pp. 78-79.

2.3 Two ω-interpretations 7 and J are said to coincide with respect to a
formula A iff I(f) = J(f) for each functional variable / occurring in A,
I(p) - J(P) for each predicate variable P occurring in A, I(c) - J(c) for each
individual constant c occurring in A, and I(x) = J(x) for each individual
variable Λ; occurring free in A.
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Proofs for the following two theorems can be found in [2], pp. 83-85.

Coincidence Theorem: If I and J are two ω-interpretations which coincide
with respect to a formula A then: Modω IAiff Modω J A.

Substitution Theorem: If SfA(x/t)B and I is any ω-interpretation, then:
Modω Iι

x

{t) A iff Modω IB.

This substitution theorem can be generalized as follows:

Lemma 2 If zly , zn are distinct individual variables not occurring in
any of the terms tu . . ., tn andSiA(zn/tn)B, then for any ω -interpretation I:
Modω / # £ ; • ι{tn)A iff Modω IB.

Proof: Since SfA(zn/tn)B, there exist formulas Bl9 . . ., Bn = B such that

SfAfei/ίJ^i, . . SΪB^iZn/tjBn. NOW.

iff Modω iJl^lzϊ I(h)A since zl9 . . ., zn are all distinct

iff M o d ω / ^ — / ( ' 2 > Z.nlz2'
l{t2)ι{t^A since z2, . . ., zn do not occur in

k and hence I^]z'2'
 ι{t^(h) = Ifa)

iff Modω Il

z^;z'2'
 /(/z)-B1 Substitution Theorem

iff Mod ω l ί^z i ' l Z ι n n n~1 Bn.2 since zn does not occur in tn.x and

hence Iι

z

{t

n

n) (tn^) = I(t^)
iff M o d ω Iι

z

{t

n

n)Bn.γ Substitution Theorem
iff Modω/i?w Substitution Theorem

It might be noticed that in this lemma the conditions placed on
zl9 . . ., zn could be relaxed; the proof of the lemma indicates that it would
suffice to require that zί9 . . ., zn are distinct individual variables with
zkl+1, . . ., zn not occurring in tk for k = 1, . . ., n - 1.

3 Substitution for predicate variables

3.1 Consider a formulae! together with an n-ary predicate variable P, and
let zl9 . . ., zn be n distinct individual variables not occurring in A. The
atomic formula Pz± . . . zn will be called a name form of P with the name
variables zl9 . . ., zn. Furthermore, let H* be a formula, called a sub-
stituend for the name form Pzx . . . znof P9 whose free individual variables
other than zl9 . . ., zn are referred to as the parameters of # * . If now
tl9 . . ., tn are any terms, then Pt1 . . . 4 is called a derivative of the name
form PzL . . . zn of P, and H*(zjtu . . ., zn/tn) is called the corresponding
derivative of the substituend H*; here H*(zjtu . . ., zn/tn) indicates the
formula which is obtained from H* upon replacing simultaneously each free
occurrence of zk in H* by tk for k = 1, . . ., n.

In terms of these notions, substitution for predicate variables can be
described as follows: The formula A is said to be transformed into the
formula B by a substitution of H* for Pzλ . . . zn, abbreviated: Sub A(Pzn/
H*)B, iff B is obtained from A upon replacing in A each occurrence of a
derivative of the name form Pz1 . . . zn by the corresponding derivative of
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the substituend H*, provided that: (i) P does not occur in a component
formula (V^Aj of A if x is a parameter of # * , and (ii) the name variable zk,
k = 1, . . ., n, is not free in a component formula (VxH) of H* if Pt1 . . . 4
occurs in A with ΛΓ occurring in 4 . If conditions (i) and (ii) are not
satisfied, then the indicated substitution for predicate variables is left
undefined.

It should be noted that the restriction (i) prevents the binding of
parameters; and the conditions (ii) ensures that the corresponding deriva-
tives of the substituend are obtained by free term substitutions.

3.2 The above description of substitution for predicate variables can be
presented in form of a recursive definition in accordance with the recur-
sive definition of formula.

Recursive definition of Sub A(Pzn/H*)B It is assumed that zl9 . . ., zn

are distinct individual variables which do not occur in A.

