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Some Elementary Closure Properties

of n-Cylinders

M. B. THURAISINGHAM

1 Introduction The concept n-cyUnder was originally defined [4] in order
to construct noncylindrical decision problems for system functions, a kind of
function defined by Cleave [ 1 ]. It is a generalization of Young's [9] concept of
a semicylinder and it forms a link between a semicylinder and a cylinder. Its
definition is as follows:

Definition A set P is an π-cylinder if and only if there is a recursive function

g such that for all Λrx, x2, ., xn>

Ultx2, ;Xn\^p_^s{Xi,x2,' . . , x « ) e P
h i t x2,. . . ,x«!iCP=^g(x 1,x 2, . . ,,χn)eP .

This function g is called the π-cylinder function for P. It can be seen that a
semicylinder is a 1-cylinder. Properties of n-cylinders and their relationship to
cylinders were explored in [5]-[8], and it was subsequently shown that:

(i) A set is a cylinder if and only if it is an ^-cylinder for each n > 1.
(ii) The class of all (n+l)-cylinders is a proper subset of the class of all

π-cylinders for each n > 1.
(iii) For each n > 1, the class of all ^-cylinders contains a simple set and

hence a nonsplinter.
(iv) For each n > 1, the class of all ^-cylinders contains a nonsimple

nonsplinter.
(v) A set P is an ^-cylinder (n > 1) if and only if there is a recursive func-

tion g such that for all x,

xeP=>Dgix)CP
xeP=>Dg(x)CP
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and Dg(x) has (n + 1) members, where Dm is the rath finite set in some
standard enumeration.

From these results we can deduce that as n tends to infinity, the class of all
^-cylinders coincides with the class of all cylinders.

In Section 3 of this paper, we study some elementary closure properties of
^-cylinders and subsequently obtain the following results:

(i) The class of all ^-cylinders (n > 1) is closed under the operation of
complementation,

(ii) If A and B are π-cylinders (n>\), then so is A Join B where
A Join B = \2x: x e A] U \2x +1: xeBl

(iii) If A or B is an π-cylinder (n > 1) then so is A XB. Where A X B is the
Cartesian product of A and B.

(iv) It is not the case that for each n > 1, the class of all ^-cylinders is
closed under the operations of intersection and union.

The preliminary definitions needed for the proof of these results are given in
Section 2. For the recursive function theory terminology used in this paper we
refer to [3].

2 Definitional preliminaries The definition of system functions and the
definitions in the theory of graphs given in this section have been obtained
from [1] and [2]. In Section 3, these graph theoretic concepts are employed in
formulating certain algorithms.

Let f:N -+ PW(N) where N is the set of all natural numbers and PW(N) is
the set of all finite subsets of N.

For X e PW(N), define f(X) = U {/(*): x e X\. For each x e N, define
f°(x) = x, fk+1(x) = f(fk(x)) f'\ the inverse of /, is defined by f~\x) =
ly xef(y)}.

By "y is directly derivable by / from x" we mean y e f(x). By "y is
derivable by / from c" (denoted y e C/x or x e Cf~iy) we mean either y = x or
yefXx) or there exist ylt y2, . . .,yn(n>\) such that yλ ef(x), y e f(yn) and

for all /(1< i < n - 1), yi+1 e f{yt).
A system function is a function /: n -> PW(N) such that there exist recur-

sive functions a and b such that for all x, f(x) = Az(x) and Z" 1^) = £)&(*) where
Dn is the nth finite set in some standard enumeration.

A system function / which has the property that for all x, f(x) has at most
one member is called a machine function. The class of all system functions is
denoted by 6 and the class of all machine functions is denoted by 1.

Let D be a digraph whose points are in N. By x e D is meant: x is a point
in D. If x e D and y e D, then x`^y is a directed line if there is a line from x to y
inZλ

We assume that there are no directed lines x^x and there is at most one
line from* to μ.

If x e D, then D(x) is the connected component (or component) of D
which contains x as a point. Its graphical representation is shown in Figure 1. If
x e D and y e D, then by x -* y(D) is meant: x = y or x`ϊy is a directed line or
there exist distinct points υu υ2, . . ., υn(n > 1) of D such that x*vίy υ1*v2f

v2*v3, . . ., υn-{ϊυn, vn*y are all directed lines.
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\ x /

Figure 1

By x\\y (P) is meant: x and y belong to different components of D. By
x\y (D) is meant: x and y belong to the same component of D, but it is not the
case that x -• y(D) or y -» x(D).

