
161

Notre Dame Journal of Formal Logic
Volume 24, Number 2, April 1983

Probabilistic Semantics for

Intuitionistic Logic

C. G. MORGAN and H. LEBLANC*

Venturing into technically virgin territory, we isolate probability functions
that: (i) stand to intuitionistic logic as Popper's functions do to classical
logic,1 and hence (ii) rate (we believe) the appellation "intuitionistic probability
functions". We then define in terms of these functions a notion of logical truth
and a notion of entailment (or, if preferred, logical consequence) such that,
where IL is a first-order language, A is a statement of IL, and S is a set of
statements of IL,

(a) A is logically true if provable by intuitionistic means (T2.8), and only
ifso(T3.6)

(b) A is entailed by S if provable from S by intuitionistic means (T2.10),
and only if so (T3.8).

Our definitions and theorems constitute—in current parlance—a proba-
bilistic semantics for intuitionistic logic, i.e., an adaptation to intuitionistic
logic of the semantics that Popper and various writers in Popper's debt have
devised for classical logic.2 We concentrate in this article on the semantics that
thus issues from our probability theory. In a sequel to it we shall discuss the
interpretation of Pr which dictated the ten constraints placed in Section 1 on
that function.
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Section 1 deals with the syntax and the (probabilistic) semantics of IL
Section 2 supplies proofs of our Soundness Theorems for IL (T2.8 and T2.10);
and Section 3 supplies proofs of the Completeness ones (T3.6 and T3.8). All
steps toward T2.8 and T2.10 are constructive. Some toward T3.6 and T3.8, on
the other hand, are not. But that is the rule, not the exception, with complete-
ness proofs for intuitionistic logic.

1 The syntax and semantics ofIL The signs of IL will be:

(i) No (individual) variables
(ii) the tt0 (individual) terms

h, t2, t3, . . .,

listed here in their so-called alphabetic order
(iii) one or more predicates, each reported as being of a certain degree d
(iv) the statement /, which the reader may think of as some logical false-

hood or other of IL
(v) D, &, v, V, and 3

(vi)(,)and,.3

Variables will be referred to by means of X; terms by means of T; individual
signs (i.e., individual variables and individual terms) by means of/; predicates
by means of P; finite strings of signs by means of A, B, C, 0, E, and F\ and, A
being such a string, Ilt 72, . . ., In(n> 0) being distinct individual signs, and
I\, 72, . . ., I'n being individual signs not necessarily distinct from one another
nor from Iίf I2, . . ., In, the result of simultaneously substituting in A sign l\ for
sign 11, sign ί2 for sign 72, . . ., sign ίn for sign In will be referred to by means of
((A)(I'1,Γ2,...,l'n/I1,I2,...Jn)).

The statements of IL will be all strings of signs of the following sorts:

(i) /
(ii) P(Γ l3 Γ2,..., Td), where P is a predicate of degree d and Tl9 T2, . . , Td

are not necessarily distinct terms
(iii) (A ^>B), (A &B), and (A v B), where A and B are not necessarily

distinct statements
(iv) (\/X)A and (3X)A, where, for some term T, (A(T/X)) is a state-

ment.4

We shall presume the statements of IL to be arranged in some specific order,
called their alphabetic order.5 For brevity's sake we shall drop various paren-
theses; and, 7/ being the /th term of IL, we shall write A\ and B\ (i> 1) in place
of A(Ti/X) and B(Ti/X), respectively; and at one juncture we shall write A" in
place of (A(X/T))(Ti/X).

Sets of statements will be referred to by means of S, and will be called
infinitely extendίble if there are ft0 terms that are foreign to their members
(i.e., that do not occur in any of their members). And, S being a finite set of
statements, we shall understand by B & C(S) the statement B when S is φ,
otherwise the conjunction £ & ( ( . . . (C1 & C2) & . . . ) & Q)> where Cu C2, . . .,
Cn are in alphabetic order the various members of S.
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The axioms of IL will be all statements of the sixteen sorts:

Al AD(BDA)
A2 (AD(BD O ) D ((A DB)D(AD C))
A3 fDA6

A4 AD(BD(A&B))
A5 (A&B)DA
A6 (A&B)DB
A7 ,4 D 04 v 5)
A8 BD(A\/B)
A9 ( i D C ) D ((£ D C) D ((A v 5) D C))
Aio (viμDi(r/i)
All i4D(VJΓM7

A12 (VJQ04 3 £) 3 ((VZM D (\/X)B)

A13 i4(Γ/J5Γ) D (3JTM
A14 (3JSΓMD4
Al 5 (VX)G4 D B) D ((3X)A D (3X)B)
A16 (\fX)(A(X/T)) if ^ is an axiom.8

And the ponential of two statements 4̂ and A D B of IL will be 2?. It follows
from our account that any axiom of IL is of the sort

(yX1)(\fX2). . . 0/Xn)(A(Xl9 X2, . . ., XjTlt T2, . . ., Tn)),

where n > 0 and 4̂ is of one of the fifteen sorts A1-A15. It also follows, as the
reader may wish to verify, that if A is an axiom, so is A(Tf/T) for any terms T
and T'. We shall presume both facts below.

By a proof in IL of a statement A of IL from a set S of statements ofIL
we shall understand any finite column of statements of IL such that: (i) each
entry in the column is a member of S, an axiom, or the ponential of two
earlier entries in the column; and (ii) the last entry in the column is A. We shall
say that A is provable in IL from S or, equivalently, that A is provable in IL
given the statements in S as assumptions (for short, S \j A) if there is a proof
of A from S in IL. We shall say that A is provable in IL (for short, \jA) if
φ \j A.9 And we shall take S to be inconsistent in IL if S \j f consistent
otherwise.

By a term extension of IL we shall understand any language that is like IL
except for possibly boasting countably many (individual) terms besides those of
IL. (Note that because of the qualifier 'possibly' IL counts as one of its term
extensions.) In general, we shall refer to term extensions of IL by means of
IL+, and write S ϊj A (rj A, when S = φ) for 'A is provable in IL* from S\
One term extension of IL plays a crucial role in Section 3. It boasts Ko extra
terms over and above those of IL, and for that reason is known as IL°°. The
terms of IL°° are

oo oo oo

h > h> h J J

where t°?y t°£, t™, . . ., are in alphabetic order the terms of IL (and hence
2̂°> *T> ^°J •> a r e ^ e terms of /L°° peculiar to IL00). In keeping with the

convention above we write S \ψ A for A is provable in /L°° from S.
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It is easily verified that, when S is a set of statements of IL and A a
statement of IL, S \j A if S \ψ A. For suppose the column made up of
Blf B2, . . ., Bp constitutes a proof of A from S in IL°°, and for each / from
1 through p let Q be the result of replacing by tx (the first term of IL) every
term in Bf that is not one of IL (and hence is peculiar to IL°°). Then, as the
reader will note, the column made up of Clf C 2 , . . ., Cp is sure to constitute a
proof of A from S in IL. We shall bank on that fact below.

Now for matters of semantics, some concerning all term extensions of IL
and the rest concerning just IL.

By an intuitίonistίc probability function for IL+ we shall understand any
function Pr+ (Pr when IL+ is IL, and Pr°° when IL+ is IL°°) that takes (ordered)
pairs of statements of IL+ into real numbers and meets the following ten
constraints:

Cl 0<Pr+(A,B)<l
C2 Pr\A,A)=l
C3 Pr\A,f)=\10

C4 Pr+(A DB,C) = Pr+(B, A & C)
C5 Pr+(A &B,C) = Pr+(A, B&C)X Pr+(B, C)
C6 Pr+(A &B,C) = Pr\B & A, C)
C7 Pr+(A,B&C) = Pr+(A,C&B)

C8 Pr+(A, By C) = Pr V , 5) X Pr V , C & {B D A))11

C9 Pr+((\/X)A, B) = Limit Pr\{. . . (A\&.A`ύ & . . . ) & Λ?, ^ )

CIO P r V , (3X)i5) = I/miY i>%4, (. (^i v B'2) v . . .) v J5 ).

