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Compactness via Prime Semilattices

R. H. COWEN

1 Introduction Compactness is certainly one of the most fruitful concepts
of general topology. Topologically inspired notions of compactness have also
proven useful in logic (see [3], [9]) and measure theory (see [8]). In this paper
we introduce a definition of compactness for subsets of a prime semilattice.
Prime semilattices were introduced by Balbes [2] and their algebraic structure
seems just right for presenting the ideas which underlie many compactness
arguments.

2 Prime semilattices and Wallman 's lemma Let (S, O be a partially ordered
set and suppose T C S. The greatest lower bound, or meet, of T, if it exists, will
be denoted by ι\T. The least upper bound, or join, if it exists, will be denoted
by vΓ. If T is finite, T = \tu . . ., tn 1, we shall write t1 Λ . . . Ntn and tx v . . . v tn

for the meet and join of Γ, respectively.
A partially ordered set (S, <> is a (meet) semilattice if every finite,

nonempty, set has a meet. A semilattice is said to be prime if whenever s e S
and sx v . . . v sn e S then (s Λ -SJ) V . . . v (s Λ sn) e S and s Λ ( ί 1 v . . . v ί w ) =
(s Λ s^ v . . . v (s ι\sn).

Let <5, O be a semilattice and suppose / C S, I Φ φ. I is an ideal of the
semilattice (S, O if s e I and t < s implies t e I; if, in addition, s, t e I and
s v t e S implies s\ι t e I, I will be called a regular ideal.

Suppose / is an ideal of the semilattice (S, O . A subset W C S avoids I if
r\W i /; W finitely avoids I if NW0 φ /, for every finite Wo C W. The following
theorem generalizes a lemma of Wallman [12].

Theorem 1 Let {S, O be a prime semilattice and I a regular ideal ofiS, O .

Suppose {bf]jej is a subcollection of S which finitely avoids I and bj =

a}l v . . . v ajn., / e /. Then there is a function f with domain J such that

\cijf{j)\jej finitely avoids I.
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Proof: Zorn's lemma easily implies there is a maximal subset M of S which
includes \bj\]ej and finitely avoids /.

We show next that s1 v s2e M implies sxe M or s2e M. Assume n o t ; that is,
assume there exists sl9 s2 e S - M with s1 v s2eM. Since M is maximal, neither
M U {sx\ nor M U \s2] finitely avoids /. Therefore there exists uu . . ., un,
υu . . ., Vk e M such that ux Λ . . . Λ un Λ st e I and v1 Λ . . . Λ υjς Λ S2 e I. If w =
ux Λ . . . Λ un Λ Vι Λ . . . Λ Vfc, then w Λ s1 e I and w Λ S2 e I since / is an ideal.
Therefore (w Λ SΊ) V (W Λ ̂ 2 ) ^ L since / is regular.1 Thus w A (s1v s2) e I. How-
ever w Λ (ί j v ̂ 2 ) is a meet of elements of M, because Sχ\/ s2e M, and therefore
cannot belong to /, since M finitely avoids /. Hence SX\J s2e M implies sxe M or
s2 e M as claimed.

It follows, by induction, that if sλ v . . . v sn e M, then 5/ e M for some /,
1 < / < / ? . Since bj e M, a^. e M for some z), 1 < if < nj. Let / (/) = i} and then
{βffiβljeJ finitely avoids / because it is a subcollection of M.

A collection of sets, W, has the finite intersection property, or ftp, if every
finite subcollection has a nonempty intersection, that is, W finitely avoids \φ\,
the ideal consisting of the empty set. Thus we obtain,

Corollary 1 (Wallman) Suppose {B/j/ej is a collection of sets with fip and
Bj = AJΊ U . . . U Ajn., j e J. Then there is a function f with domain /, such that
{Ajf(j)\jeJhasfιp.

Next, we give an analog of Theorem 1 for propositional logic. An indexed
collection of propositional sentences, {S/i/e/ will be called finitely satisfiable if
every finite subcollection is satisfiable.

Corollary 2 Suppose {Si\iejis finitely satisfiable where Sj = T^ v . . . v 7/^.,
i e I. Then there is a function f with domain I such that {Tif^)\iej is finitely
satisfiable.

Proof: This follows from Theorem 1 on passing to the Lindenbaum algebra
associated with the propositional logic (see [9]) and letting / be the regular
ideal consisting of the equivalence classes of unsatisfiable formulas.

We now derive from Corollary 2 the Compactness Theorem for proposi-
tional logic.

Corollary 3 Let {Si }/e/ be a finitely satisfiable set of propositional sentences.
Then \St\ui is satisfiable.