The in-degree (out-degree respectively) of a point x of D is the number of
points y of D such that y*x (x*y respectively) is a directed line. A point x is a
root (leaf respectively) if its in-degree (out-degree respectively) is 0. r(x) (φc)
respectively) is the least number y such that y is a root (leaf respectively) of D
andj -+x(P) (x ->y(D) respectively). A digraph is labeled if some of its points
are distinguished from one another by names drawn from some given infinite
list. By the expression "Introduce the labels Llf L2, . . ., Ln (n > 1) to the
digraph Z>" is meant the following: Find the least n numbers x1 < x2 < . . . < xn

which are not points of D. Adjoin these numbers as new points so that each
point x/(l </</?) forms a new component. Name xλ by Llf x2 by L2, . . ., xn

hγLn.
A bigraph is a digraph whose points have in-degree of at most 2 and

out-degree of at most 1. Let B be a bigraph and x e B. Then a point z is denoted
x1 if there is a point y of B such that x*y and z^y are directed lines. By the
expression "Extend the bigraph B to the bigraph B1" is meant the following:
Let tίr t2, . . ., tk be the leaves of B and rlt r2, . . ., rm be its roots. Find the
least 2k + 2m numbers, say xx < x2 < x3 < . . . < x2k+2m> which are not points
of B. Adjoin these numbers as new points and join the lines

t{*Xι, X2*Xι, t2*X3, ^4^X3, . . ., tfζ*X2k-ι, X2k*x2k-\> X2k + \*r\> X2k+2*rl>
X2k+3*r2> X2k+4*r2> - •> x2k+2m-Vrto> X2k+2nrrm-

The resulting graph is B1 (see Figure 2).

3 Properties of n-cylinders In this section we will prove the following
result:

Result a For each feS, define A? and K? as follows:

A? = {(x, y): y e Cfx\ (general derivability problem for /)

K? = i(x, y): x e Cfy\\(inverse general derivability problem for /).

Then:

(i) If P is an n-cylinder (n > 1), then so is P.
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(ii) If P and Q are ^-cylinders (n > 1), then so is P Join Q.
(iii) If P or Q are ^-cylinders (n > 1), then so is P X Q.
(iv) (a) For all fe M, A? and ^ are either recursive or cylinders.

(b) There exist g e M and h e M such that both A8 Π Bg and Ah U £ Λ

are neither recursive nor 2-cylinders, where Π and U stand for
intersection and union, respectively.

This result shows that the class of all ^-cylinders (n>) is closed under the
operations of complementation, Cartesian product, and Join. Furthermore,
since every cylinder is an rc-cylinder for each n > 1, it is not the case that for
each n, the class of all ^-cylinders is closed under the operation Π and U. From
this we can also deduce that the class of all cylinders is not closed under the
operations of Π and U.

Proof of Result a: From the definition of π-cylinders, it can be easily seen that
if P is an n-cylinder, then so is P. The proofs of Result α(ii) and (iii) utilize a
similar technique to the proof of Exercise 7-36(a) and (b) in [3]. The proof
that A? is either recursive or a cylinder for each / e M can be obtained in [ 1 ].
Since Kp is one-one equivalent to Ap for each p e S, K? is also either recursive
or a cylinder for each feM. We will now prove Result α(iv,b) for the operation
Π. The proof of this result for the operation U will utilize a similar technique.

Proof of Result α(iv,b) for the Operation Π; The proof is divided into two
parts. The first part consists of a programme in which labeled bigraphs
B°, B1, B2, . . . will be constructed with the following properties:

(i) There is a recursive function a such that α(m) is the Godel number
ofBm.

(ii) For each m, m is a point oϊBm.
(iii) For each m, Bm+ί is an extension of Bm\ i.e., all points of Bm are

points of Bm+1. If m < p, then for any point x of Bm, all lines
incident with x in Bp are lines of Bm+1. Furthermore, Bm+1 contains
as a point the least number which is not a point oΐBm.