(1) (a) If A is an atomic formula not containing P then Sub A(Pzn/H*)A.
(b) If A = Pti . . . tn 2indS1H*(zn/tn)B, then Sub A(Pzn/H*)B.

(2) EA= (ΊΛ) and Sub A1{Pzn/m)Bu then Sub A{Pzn/H*)("\B1).

(3) K A= ( Λ Λ A 2 ) , Sub Aι(Pzn/m)Bu and Sub A2(Pzn/H*)B2, then
Sub A(Pzn/H*)(Bι A B2).

(4) (a) K A = (VxAj) and P does not occur in A then Sub A(Pzn/H*)A.
(b) If A = (VxAJ, P occurs in A, x is not free in #*, and

Sub Aι{Pzn/m)Bι, then Sub AiPzyH^iVxBj.

This definition of substitution for predicate variables includes the
degenerate case where n = 0; in this case the above definition reduces to a
substitution for 0-ary predicate variables (i.e., propositional variables).

3.3 Substitution for predicate variables, as defined here, preserves
validity; our proof is based on the following lemma:

Lemma 3 Let Sub A(Pzn/H*)B; let I and J be any ω-interpretations which
differ at most with respect to P and which are such that J(P) = {(dl9 . . .,
dn) e ωn\Modω lt\\\\ίn

nH*}; then Modω IB iff Modω J A.

Proof: Suppose: (i) Sub A(Pzn/H*)B, (ii) / and J are ω-interpretations
which differ at most with respect to P, and which are such that (iii) J(P) =
{(dl9 . . ., dn)e ωn\Modωiil'.Y.tZH*}. First , if P does not occur in A, then
B = A and / and J coincide with respect to A so that by the coincidence
theorem we get trivially Modω/.B iff ModωJA. Hence it can be assumed
that P occurs in A. The proof of the lemma is by induction on the rank
of A.

(1) If A is an atomic formula then A = Ptι . . . tn for some terms
tl9 . . ., tn since by assumption P occurs in A. By (i) it follows that
S1H*(zn/f)B. Hence:

Modω / B iff M o d ω / z ^ ! ; ; * / ( / w ) # * Lemma 2



SUBSTITUTIONS FOR PREDICATE VARIABLES 39

iff (lit,), . . ., I(tn))eJ(P) by (iii)

iff (Jit,), . . .,J(tn))eJ(P) by (ii)

iff Modω J Ptγ . . . tn iff Modω J A.

(2) If A = (ΊAL) then by (i) there exists a formula B, such that

B = (ΊBj) and Sub Aι(Pzn/H*)Bι. By induction hypothesis we have:

Moάωl BL iff ModωJAii thus:

Moάωl B iff ModωI(lBL)

iff not ModωIBL

iff not Modω J Aγ Induction Hypothesis

iff MoάωJ(lA1) iff Modω J A.

(3) If A = (Ai*A2) then by (i) there exist formulas Bγ and B2 such that

£ = (B1ΛB2), Sub Aι(Pzn/H*)Bι and Sub A2(Pzn/H*)B2. The induction hy-

pothesis yields: MoάωIBi iff Mod^JAi and M o d ω / £ 2 iff Mod ω JA 2 .

Hence:

MoάωIB iff M o d ω / ( £ l Λ £ 2 )

iff M o d ω / 5 1 and M o d ω / £ 2

iff M o d ω J ^ ! and Mod ω J A2 Induction Hypothesis

iff MoάωJ(A1AA2) iff Modω J A.

(4) Let A = (VxAi); since by assumption P occurs in A, it follows

from (i) that x is not free in H* and that there exists a formula Bι with

5 = (VxBj and Sub A^P^n/H*)BY. The induction hypothesis states: If Γ and

J ' are any ω-interpretations which differ at most with respect to P and

which are such that J'{P) = {(du . . ., dn)e ωn\MoάωΓd

z\\\\d

z

n

nH*}, then

Modω/' Bγ iff Modω J' A±. Now Iχ and J^ are ω-interpretations which differ

at most with respect to P in view of (ii); moreover,

<du .,dn)eJd

x(P)

iff (d19 . . ., dn)e J(P) since J and Jd

x differ at most in #

iff Modω/^;; i ^ * by (iii)

iff MoάωId

z\\\'dz

n

n

d

xH* Coincidence Theorem; x is not free in H*

iff Modωliίl'.\'jl%H* since Λ: is different from zl9 . . ., zn which in

turn follows from the fact that x occurs in

A = (VxAL) while zu . . ., zn do not occur in A.

