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Compactness via Prime Semilattices

R. H. COWEN

1 Introduction Compactness is certainly one of the most fruitful concepts
of general topology. Topologically inspired notions of compactness have also
proven useful in logic (see [3], [9]) and measure theory (see [8]). In this paper
we introduce a definition of compactness for subsets of a prime semilattice.
Prime semilattices were introduced by Balbes [2] and their algebraic structure
seems just right for presenting the ideas which underlie many compactness
arguments.

2 Prime semilattices and Wallman’s lemma Let (S, <) be a partially ordered
set and suppose T C S. The greatest lower bound, or meet, of T, if it exists, will
be denoted by AT. The least upper bound, or join, if it exists, will be denoted
by vT. If T is finite, T={¢,, . . ., t,}, we shall write t;A ... Aty and ;v ...V 1y
for the meet and join of T, respectively.

A partially ordered set (S, <) is a (meet) semilattice if every finite,
nonempty, set has a meet. A semilattice is said to be prime if whenever s € S
ands;v...vs,eSthen(sas)v...v(as,)eSandsa(s;v...vsy)=
(SASDV...V(SAS.

Let (S, <) be a semilattice and suppose I C S, I # ¢. I is an ideal of the
semilattice (S, <) if s € I and ¢ < s implies ¢ € I, if, in addition, s, ¢ € I and
svteSimpliessv t el I will be called a regular ideal.

Suppose [ is an ideal of the semilattice (S, <). A subset W C S avoids I if
AW ¢ I, W finitely avoids I if \W, ¢ I, for every finite W, C W. The following
theorem generalizes a lemma of Wallman [12].

Theorem 1 Let (S, <) be a prime semilattice and I a regular ideal of (S, <).
Suppose bjjes is a subcollection of S which finitely avoids I and b; =
G V..V g, j € J. Then there is a function [ with domain J such that

{aj7(j)} jes finitely avoids I.
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Proof: Zorn’s lemma easily implies there is a maximal subset M of S which
includes {b;};.s and finitely avoids I.

We show next that s, v s, € M implies s, € M or s, ¢ M. Assume not; that is,
assume there exists s;, s, € S — M with s, v 5, € M. Since M is maximal, neither
M U {5y} nor M U {s,} finitely avoids /. Therefore there exists uy, . . ., Uy,
Uy, .. U e Msuchthat uy An. .. Au,nsyelandvn...AvgAS, el Ifw=
Uy Ao . ANUy AUy AL .. AUk, then w s, €] and w A s, € since [ is an ideal.
Therefore (W A s5;) v (W A s,) € I, since [ is regular.! Thusw A (s, v s,) € . How-
ever w A (s; vV S,) is a meet of elements of M, because s, v 5, € M, and therefore
cannot belong to I, since M finitely avoids /. Hence s, v s, € M implies s, € M or
s, € M as claimed.

It follows, by induction, that if s, v ... v s, € M, then s; e M for some i,
1 < i< n. Since b; € M, aj;; € M for some i;, 1 <i; <n;. Let f(j) = i; and then
{ajr(j)}jes finitely avoids I because it is a subcollection of M.

A collection of sets, W, has the finite intersection property, or fip, if every
finite subcollection has a nonempty intersection, that is, W finitely avoids {$},
the ideal consisting of the empty set. Thus we obtain,

Corollary 1 (Wallman) Suppose {Bj}j.j is a collection of sets with fip and
Bi=A4;U...U Aj,,}., j€J. Then there is a function f, with domain J, such that

{Ajs(j}jes has fip.

Next, we give an analog of Theorem 1 for propositional logic. An indexed
collection of propositional sentences, {S;};.; will be called finitely satisfiable if
every finite subcollection is satisfiable.

Corollary 2 Suppose {S}cr is finitely satisfiable where S; =T v ... v T,
i€l Then there is a function f with domain I such that {Ti e is finitely
satisfiable.

Proof: This follows from Theorem 1 on passing to the Lindenbaum algebra
associated with the propositional logic (see [9]) and letting I be the regular
ideal consisting of the equivalence classes of unsatisfiable formulas.

We now derive from Corollary 2 the Compactness Theorem for proposi-
tional logic.

Corollary 3 Let {83}, be a finitely satisfiable set of propositional sentences.
Then Sy is satisfiable.

Proof: Let {p;};.s be the set of all propositional letters and let pj; = p;, pj» =
~pj, j € J. Then {Si};ier U {pjy v pjaljes is finitely satisfiable since {S;};.; was
assumed to be so and pj; v pj, is tautologous. By Corollary 2, there is a function
f such that {Si};er U {pjr(jh}jes is finitely satisfiable. Since {pjs(j)ljes contains
exactly one of every pair {p;, ~p;}, j € J, f determines a unique interpretation
satisfying all pjs(;), j € J. We claim J also satisfies each S;, i € I; for if {pjlj.y, is
the finite set of propositional letters of S; and &' satisfies {S;} U {pjr(j)ljes;> £
and 4’ must agree on {Dj}jes;- Hence, J satisfies Sy, i € 1.