This done, we shall say that a statement A of /L is logically true in IL if,
for every intuitionistic probability function Pr for IL and every statement B of
7Z, Pr(A, B) = I . 1 2 And we shall say that A is entailed in IL by a set S of
statements of IL if, for every term extension IL+ of IL, every intuitionistic
probability function Pr+ for IL+, and every statement B of IL+, Pr+(A, B &
C(S')) = 1 for at least one finite subset Sf of S.13 To abridge matters we shall
write lγ A in lieu of 6A is logically true in IL9, and S ty 4̂ in lieu of 6A is
entailed in /Z, by £'.

2 Soundness theorems That under the account of ' H and ' 1=' in Section 1
IL is both weakly and strongly sound hinges on three theorems:

(i) T2.2(a), the probability analogue of Modus Ponens
(ii) T2.2(b), according to which—no matter the finite set S or the

member A of C(S)-Pr(A, B & C(S)) = 1 for every B
(iii) T2.6, according to which—no matter the axiom A of IL— Pr(A, B) = 1

for every B.

T2.6 will follow from two ancillary theorems, one (T2.3) covering axiom
schemata A1-A9 and the other (T2.5) covering the rest. Two multi-clause
lemmas (L2.1 and L2.4) pave the way for T2.2, T2.4, and T2.5. L2.1-T2.6 hold
for the remaining extensions of IL as well as for IL (hence with IL+ and Pr+ in
place of IL and Pr, respectively); we shall take the fact for granted when
proving our Strong Completeness Theorem. As announced earlier, all results in
this section are obtained by strictly intuitionistic means.1 4
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L2.1

(a) Pr(A&B, C)<Pr(B, C).
(b) Pr(A &B9 C) <Pr(A, C).1 5

(c) Pr(Ai} (. . . (A1 &A2) & . . .) &An) = 1 (for each ifrom 1 through n).
(d) Pr(Aif At & ( . . . & (An-X &An). . .)) = 1 (for each ifrom 1 through n).
(e) Pr(4 DB,C) = Pr(B, CScA).
(f) ΛrW, (BvC)&D) = Pr{At B&D)XPr(A, (C&(BD (DDA)))&D).
(g) PrW, (B v C) &Z)) < P r U , B&D).16

(h) Zeί V 6^ ί/zorr /or '/ D /'. ΓA^Λ iV(ί, >4) = 1.
(i) Let V be as in (h). Then Pr(A, B&t) = Pr(A, B),
0) Pr{A, BM C)= Pr(A, C v B).
(k) Pr(A, (Bv C)&D)<Pr(A, C&D).

Proof:
Λd(a):ByC5

Pr(yl &B,C)= Pr{Af B&C)X Pr(Bf C).

But by Cl the factors on the right each fall within the range [0,1 ]. Hence (a).
Ad (b): By (a) and C6.
Ad(c): ByC2

Pr«. ..(Aί&A2)Sc.. .)&An, (. . . (Ax &A2) & . . .) &An) = 1,

hence by n - i applications of (b) and Cl

Pr(C ..(A1&A2)&.. .)&Ah (. ..(A1&A2)&.. .)&An) = 1,

and hence (c) by (a) and C l .
Ad (d): By C2

Pr(A1 & ( . . . & 04*-! &Λ Λ ) . . .), Ax & ( . . . & (i4Λ-! & Λ ) •••))= 1,

hence by / - 1 applications of (a) and Cl

Pr(Ai & ( . . . & Wπ-! & i 4 π ) . . . ) , Λi & C . . & W n_ x & ^ π ) . . . ) ) = 1,

and hence (d) by (b) and C l .
Ad (e): By C4 and C7.
y l ί / ( 0 : B y C 8

P r φ D yl, J? v C) = i>(D D ̂ , 5 ) X P r φ D Λ C & ( 5 D ( D D y4))).

Hence ( 0 by (e).
Ad (g): By (f)

Pr(A, (B\ι C)&D) = Pr(A, B &D)X Pr(A, (C&(BD(DD A))) & D).

But by Cl the factors on the right each fall within the range [0, 1]. Hence (g).
Ad (h): By L2.1 (c) Pr(f f&A)=l. Hence (h) by C4. *
Ad (i): By C5 and (h)

Pr(A &t,B) = Pr(A, t&B)

and
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Pr(t&A,B) = Pr(A,B).