From (dlf . . ., dn)eJd(P) iff M o d ω 7 ^ ; : ; ^ ^ * it follows that Jd(P) = {(du . . .,

dn)e ωn\ModωIdί\:::ίζm} and hence (#) ModωIdBι iff ModωJdAu by the

induction hypothesis. Thus:

M o d ω / £ iff Modω KVxBj

iff Modω7^ J5i for each de ω

iff Modω Jd

xAγ for each de ω by (#)

iff Modω J(VxAi) iff Mod ω J A.

This completes the proof of Lemma 3. The following substitution rule is an

immediate consequence of this lemma.
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Rule for substitution of predicate variables: If Sub A(Pzn/H*)B and A is
valid, then B is valid.

Proof: Suppose B is not valid; then there exists an individual domain ω and
an ω-interpretation / such that not Modω7 B. Let J be the ω-interpretation
which differs from I at most with respect to P and which is such that J(P) =
{(dl9 . . ., dn)e ωn\ModωIzl'/^H*}. It follows from Lemma 3 that MoάωlB
iff ModωJ A. Since not Modω/Z?, we get thus not Mod ω J A, and hence A is
not valid. Thus the validity of A implies the validity of B.

4 Substitution for functional variables

4.1 A substitution of an rc-ary functional variable / by a term t* in a
formula A is a replacement of each occurrence of a term starting with / by
a "corresponding'' replacement instance of £*, subject to certain conditions
so as to ensure that validity is preserved. A descriptive formulation
analogous to that given for substitution of predicate variables using name
forms, etc., is complicated by the fact that an occurrence of the functional
variable / in a formula can be within the "scope" of another occurrence of
/ in the same term. Since substitution for a functional variable / requires
replacement at each occurrence of / in a formula, such iterated occur-
rences of / in a formula must be replaced in a corresponding iterated
manner. Because of this intricate situation we shall not attempt to give a
descriptive formulation of substitution for functional variables, but rather
proceed at once with a recursive definition.

4.2 In order to facilitate our recursive definition of substitution for
functional variables, we introduce first as an auxiliary notion a term
substitution operator Δ ẑ« which is applicable to any term t.

Definition of ΔJzn(t) By induction on the length of t:

(1) If t is an individual variable or constant then Δ ẑ«(ί) = t.

(2) (a) If t = gtι . . . tr where g is any r-ary functional variable
different from/then Δ/Z*«(ί) = gbfeMtj) . . . Δ^*»(ίf).

(b) If t = ft, . . . tn then Δ£»(J) = t*[zn/±fzn(f)] where t*[zn/*£»(f)]

stands for **[*i/Δ/*Vfi)] [zn/φ(tn)].

With the help of this notion of term substitution, the concept of
substitution for functional variables in a formula can be defined inductively
in a similar manner as was done in the case of substitution for predicate
variables. We shall indicate by Sub A(fzn/t*)B that B is the formula
obtainable from the formula A upon substituting in A for each occurrence
of a term involving the w-ary functional variable/a corresponding term of
the substituend t*.

Recursive definition of Sub A(fzn/t*)B It is assumed that zl9 . . ., zn are
distinct individual variables which do not occur in A.

(1) (a) If A = JP° then Sub A(fzn/t*)A.
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(b) If A = Pt, . . . tm then Sub A(fzn/η)P^tfzn(tι) . . . Δ £ * ( * J .

(c) If A = tι = t2 then Sub A(fzn/t*)Δ$n(tι) = Δ £ » ( * 2 ) .

(2) If A = (ΊAL) and Sub Aι(fzn/t*)Bu then Sub A(/*7f*)(1 JBJ.

(3) If A = (A l Ai4 2), Sub Aι(fzn/t^)Bι, and Sub A2(fzn/t*)B2, then

Sub;4(/εy**)(BiΛ52).

(4) (a) If A = (VxAi) and/does not occur in A, then SubA(/zB/ί*)A.