Proof: Let \pj\jej be the set of all propositional letters and let p ; 1 = pj, pj2 =
~Pj, j e J. Then fS/ϊ/e/ U {|/?;1 v p/2\fej is finitely satisfiable since {*S/}/e/ was
assumed to be so and p 7 1 v pJ2 is tautologous. By Corollary 2, there is a function
/ such that ίS/i/e/ U \Pjf(j)\jej is finitely satisfiable. Since \Pjf(j)\jeJ contains
exactly one of every pair {p; , ~p7 l, 7 e /, /determines a unique interpretation J
satisfying all p7/(7), 7 e /. We claim <i also satisfies each 5Z , i e /; for if {pj\j€ji is
the finite set of propositional letters of 5/ and A` satisfies IS/} U !p//(/)i/e//? Λ
and J.' must agree on !p/l/e/Γ Hence, J. satisfies Sif i e I.

We show next that the Ultrafilter Theorem for Boolean algebras is also a
corollary of Theorem 1. Let (B, v, Λ, ~, 0, 1> be a Boolean algebra. A subset
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Bo C B is full if b e Bo or ~Z? e i?0 for every b e B. Bo has the //mYe raeer
property, or /mp, if i?0 finitely avoids {0} in the semilattice (B, <>, where
bί<b2 if and only ifb1f\b2 = b1. The following characterization of ultrafilters
is sometimes useful.

Lemma A subset of a Boolean algebra which is full and has fmp is an
ultrafliter.

Proof: Let U be full with fmp. It suffices to show (/is a filter. Let uu u2 e U;
since u1 Λ U2 Λ ~(U1 Λ U2) = 0, ~(uλ Λ, W2) ̂  U> because U has fmp. Therefore
uγ Λ w2

 e U> since £/ is full. Let u e U and & e B; since ~(w v Z?) Λ U = ~u Λ ~b Λ
w = 0, ~(w M b)4 U. Hence uv b e U, completing the proof.

Corollary 4 (Ultrafilter Theorem) 4̂?rμ Boolean algebra contains an ultra-
filter.

Proof: Let (B, v, Λ, ~, 0, 1> be a Boolean algebra. Then surely (2?, O is a prime
semilattice. Consider the collection C = \b v ~b}b€B> Since Z> v ~ft = 1, C has
fmp, that is, C finitely avoids ίOl. Theorem 1 yields a set £/ with fmp which is
also full. The lemma implies U is an ultrafilter.

3 Compactness Let (S, <> be a prime semilattice with ideal / and let K be
an infinite cardinal. For any set K, let K denote the cardinality of K. A subset
C C S is K-compact with respect to I if for every K C C with K < K, K finitely
avoids / implies K avoids /. C is compact with respect to I if for every K C C, K
finitely avoids / implies K avoids /. If it is clear what ideal / we are referring to,
we shall simply write /c-compact or compact as the case may be.

Marczewski [8] defines a class F of subsets of a set X to be compact if for
each sequence Pn e F, P1 Π . . . Π Pn Φ φ implies \\ Pn Φ φ, that is, F is &0"
compact in the prime semilattice (P(X), O 2 with / = \φ\. He then proves that if
a class F is compact, so are the class of all countable intersections of members
of F and the class of all finite unions of members of F. The next two theorems
generalize these results.

If Q C S, we let Π(β) = { Λ71 T C Q and ΛΓ e S\ and Σ(Q) = ivT\TCQ and
vΓ e S\. If T is only allowed to range over subsets of Q of cardinality </< we
write UK(Q) and ΣK(Q), respectively; whereas if T only ranges over finite
subsets of Q, we write UF(Q) and ΣF(Q), respectively.

Theorem 2 Let (S, <> be a prime semilattice with ideal I. If Q C S is
K-compact, then UK(Q) is κ-compact. If Q is compact, Π(Q) is compact.

Proof: Suppose K C UK(Q), K < K, and K doesn't avoid /, that is, AK e I If
k e K, h = h\qjk\qjk e Q> J e Jk\ where /& < K and ΛĴ Γ =h\qjk\j e J^, k e K\. If
£ = ί#/fcl/ € J^, k e K\, D < K X K = K. Since ND = NK e I and β is /c-compact,
there is a finite W C D such that ΛW e /. Since W is finite, there is a finite
K0C K such that g7 fc e W implies k e Ko and then Λ ^ 0 < KW. Hence /\Koe I for
KQ a finite subset of K.

The proof of the second assertion is virtually the same.

Theorem 3 Let (S, < ) be a prime semilattice and let I be a regular ideal of
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(S, <). IfQCS is compact (κ-compact) then Σp`(Q) is compact (κ-compact).

Proof: We give the proof for K-compactness. Suppose K C Σp(Q), K <κ and K

finitely avoids /. Let k = \kj\]eJ> J < K, with k} = qίx v . . . v qjn., qjΊ e Q,

1 <i<nj. Theorem 1 gives a function/, with domain/, such that D = \qjf(j)\jej

finitely avoids / and D < 7 < K. Therefore D avoids / since Q is ^-compact.

Hence K avoids / since ND < /\K and / is an ideal.

Suppose (S, O is a prime semilattice and CCS. Then B is a base for C if
C = Π(£); ,4 is a subbase for C if C = Π(ΣF(>1)). If we replace Π by Uκ in the
above definitions, we define a κ-base and κ-subbase, respectively. Theorems 2
and 3 now yield the following generalization of the Subbase Theorem of
Alexander [ 1 ].