Hence by C6

Pr(A, t&B)=Pr(AfB).

Hence (i) by C7.
AdQ): ByC8andC4

Pr(A, By C)

equals

Pr(A, B) X Pr(C D A, B D A),

which by (i) and C4 equals

Pr{B DA, t)X Pr(C D A, (B D A) & t),

which by C5-C6 equals

Pr((BDA)&(CDA),t),

which by C5 and (i) equals

Pr(B DA, CD A) X Pr(C D A, t),

which by C4 and (i) equals

Pr(A, B &(CDA))X Pr(A, C),

which by C8 equals

Pr(A, C v B).

Ad (k): By G), C4, and C7

Pr(A, (ByC)&D)= Pr(A, (C v B) & J5).

Hence (k) by (g).

T2.2

(a) / / Λ U , C ) = 1 andPr{A DBfC)=l, thenPr(B, C) = 1.

(b) Let S be a finite set of statements and A be an arbitrary member of S.
Then Pr{A, B &C(S)) = 1 for every B.

Proof:

Ad (a): Suppose

Pr{A DB,C)= 1,

and hence by C4

Pr(B,A&C)= 1;

and suppose

Pr(A, C)= 1.

Then by C5
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Pr(B &A, C)= 1,

and hence by L2.1(b) and Cl

Pr(B, C)= 1.

Hence (a).

Ad {b)\ By L2.1(c) and C7.

T2.3

(a) Pr{A D(BDA), C) = 1.
(b) Pr((A D(BD C)) D ((A DB)D(AD C)\ D) = 1.
(c) Pr(fDA, B)=l.
(d) Pr(AD(BD(A&B)),C)=l.
(e) Λ ((i4&S)Di4, C ) = l .
(0 Pr((A &B)DB,C)= 1.
(g) /VUDWvi) ,C)=l .
(h) Λ ( ί D ( 4 v 5 ) , C ) = l .
(i) /V(U ^ C) 3 ((5 DC)D (U v 5) D C)), β) = 1.

Proof:
Adi*): By L2.1(d)

Pr(A,B8c(A &C))= 1.

Hence (a) by two applications of C4.

Adib): By L2.1(d)

Pr(A, A&((ADB)& ((A D (B D C)) & D))) = 1,
Pr{A DB,A&((ADB)& ((A D (B D C))ScD))) = 1,

and

PriA D(BDC),A& ((A D B) & (U D(5D C)) & £>))) = 1.

Hence by three applications of T2.2(a)

Pr(C, A&((ADB)& {(A D (B D C))&D))) = 1.

Hence (b) by three applications of C4.
Ad (c): By C3

Pr{A8cB,f)=l,

hence by C5 and C3

Pr(A,B &/)= 1,

hence by C7

Pr(A,f&B)= 1,

and hence (c) by C4.
-4rf(d): By L2.1(d)

Λ (A B &(B&{A& C))) = 1
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and

Pr(B,B&(A&C)) = 1.

Hence by C5

Pr(A&B,B&(A&C)) = 1,

and hence (d) by two applications of C4.
Ad (e)-(f): By L2.1(c) and C4.
Λc?(g):ByL2.1(c)

Pr(AvB, (AvB)&C)= 1,

hence by L2.1(g)andCl

Pr(A\/B,A&C) = 1,

and hence (g) by C4.
,4d (h): Proof like that of (g), but using L2.1(k) in place of L2.1(g).
Ad(ϊ): (i')ByL2.1(d)

Pr(A, A&((BDC)& ((A D C) &£>))) = 1

and

Pr(A DC,A&((BDC)& ((A D C) &D))) = 1,

and hence by T2.2(a)

Pr{C, A&((BDC)& ((A D C) & D))) = 1.

(ii") Similarly by L2.1(c)-(d) and T2.2(a)

Pr(C, ( M ( i D (((£ DC)& ((A D C) &D)) D C)) & {{B D C) &

((4DC)4fl))))=l.

(r)By(r),(i//)?andL2.1(f)

Pr(C, W v ί ) 4 ((Jϊ 3C)& (04 D C)&D))) = 1,

and hence (i) by C4.