(b) If A = (VxAj, / occurs in A, x does not occur in t*, and

Sub Aι(fzn/t^)Bu then Sub Aί/^/^MV^i)-

From the definition it follows at once that Sub A (fzn/t*)A if A is a

formula which does not contain / . Furthermore, if (VxAL) is a component

formula of A which also contains the functional variable / and x occurs in

t* 9 then according to our definition there does not exist a formula B with

Sub A(fzn/t*)B.

4.3 In order to show that this type of substitution preserves validity, we

establish first the following lemma:

Lemma 4 Let Sub A(fzn/t*)B; let I and J be ω-interpretations which

differ at most with respect to f and which are such that for all dl9 . . .,

dne ω: J(f)(dlf . . ., dn) = lt\\::t(t*); then Modω I B iff Modω J A.

Proof: Suppose: (i) Sub A(fzn/t*)B, (ii) / and J are ω-interpretations which

differ at most with respect to / , and which are such that (iii) J(f)(du . . .,

dn) = Iz^.\\zn(t*) for all dl9 . . ., dne ω. By induction on the length of t we

show first that for any term t:

(#) J(t) = I(AfUt))

Indeed, if t is an individual variable or an individual constant, then Δ/Z»(f) = t

and by (ii) it follows that J(t) = 7(Δp(ί)).

Next, if t = gtL . . . tr with g Φ f then by definition of Δfzr>: &fzn(t) =

gΔβritJ . . . Δ'fZn{tτ) and hence

J(t) = J(gt, . . . * , )

= J(g)(J{tΰ, • • ,J(tr))

= I{gWih), • • , J(t,)) t by (ii)
= /(^(/(ΔpίίJ), . . ., 7(Δ/j»(ίr))) Induction Hypothesis

= 7(β Δp(f1) . . . Δp»(ίr)) = I(φ(t)).

Finally, if t = ftι... tn then by definition of Δ^»we have Δ *̂»(ί) = ί* [,εyΔ£»(fn)]

and therefore

J(0 = J(ftι . . .tn)

= J(fW(tι), • .,J(t»))

= <.'i ). j; " / ( '" ) (ί*) t by (iii)

= /ίf.S"β

( / l > ) •;' ' < Δ /- B ' ( ' n ) ) (ί*) Induction Hypothesis

= I(t* [z"/Δfz'n(t")]) by Lemma 1
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This completes the inductive proof of property (#). In order to prove now
the lemma, we note first that i f/does not occur in A then B = A so that in
view of (ii) and the coincidence theorem we get at once: Mod ω /i? iff
M o d ω J A. Hence we can assume that / occurs in A. The lemma is now
proved by induction on the rank of A.

(1) If A is an atomic formula then A has one of the following two
forms: (a) A = Ptγ . . . tm or (b) A = tγ = t2. By (i) we get in case (a):
B = PA^nitJ . . . Δfzin(tm) and therefore:

Moάω IB iff Mod^I P^fzΛt,) . Δ/*»(*«)

iff ( / ( Δ ^ J ) , . . ., J (Δ£«O>e I(P)

iff (J(^), . . ., J(tm))eJ(P) by (#) and (ii)
iff Modω J Ptx . . . tm iff Modω J A.

In case (b) we have by (i): B = Δ*fzn(tι) = Δ ẑ;»(ί2) and therefore:

Modω / B iff Modω / Δ/*,^) = Δ$*(f2)

iff ΐ(4zn(h)) = /(Δ/z>2))
iff J ( ίJ = J(t2) by (#)
iff M o d ω J tv = t2 iff M o d ω J A.

(2) If A = ( lAJ then by (i) there exists a formula BL such that
J5 = (ΊBJ and Sub A ^ / ^ y ί * ) ^ . By induction hypothesis we have: Modω / Bι

iff MoάωJ Aγ. Thus:

M o d ω / ^ iff Modco/OEJ
iff not Modω / Bγ

iff not M o d ω J A± Induction Hypothesis
iff ModωJOAJ iff Modω J A.