(iv) For each m, a component of Bm has at most one label. These labels

are taken from a given set U \Pιe' e>0\oϊ markers.
2 = 1

Also in this programme the dependence of a number on another number will
be defined by induction.

The second part of the proof consists of three lemmas by means of which
it will be proved that there is a g e M such that for no e is it true that ή>\ is a
2-cylinder function for Ag Π Kg where φj is the eth partial recursive function of
two variables in some standard enumeration.

I Programme

Stage 0. B° consists of the points 0,1 labeled PQ, PQ, respectively.

Stage m(m > 1), Step 1. Introduce the labels P^, P^ to Bm~ι and extend the
resulting graph to B.
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Step 2. Find the smallest number e < m such that there exist numbers
x, y, u, w, z all less than m satisfying the condition R where R is the conjunc-
tion of the conditions Rlt R2, and R3 where Ri = T(e, τ(x, y), τ(y, x), z) and
U(z) = τ(u, w). τ is a recursive function which maps N2 one-one and onto N, T
is the Kleene's Γ-predicate, and if z is the Gδdel number of a Turing Machine
computation, then U(z) is the output of the Turing Machine for that computa-
tion.

R2 = x and y are labeled P} and P«?, respectively, in B. R3 = ~((JC = u Λ
y = w)v(x = w/\y = u)).

If there does not exist such an e, set Bm = B. If there exists such an e,
define

em

 = (M )̂ (3Z, x, y, u, w all <m)R(z, x, >», w, w, e, m)
xm = (μx) (3z, y, u, w all <:m)R(z, x, y, u, w, em, m)
^m = (μy) (3z, u, w all <m)R(z, xm, y, u, w, em, m)
um = (βu) (3z, w both <m)R(z, xm, ymι u, w, em, m)
wm = (μw) (3z < w)/ϊ(z, xm, ym, um, w, em, m).

For convenience let em, xm, ym, um, wm be e, x, y, u, w, respectively. In Step 3
of the programme e will be attacked (in a sense to be made clear) and it will be
ensured that: (χ->y Ny-+ x)(Bm) = (u -> w Λ W -> u)(Bm).

Step 3. (a) Delete Pi and Pe

2. (b) Reintroduce all labels of the form Pfy Pf such
that / depends on e (i.e., if these labels are already assigned to points delete
them and reintroduce them; if not, introduce them). Let the resulting graph
be£+ .

Construct Bm from B+ according to the various cases in Step 3(c). The
graphical representation of these cases will be given at the end of the
programme.

(c) Case 1. B\u) = B+(w).

1.1 If (u -* w Λ w -> u)(B+), then set Bm = B+ (Figure 3a).

1.2 If u\w(B+), then set Bn=B+U \t(x)^r(y), t(y)*r(x)\ (i.e., Bn results from
B+ by adjoining the lines t(x)*r(y) and t(y)*r(x)) (Figure 3b).

1.3 If [(W->WΛ ~(w-> u))(B+)] v [W->WΛ ~(w^w))(^+)],then:

(i) If there is no / such that B+(u) = B+(w) is labeled either P/ or Pf, then:

(α) If u, w e B+(x) or u, w e ^ + (^) , then set Bn = B+U \t(w)^r(u)} if
(M -> w Λ ̂ (w -• u))(B+) (Figure 3c). Bn = B+U \t(u)*r(w)} if (w ->M Λ
-(M -> w))(^+) (Figure 3d).

08) If u, w e B(x) U B+(y), then set Bn = B+U |f(jt)MjO, ^(^)tK^)i
(Figure 3b).

(ii) If there is an / such that B+(u) = ̂ +(w) is labeled either P/ or Pf, then:

(α) If / > e, delete P/, P? and reintroduce them. Let the resulting graph
be B*. Set Bn = B* U i{f(x)MjO, t(y)*r(x)\ (Figure 3b).

(jS) If / < e, set 5" = B+ U {ί(x)tr(^), / ( ^ M ^ ) ! and record that e
depends on i (Figure 3b).
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Case 2. B+(u)ΦB+(w).

2.1 u eB+(x) and weB\y).

(a) If u ->x(B+), then set Bn = B+ U {t(x)*r(y\ t{y)^r{uι)\ (Figure 3e).