L2.4

(a) Prji^ . ( £ ^ 4 ) &_.̂ .) &Λ ^ & 5) = 1.

(b) Ler PK-4Λ> B) = 1 /or everj h < i and every statement B. Then Pr{{... (A 1 &
i4 2)&. . .)&AitB)= 1.
(c) Λ U, (3JT)5 & C) = L/m/Y PrU, ((. . . (#1 v ̂ ) v . . .) v B ) & C).1 7

(d) Pr(A,((...(AvA)\t ...)vA)&B)=l.

(e) Ler Pr(^Λ D B, C) = 1 /or ever.y /z < / and every statement C. Then
Pr(((. . . (Ax\t AJv . . .)v Ai)DB, C)= 1.

Proof:
Ad (a): The proof is by mathematical induction on /, with the Basis holding
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true by L2.1(c). As for the Inductive Step, by C6

Pr{{. . .{A &A)&. . .)&A,A&B)

iA`s

equals

Pr{A&{{. . .(A&A)&. . .)&A\A&B)

i-l A's

which by C5 equals the product of

Pr{A, ( l^ • (AJkA)^.^^ & A) &(A& B))

i-l A's

and

Pr{{. . . 0 4 & 4 ) & . .)&A,A &B).

i-l i4's

But by L2.1(d) the first of these factors equals 1, and by the hypothesis of the
induction so does the second. Hence (a).
Ad (b): The proof is by mathematical induction on /. Note, as regards the
Inductive Step, that by C5

Pr«...(Aί8cA2)&...)8cAi,B)

equals

#•((. ..(Aί&A2)&...) &Ai-lt At &B)XPr(Ai, B).

But by the hypothesis of the induction the first of these factors equals 1, and
by the hypothesis on Pr(Ai, B) so does the second. Hence (b).
Ad(c): By CIO

Pr(C 3 A, OX)B) = Limit Pr(C D A, (. . . (B\ v 5 ' 2 ) v . . . ) v 5/).

Hence (c) by C4 and C7.
Ad (d): The proof is by mathematical induction on /, with the Basis holding
true by L2.1(c). As for the Inductive Step, by L2.1(f)

Pr(A, ((. ..{AM A)\J . . .)vA)&B)

iA`s

equals the product of

Pr(A, ((... (A vA)v...)vA)&B)

i-lA's

and

Pr(A, (A & ( ( ( . ..{AM A)M . ...)v A) 3 A)) &B).

i-lA`s

But by the hypothesis of the induction the first of these factors equals 1, and
by L2.1(c) so does the second. Hence (d).
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Ad (e): The proof is by mathematical induction on /. Note, as regards the
Inductive Step, that by C4

Pr(((...(AιvA2)v...)\/Ai)DB,C)

equals

Pr(B, ((. . . 04, v A2) v . . .) v At) & C),

which by L2.1 (0 equals the product of

Pr(B,(l . . U i V i 2 ) v . . . ) v 4 M ) & C )

and

Pr(B, Ai & (((. . . (A, v A2) v . . .) v A^) D (C DB)) & C).

But by C4 the first of these factors equals

Λ ( ( ( . . . W 1 v ^ 2 ) v . . . ) V i 4 M ) D 5 , C ) ,

which by the hypothesis of the induction equals 1 while by the hypothesis on

MAiDB.C)

Pr{Ai DB, (Ai & (((. . . (A, v A2) v . . .) v Λ M ) D (CD5))) & C) = 1,

by L2.1(c)

ΛΌ4,, W/ & (((. . . Wi v ̂ 2 ) v . . .) v At-X) D (C D Λ))) & C) = 1,

and hence by T2.2(a) the second factor also equals 1. Hence (e).

T2.5

(a) Pr((\/X)A D i4(Γ/Z), 5) = 1.
(b) Pr(AD(\/X)A,B)=l.
(c) /V((VZ)G4 DB)O> ((\/X)A D (VX)B), C) = 1.
(d) 7VC4(T/X) => (3XM, ^) = 1.
(e) Pr((3X)A DA,B)=\.