(3) If A = (A!AA 2 ) then by (i) there exist formulas B^ and B2 such that
B = (J5 l Λ 5 2 ), Sub Aγ(fzn/t*)B^ and Sub A2{fzn/t*)B2. By induction hypothesis
we have: Modω / Bι iff Modω J Aι and Modω / J52 iff Modω J A2. Hence

Modω / JB iff Modω I{Bι Λ .B2)
iff Modω / Bι and Modω / B2

iff Modω J Ai and Modω J A2 Induction Hypothesis
iff Modω J(A^A2) iff M o d ω J A.

(4) If A = (VxAj then by (i) there exists a formula B± such that
B = (VxBj, x does not occur in t*, and Sub -Aiί/zV^*)^. The induction
hypothesis states: If /' and J' are any ω-interpretations which differ at
most with respect t o / and which are such that J'(f)(du . • ., dn) = r%\y.\d

z

n

n(t*)
for all du . . ., dnt ω, then: Modω/ r BL iff M o d ω J ' A x . Consider now the
ω-interpretations J* and J* which in view of (ii) differ at most with respect
t o / . Moreover, we have for all du . . ., dne ω:

Jί(f)(di, , ^ ) = J(/)Wi, ., 4,) since J and J^ differ at
most with respect to x

= 4:::ί^*) byίm)
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= 4i!!!*«*(£*) since x does not occur in t*

= l£t['.'.'J$t*) since x is different from zl9 . . ., zn which in
turn follows from the fact that x occurs in
A = (VxAj) whereas zl9 . . ., zn do not occur
in A.

Since JΪ(f)(dl9 . . ., dn) = lίt\\\\d

zl{t*), it follows by induction hypothesis that
Modω Iχ Bι iff Moάω JχAγ for all de ω, and hence:

Modω/J5 iff Modω KyxBj
iff M o d ω / ^ ! for all de ω
iff Modω JΪAγ for all de ω
iff MoάωJ(>fxAι) iff ModωJ A.

This completes the inductive proof of Lemma 4. On the basis of this lemma
we get at once the following substitution rule.

Rule for substitution of functional variables: If Sub A(fzn/t*)B and A is
valid, then B is valid.

Proof: Suppose Sub A(fzn/t*)B and assume that B is not valid. Then there
is an individual domain ω and an ω-interpretation /such that not Mod ω 7B.
Let J be the ω-interpretation which differs from 7 at most with respect t o /
and which is such that for all dl9 . . ., dne ω: J(f)(du . . ., dn) = j£:::^(**).
By Lemma 4 it follows that Modω / B iff Modω J A. Since not Modω / B, we
have thus not Modω J A so that A is not valid. Therefore, the validity of A
implies the validity of B.

5 As an illustration for the two types of substitution discussed in this
paper, consider the formula

A = (Vx{Q2xgιy - (3zQ2xz)))

where Q2 is a binary predicate variable and gι is a unary functional
variable (with —* and 3 taken as abbreviations in the familiar manner).
Choosing Q2zγz2 as the name form and P2f2zLz2f

2zιz2 as substituend with P2

as a binary predicate variable and f2 as a binary functional variable,
predicate variable substitution in A yields Sub A(Qz2/P2f2z1z2f

2zιz2)B where
B = (Vx(P2f2xgιyf2xgιy - i^zPψxzfxz))).

Functional variable substitution in B with f2zγz2 as name form and
f2f2zγz2u as s u b s t i t u e n d y i e l d s Sub B(fz2/f2f2zιz2u)C where C =
(\fx(P2f2f2xgιyuf2f2xgιyu - (3zP2f2f2xzuf2f2xzu))).

Predicate variable substitution in B with P2zγz2 as name form and
{VuP2zιu) as substituend leads to Sub B{Pz2/(\fuP2z]u))D where D =
(Vx((VuP2f2xgιyu) — (3z(VuP2f2xzu)))).

Observe that in this last substitution the substituend did not contain the
name variable z2. Now A is a valid formula and hence it follows from the
rules of substitution for predicate variables and functional variables that
B, C, and D are also valid formulas.

Note that the predicate variable substitution Pz2/(VuP2z{u) which was
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applied to formula B to obtain D, is not applicable to the formula C since
such a substitution in C would bind the free occurrence of u in C. Again,
the functional variable substitution fz2/f2f2zιz2u which was applied to B to
obtain C, is not applicable to the formula D since such a substitution would
bind the parameter u in the subst i tuend/ 2 / 2 ^^.
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