We show next that the Ultrafilter Theorem for Boolean algebras is also a
corollary of Theorem 1. Let (B, v,A, ~, 0, 1) be a Boolean algebra. A subset
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By C B is full if b € By or ~b € B, for every b € B. B, has the finite meet
property, or fmp, if By finitely avoids {0} in the semilattice (B, <), where
b, < b, if and only if b, A b, = b,. The following characterization of ultrafilters
is sometimes useful.

Lemma A subset of a Boolean algebra which is full and has fmp is an
ultrafilter.

Proof: Let U be full with fmp. It suffices to show U is a filter. Let u,, uy e U;
since uy A uy A ~(uy A uy) =0, ~(uy Au,) ¢ U, because U has fmp. Therefore
uynuye U, since Uis full. Let u e U and b € B; since ~(uvb)Anu=~unr~bna
u=0,~uvb)é¢ U Henceuv b e U, completing the proof.

Corollary 4 (Ultrafilter Theorem) Any Boolean algebra contains an ultra-
filter.

Proof: Let(B, v, A, ~, 0, 1) be a Boolean algebra. Then surely (B, <) is a prime
semilattice. Consider the collection C = {b v ~b}p.5. Since b v ~b = 1, C has
fmp, that is, C finitely avoids {0}. Theorem 1 yields a set U with fmp which is
also full. The lemma implies U is an ultrafilter.

3 Compactness Let (S, <) be a prime semilattice with ideal / and let k be
an infinite cardinal. For any set K, let K denote the cardinality of K. A subset
C C S is k-compact with respect to I if for every K C C with K<k K finitely
avoids I implies K avoids I. C is compact with respect to I if for every K C C, K
finitely avoids I implies K avoids /. If it is clear what ideal / we are referring to,
we shall simply write k-compact or compact as the case may be.

Marczewski [8] defines a class F of subsets of a set X to be compact if for
each sequence P, € F, P, N ... N P, # ¢ implies [ | P, # ¢, that is, F is 8¢
compact in the prime semilattice (P(X), <)* with I = {#}. He then proves that if
a class F' is compact, so are the class of all countable intersections of members
of F and the class of all finite unions of members of F. The next two theorems
generalize these results.

If QCS, welet TI(Q)={ATIT C Qand AT e S} and Z(Q) ={vTIT C Q and
vT e S}. If T is only allowed to range over subsets of Q of cardinality <k we
write I1,(Q) and Z,(Q), respectively; whereas if 7 only ranges over finite
subsets of Q, we write I1z(Q) and Zg(Q), respectively.

Theorem 2 Let (S, <) be a prime semilattice with ideal I. If Q C S is
k-compact, then I1,(Q) is k-compact. If Q is compact, II(Q) is compact.

Proof: Suppose K C I1,(Q), K< K, and K doesn’t avoid /, that is, AK € I If
ke K, k=nlgjlgx € Q, j € Ji} where Jx < k and AK =nlqjilj € Jg, k € K}. If
D = {qilj € Jx, k € K}, D <k X k = k. Since AD = aK eI and Q is k-compact,
there is a finite W C D such that AW e I. Since W is finite, there is a finite
K, C K such that gj; e W implies k € K, and then AK, < AW. Hence rnK, € I for
K, a finite subset of K.

The proof of the second assertion is virtually the same.

Theorem 3 Let (S, <) be a prime semilattice and let I be a regular ideal of
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(S, ). If Q C S is compact (k-compact) then Lg(Q) is compact (k-compact).

Proof: We give the proof for Kk-compactness. Suppose K C Zg(Q), K<kand K
finitely avoids 1. Let k = lkjljey, J < &, With k; = gy V . .. V qjnj, @i € O,
1 <i<n;. Theorem 1 gives a function f, with domain J, such that D = {g;r(j)}jes

finitely avoids 7 and D < J < k. Therefore D avoids / since Q is k-compact.
Hence K avoids 7 sinceAD << AK and [ is an ideal.

Suppose (S, <) is a prime semilattice and C C S. Then B is a base for C if
C =1I(B); A is a subbase for C if C = II(Zr(A4)). If we replace II by II,, in the
above definitions, we define a k-base and k-subbase, respectively. Theorems 2
and 3 now yield the following generalization of the Subbase Theorem of
Alexander [1].