(f) Λ ((VJf)(il D 5 ) D ((3JfM => (3^)5), C) = 1.
(g) Let Pr(A'i, B) = 1 for every i and every statement B.18 Then
Pr((\/X)A(X/Tl B).

Proof:

Ad (a): Let T be the gth term of IL, and hence ̂ 1(Γ/Z) beA'g. By L2.1(c)

Pr((\/X)A, (\/X)A &B)=l,

hence by C9

Limit Pr((. . . ( ^ &^^& .)&4/,(V*M &JΪ)= 1,

hence by L2.1(b)andCl

Pr((. . .(A\&A'2)&. . .)&A'g,(yX)A &B)= 1,

hence (by L2. l(a) in the case that g > 1)
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Pr(Ag,(\fX)A&B)= 1,

and hence (a) by C4 and the remark on A'g.
Ad (b): By L2.4(a)

Pr((. . . U & ^ ) & _ 0 & ^ 4 , 4 &B)= 1.

But, as X here is foreign to A, A\ and 4̂ are the same for every i. Hence

Pr((. . . W i &A'2) Sc...)&A'ifA&B)= 1,

hence

Limit Pr((. . . G 4 ; & 4 i ) & . . . ) & 4 , 4 & 5 ) = 1,

/->oo

hence by C9

PK(VXMM &B)= 1,

and hence (b) by C4.
^d(c) : Let 1 < A < / . By (a)

/V((VZ)W D B) D (Ah D B'h), (\/X)A & ((VX)(A D B) & C)) = 1.

But by L2.1(d)

/>((VZ)U D ̂ ) , (\/X)A & ((VΛΓ)U D ̂ ) & C)) = 1.

Hence by T2.2(a)

Pr(A'h D B'h, (\/X)A & ((\/X)(A D B) & C)) = 1.

But by (a) and C4

/V(AΛ, (\/X)A & ((VX)(A D 5) & O ) = 1.

Hence by T2.2(a)

Pr(B'h, (VX)A & «ytX)(A D B) & C)) = 1,

hence by L2.4(b)

Λ<(. . . (5i & 5 i) & . . . ) & 5{, (VZM & ((VX)U ^ B) & O ) = 1.

Hence

L/m/ί /V((. . . (B\ & fii) & . . .) & £ , (VAΓM & ((VX)(^ 3 5 ) & C ) ) = 1 ,

hence by C9

Pr((\/X)B, (\/X)A & ((V*)G4 D 5) & C)) = 1,

and hence (c) by C4.

Ad (d): Let T and ^ be as in the proof of (a). By L2. l(c)

iV((3XM, (Ξ.XM & £ ) = 1,

hence by L2.4(c)
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Limit Pr((3X)A, ((. . .(A\vA2)v . . .) v A\) &B) = 1,

hence by L2.1(g)andCl

Pr((3X)A, ((. . . (Aί v A'2) v . . .) v ^ ) & B) = 1,

hence (by L2.1(k) in the case that g < 1)

P r ( ( 3 X K ^ & £ ) = 1,

and hence (d) by C4 and the remark on A'g.
Ad (e): By L2.4(d)

PrG4> ((. 04 v A) v . . .) v A) & £ ) = 1

hence by the same reasoning as in the proof of (b), but using L2.4(c) in place
ofC9,

Pr(A, (3X)A&B) = 1;

and hence (e) by C4.
4d(f):-Let 1 <h<i. By (a)

A«V*)04 3 ί ) 3 (A'h DB'h), ((. . . (04i v ^ i) v . . .) v i4,') &
((VI)WD5)&C))).

ButbyL2.1(d)

PK(VX)(^ D i ) , ((. . . 041 v ^ ) v . . .) v Ai) & ((VX)G4 D i ) 4 C ) ) = l .