Theorem 4 Let {S, O be a prime semilattice and let I be a regular ideal. If
a subbase (κ-subbase) for C is compact (κ-compact), then C is compact
(κ-compact).

Let X be a topological space; then X is compact if and only if the closed
sets are compact with respect to lφ\ in the prime semilattice (P(X), O . The
following result was used by Alexander [ 1 ] to prove the Tychonoff Theorem.

Corollary (Subbase Theorem) Let X be a topological space and let A be a
subbase for the closed sets. Then X is compact if no subset of A with fip has an
empty intersection.

Proof: The hypothesis says that the subbase A is compact. The conclusion now
follows from Theorem 4.

We show next how the methods of this section can be used to prove some
well known infinite combinatorial results. We begin by proving a general
theorem which we stated in [5]. A partially ordered set (W, <> is directed if
w 1 ? . . ., wn e W implies there is a w e W with w/ < w, 1 < i ̂  n.

Theorem 5 Let (W, O be a directed partially ordered set and for each
w e W, let Fw be a finite, nonempty, set of functions with domain Dw. Suppose
that w1 < vv2 and f e FW2 implies fϊDWχ e FWγ Then there is a function f such
that f\Dy, e Fw for all w eW.`

Proof: Let D = UDw(w e W). For each d e D, let Ad = \f(d)\fe Fw, d e Dw\ and

let F = A Ad* We consider the prime semilattice (P(F), C) and let / = \φ\. For
deD

each w e W, let Pw=\f e F\f\Dw e Fw\. For each d eD and a e Ad, let (d, a) =

\f\fe F and f(d) = a\ and let C = i(d, a)\d e D, a e Ad\. Then C is compact; for

if Π (df, af) = φ, it must be that d^ = d(2 and aiχ Φ aiv and then {dfv α/χ> Π

(dir ai2) = φ, By Theorems 2 and 3 ΣF(Π(C)) is compact. But Fw e ΣF(Π(C));

in fact if Fw = \fu . . ., fn\, FW=\JΓ\ <d, fΛd)). Also, given any wl9 . . ., wn e
j=\deDw

W, FWί Γι. . . Γι FWγι Φφ, since if w e W and wz < w, \ <i<n, and fe Fw, then

f\`DWi e Fw., 1 < / < n, and so Fw C FWγ CΛ . . . d FWn. Therefore ΠFW Φ φ and

if fe Π Fw,f\`Dw e Fw> for all w e W.
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As our first application of Theorem 5, we prove the theorem of De Bruijn
and Erdos [6] that a graph is ft-colorable if all its finite subgraphs are
^-colorable. Let G be a graph with vertex set V and let /ίbea positive integer.
An ft-coloring of G is a function/: V-+ {0, . . ., n - 1} such that/ίi^) Φ f(υ2) if
Vι and υ2 are connected by an edge of G.3

Theorem 6 A graph is n-colorable if every finite subgraph is n-colorable.

Proof: lfHίt H2 are finite subgraphs of G, we let Hί <H 2 if H1 is a subgraph of
H2. If 7/ is a subgraph of G, let F # be the set of ft-colorings of H. Surely if
Hλ < # 2 and / e FHl then / f V(HX) e FHί where K ^ ) is the set of vertices of
Hv Theorem 5 yields a function / such that / ϊ F(//) e /*# for all H and so /
ft-colors G.

A special case of Theorem 6 deserves mention: let (P, <> be a partially
ordered set and let G be the graph whose set of vertices is P and whose edges
connect those pairs \pu p2\ which are incomparable, that is, px ^ p2 and
p2^Pι Then an ft-coloring of G is equivalent to a partition of P into at most ft
chains (C is a chain if plt p2 e C implies P\^p2 or p2 ^p\). Hence Theorem 6
implies,

Theorem 7 // <P, <> w α partially ordered set and n, a positive integer and
any finite Po C P can be partitioned into at most n chains, then P itself can be
so partitioned.

A subset S of a partially ordered set P is an antichain if every two distinct
elements of S are incomparable: Dilworth [7] proved the following decomposi-
tion theorem by first considering the case where P is finite and then using the
finite case along with a nontrivial transfinite argument to generalize to
infinite P.

Theorem 8 If a partially ordered set P contains no antichain of cardinality
n + 1, then P is the union of at most n chains.

Proof: The general case follows from the finite case4 and Theorem 7.

Theorem 5 has other applications as well. It can be considered a variant of
the Rado selection lemma (see [4] and [10] for other variants) and has the
same applications as Rado's lemma. In fact many of the compactness results we
have considered can be used interchangeably; we have given primacy to the
semilattice presentation to demonstrate the algebraic assumptions which are
implicit in many compactness arguments.

NOTES

1. (w Λ Si) v (w Λ s2) e S, since (S, <> is prime and sx v s2 e S.

2. P(X) is the set of all subsets of X.

3. See Wilson [13] for more on graphs.

4. See Tverberg [11] for an elegant proof of the finite case.
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