(b) If x -> u(B+), then set Bn = B+ U |^)t/{j;), ίQOM* 1 ) ! (Figure 3f).
(c) If x\u(B+), then set£" = £ + U U(x)M.v), t(y)*r(x)\ (Figure 3g).
(d) If (x = w Λ j> -> w)(£+), then set Bn = B+ U itW`ϊriy1), t(y)^r(x)}

(Figure 3h).
(e) If (x = UΛW ~+y)(B+), then set Bn = 5 + U (/(xj^w1), tf OM*)}

(Figure 3i).
(f) If (x = u Λ wl.y)(£+), then set Bn = B+ U {t(x)My)> t(y)^r(x)\

(Figure 3j).

2.2 If w e B+(x) and u e i?+(.)0, then Cases 2.2(a-f) are similar to the respec-
tive Cases 2.1(a-f) with u and w interchanged.

2.3 Cases 2.1 and 2.2 do not hold (Figure 3b).

(i) If there is an i such that B+(u) and B+(w) are labeled P}, Pf, respec-
tively, or vice versa, then:

(α) If i > e, delete P}, Pf and reintroduce them. Let the resulting graph
be£*. Set£" =B* U \t(x)^r(y), t(y)^r(x)}.

(β) If / < e, set Bn = B+ U U O O M J Ό , ί ^ ) 1 ^ ^ ) ! and record that e
depends on /.

(ii) If there is no ί such that B+(u) and B+(w) are labeled Pf, Pf, respec-
tively, or vice versa, then set Bn = B+ U \t(x)*r(y), t(y)^r(x)\.

This ends the programme.

oo

Set B = U Bn where Bi U B} = ̂ 7 ' if / </
" = 0 =Biiίi>j.

Clearly for any point x of Bm, all lines incident with x in B are lines of i?w+1.

Define g(x) = {.y: (x, y) is a line of Bl
= \y: (x,y)isa\meofBx+1\

g~\x) ^{y: (y, x) is a line of B\
= \y: {y, x) is a line of ^ + 1 1 .

Then geMandAgnKg = {(x,y):(x-+y*y-+ x)(B)\

II Definition A label L is fixed at a stage numbered // if either: (i) L re-
mains assigned to the same point at all stages numbered n > H, or (ii) L remains
unassigned at all stages numbered « > H.

Lemma 1 For each e, there is a stage H(e) at which all labels Pf, Pf where
i < e are fixed.

Proof: There are four ways in which labels P\, P\ where / < e can be moved.

They are as follows:

Gl. Introduction at Stage e via Step 1
G2. Deletion via an attack on e (Step 3(a))
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G3. Reintroduction via an attack on / where e depends on / (Step 3(b))
G4. Reintroduction via an attack on i where / < e under Cases 1.3(ii, α)

and 2.3(i, α).

The proof of the lemma is by induction on e.

Basis e = 0 PQ, PQ are introduced at Stage 0 (Gl). As 0 does not depend on
any number, and as there is no / such that / < 0, PQ, PQ cannot be moved by G3
or G4. Therefore if 0 is never attacked, then PQ, PQ are fixed and assigned at
Stage 0; i.e., 7/(0) = 0. But if 0 is attacked at a Stage m, then P£, Pi are fixed
and unassigned at Stage m; i.e., H(0) = m.

Inductive Step As inductive hypothesis, assume that all labels P/, Pf where
/ < e are fixed at Stage H(e - 1). Pj, P\ are introduced at Stage e (Gl). They
cannot be moved by G3 or G4 at a stage m > H = Max. (H(e - 1), e). For, if
not, then a number i < e will be attacked at Stage m. This is a contradiction as
P/, Pf are fixed at Stage H(e - 1). Suppose e is never attacked at a Stage m>H.
Then Pi, Pi are fixed and assigned at Stage H; i.e., H(e) = H. If e is attacked at a
Stage m>H, then Pi, Pi are fixed and unassigned at Stage m; i.e., H(e) = m.

Thus the inductive hypothesis implies that all labels P/, Pf where / < e are
fixed at some Stage H{e). The statement of the lemma now follows by
induction on e.

Lemma 2 For each e, if Pi, Pi are fixed and unassigned at Stage H(e), then
φl is not a 2-cylinder function for Ag Π Kg.