Theorem 4 Let (S, <) be a prime semilattice and let I be a regular ideal. If
a subbase (k-subbase) for C is compact (k-compact), then C is compact
(k-compact).

Let X be a topological space; then X is compact if and only if the closed
sets are compact with respect to {¢} in the prime semilattice (P(X), C). The
following result was used by Alexander [1] to prove the Tychonoff Theorem.

Corollary (Subbase Theorem) Let X be a topological space and let A be a
subbase for the closed sets. Then X is compact if no subset of A with fip has an
empty intersection.

Proof: The hypothesis says that the subbase A is compact. The conclusion now
follows from Theorem 4.

We show next how the methods of this section can be used to prove some
well known infinite combinatorial results. We begin by proving a general
theorem which we stated in [5]. A partially ordered set (W, <) is directed if
Wy, ..., Wy € Wimplies thereisaw e W with w; <w, | <i<n.

Theorem 5 Let (W, <) be a directed partially ordered set and for each

wewW, let F,, be a finite, nonempty, set of functions with domain D,,. Suppose

that wy < w, and f € Fy, implies fPle € Fy,. Then there is a function f such

that ftD,, € F,, forallw € W.

Proof: Let D=UD,(w e W). Foreachd e D, let Ay ={f(d)|f e F,,, d e D,,} and

let F = y DAd. We consider the prime semilattice (P(F), C) and let I = {¢}. For
€

each we W, let F,,={fe FIftD,, ¢ F,}. For each d e D and a € Ay, let {d, a) =
{flfe F and f(d) = a} and let C=1{(d, a)ld € D, a € Az}. Then C is compact; for

if r) {d;, a;) = ¢, it must be that d, = di, and a;; # a;,, and then {d;}, a;) N
13

(dj,, a;) = ¢, By Theorems 2 and 3 TR(II(C)) is compact. But F,, € =p(11(C));

in factif F\, ={fi, ..., ful, U ﬂ (d, fi(d). Also, given any wy, ..., w, €

N j=1deDy,
W, Fy N.. ﬂF =#¢ smcelfweWandw,\w 1<i<n, andfer,then
fPDw,er,1<z n, andsoF CF LN ﬂF ThereforeﬂF # ¢ and
iffeNF,, ftD,e€F,,forallweW.
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As our first application of Theorem 5, we prove the theorem of De Bruijn
and Erdos [6] that a graph is m-colorable if all its finite subgraphs are
n-colorable. Let G be a graph with vertex set V and let n be a positive integer.
An n-coloring of G is a function f: V= {0, . . ., n — 1} such that f(v,) # f(v,) if
v, and v, are connected by an edge of G.3

Theorem 6 A graph is n-colorable if every finite subgraph is n-colorable.

Proof: 1f H,, H, are finite subgraphs of G, we let H, < H, if H, is a subgraph of
H,. If H is a subgraph of G, let Fy be the set of n-colorings of H. Surely if
H, <H,and fe Fp, then f FPV(H,) € Fp, where V(H,) is the set of vertices of
H,. Theorem 5 yields a function f such that 1 V(H) € Fy for all H and so f
n-colors G.

A special case of Theorem 6 deserves mention: let (P, <) be a partially
ordered set and let G be the graph whose set of vertices is P and whose edges
connect those pairs {p,, p,} which are incomparable, that is, p; % p, and
P2 £ p;. Then an n-coloring of G is equivalent to a partition of P into at most n
chains (C is a chain if p,, p, € C implies p; <p, or p, < p,). Hence Theorem 6
implies,

Theorem 7 If (P, <) is a partially ordered set and n, a positive integer and
any finite Py C P can be partitioned into at most n chains, then P itself can be
so partitioned.

A subset S of a partially ordered set P is an antichain if every two distinct
elements of S are incomparable: Dilworth [7] proved the following decomposi-
tion theorem by first considering the case where P is finite and then using the
finite case along with a nontrivial transfinite argument to generalize to
infinite P.

Theorem 8 If a partially ordered set P contains no antichain of cardinality
n+ 1, then P is the union of at most n chains.
Proof: The general case follows from the finite case® and Theorem 7.

Theorem 5 has other applications as well. It can be considered a variant of
the Rado selection lemma (see [4] and [10] for other variants) and has the
same applications as Rado’s lemma. In fact many of the compactness results we
have considered can be used interchangeably; we have given primacy to the

semilattice presentation to demonstrate the algebraic assumptions which are
implicit in many compactness arguments.

NOTES

1. Was))V(WAsy) e S, since (S, <) is prime and s, Vs, € S.
2. P(X) is the set of all subsets of X.
3. See Wilson [13] for more on graphs.

4. See Tverberg [11] for an elegant proof of the finite case.
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