Proof: Pi, Pi are introduced at Stage e. If they are fixed and unassigned at
Stage H(e), there is a Stage m(< m < H(e)) at which they were last deleted.
Thus e was attacked at Stage m. Suppose at Stage m Pi, Pi were assigned to the
respective points x, y. Then there exist u, w < m where ~[(u = x Λ W = y) v
(w = x Λ u = y)] such that Φl(τ(x, y), τ(y, x)) = τ(u, w). Furthermore, in Step 3c
of Stage m, it would have been ensured that (x -* y Λ y -> χ)(Bm) ψ (u -> w Λ
w -> u)(Bm). It now suffices to prove the following statement (Θ).

(0) (χ->y hy->x)(B)ψ(u~+w ι\w-+u)(B).

For, if (θ) holds, then i(x, y), (y, x)\ C A* Π Kg ψ (u, w) e Ag Π Kg. Now,
(x, y)eAgΠ Kg+-+(y,x)eAg Π ̂ . Therefore, as φl(τ(x, y\ τ(y, x)) = r(u, w),
φl is not a 2-cylinder function for Ag Π Jf̂ .

Proof of (θ): Suppose Case 1.1 occurred in Step 3(c) of Stage m. Then it would
have been ensured that ( W - > W A W ^ u)(Bm) and x\\y(Bm). As 5 is an extension
of Bm, (u -* w Λ w -• w)(^m) => (« -• w Λ w -> w)(5).

It will now be proved by induction on s that for all s > o, x\\y(Bm+s). Basis
s = o: Since x\\y(Bm), we have that x\\y(Bm+o).

Inductive Hypothesis Assume that for all s < s0, x\\y(Bm+s).

Consider the process of constructing Bm+So. As the labels Pi, Pi which were
assigned to the respective points x, y during Step 2 of Stage m were deleted
during Step 3(a) of Stage m, Bm+so-\χ) and Bm+so-\y) have no labels. If no
number is attacked during Stage m + s09 then x\\y(Bm+s<>-1) =• x\\y(Bm+so).
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Suppose a number is attacked during Stage m + so and Case 1.1 occurs in
Step 3(c). Then during Stage m + so, the component containing x as a point is
not connected to that containing y as a point. Therefore x\\y(Bm+s°). Similarly
if one of the other cases occurs in Step 3c of Stage m + so, it can be shown that
x\\y(Bm+so). Thus the inductive hypothesis implies that for all s > o, x\\y(Bm+s);
i.e., x\\y(B). Therefore (U^WΛW-+ U)(B) and x\\y(B).

Similarly if one of the other cases occurred in Step 3 c of Stage m, it can
be shown that (χ-*y-hy + x)(B) i£(u-+w Λ w -» u)(B).

This proves (θ) and hence the lemma.

Lemma 3 For each e, φl is not a 2-cylinder function for Ag Π Kg.

Proof: If φl is not total, then it cannot be a 2-cylinder function for Ag Π Kg.
Assume that φl is total. If P\, P\ are fixed and unassigned at Stage H{e), then
by Lemma 2, φl cannot be a 2-cylinder function for Ag Π J5Γ*. Suppose Pj, Pi
are fixed and assigned to the respective points x, y at Stage H(e). Then as φf is
total, φl(τ(x, y), τ(y, x)) is defined. Let φl(τ(x, y), τ{y, x)) = τ(w, w). If
[(X = M Λ } ' = W ) V ( X = W'Λ}' = M)] holds, then as O, j ) e Ag Π ^ ^—* (y, x) e
^ Π ^ , φ | cannot be a 2-cylinder function for ^ Π ^ g . If [(x = u Λ J/ = w) v
(JC = WΛJ; = W)] does not hold, i.e., if x, ^, w, w satisfy condition R2 of Step 2
of the programme, then at some Stage m > H(e), e will be attacked and Pi, Pi
will be deleted via Step 3(a) of Stage m. This is a contradiction as Pi, Pi are
fixed and assigned at Stage H(e).

Hence the condition [(x = u Λ y = w) v (x = w Λ J; = w)] holds. Therefore
φ | cannot be a 2-cylinder function for ^ Π ^ . This proves the lemma and
hence Result α(iv, b) for the case Π.
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