Hence by T2.2(a)

/V(^i D5i, ((. . . Wl v^i) v . . .) v ^,') & ((VX)04 Dϋ) & O ) = 1,

hence by C4

Λ (5i, A'h & (((. . . {A\ v ^ i ) v . . .) v 4 ) & ((VZ)04 3 5) & C))) = 1,

hence by (d) and T2.2(a)

Pr((3X)Bf A'h & (((. . . 041 v A'2) v . . .) v 4{) & «\/X)(A D 5) & C))) = 1,

hence by C4

/H^i D (3JΓ)5, (C (A 1 v Λi) v . . .) v A'i) & ((\/X)(A D i ) 4 C ) ) = l ,

and hence by L2.4(e)

Λ<((. . . 041 v Λi) v . . .) v A'i) D {3X)B, ((. . . (A\ v ^i) v . . .) v Λ}) &
(0/X)(A DB)&C))=\.

ButbyL2.1(d)

Pr((. . . 041 v Λi) v . . .) v ^{, ((. . . 041 v A'2) v . . .) v A'i) &
(OfX)(A DB)ScC))=L

Hence by T2.2(a)

Pr((3X)B, ((. . . 041 v Λi) v . . .) v ^{) & ((VJf )W => 5) & C)) = 1,
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hence

Limit Pr((3X)B, ((. . . (A \ v A 2) v . . .) v At) & <(VX)C4 D B) & C)) = 1,

/—» oo

hence by L2.4(c)

Pr((3X)£, (3.JΓM & ((VX)G4 D i ) 4 C ) ) = l ,
and hence (f) by 2 applications of C4.

i4d (g): By L2.4(b) and the hypothesis on Pr(i4", B)

Pr(C ..(AΪ&AΪ)&...)&AΪ,B)=l,

hence

Limit Pr((. . . 0 4 ' / & , 4 2 ' ) & . . .)&A", B)=l,
i-+oo

and hence by C9

T2.6 Let A be an axiom of IL. Then Pr(A, B) = 1 for every statement B
oflL.

Proof: Since A is sure to be of the sort

Ofx1)(y/x2)... (\/xn)(A\xlf x2,..., xn/τlf τ2,..., τn)\

where (i) n > 0 and (ii) in the case that n > 0

(VZ2) . . . (\/Xn)(A'(X2, . . ., Xn/T29 . . ., Tn))

is an axiom of IL, proof of T2.6 is by mathematical induction on n.
Basis: n = 0, in which case A' is of one of the fifteen sorts Al-Al 5. Then

Pr(A\ B)= 1

by T2.3(a)-(i) and T2.5(a)-(f).
Inductive Step: n > 0. Since

(VZ2) . . . (VXn)(A'(X2, . . ., Xn/T2,. . ., Tn))

is an axiom of IL, so is

(((VX2). . . (VXn)(Ά'(X2, . . ., Xn/T2, . . ., TnmXjTjti/X,)

for every / from 1 on. Hence by the hypothesis of the induction

Λ ((((VX2). . . (\/Xn)(A'(X2,. . ., XJT2,. . ., TnmXt/ΆWi/Xί). B) = 1

for every / from 1 on and every s t a t e m e n t s of IL. Hence by T2.5(g)

Λ αVΛΓiXαVJTa) . . . (VXn)(A'(X2,. . ., Xn/T2,. . ., Γ n ) ) ) (Z 1 /Γ 1 ) ) ( B)=\.

But (VAΊXVΛΓj) . . . (\fXn)(A'(.Xlt X2, . . ., XJTV T2,. . ., Tn)) is the same as
(VX.XίίV^). {`4Xn)(A\X2,. . ., Xn/T2, . . ., Γn))XZ1/Γ1)) Hence

PiiWXMVXi). . . {MXn){A\Xu X2, . . ., XJTU T2,. . ., Tn)), B)=l.



174 C. G. MORGAN and H. LEBLANC

Our Soundness Theorems are now at hand:

T2.7 Let S \j A; let Pr be an arbitrary intuitionistic probability function
for IL; and let B be an arbitrary statement oflL. Then Pr(A, B & COS')) = 1 for
at least one finite subset S' ofS.

Proof: Let the column made up of Aλ, A2, . . ., Ap constitute a proof of A
from S in IL, and let S` consist of those statements of IL among A ίt A2, . . ., Ap

that belong to S. It is easily shown by mathematical induction on / that, for
each / from 1 through p,

Pr(Ait B & C{S')) = 1

and hence

Pr(A, B & CCS")) = 1.

For suppose At belongs to S. Then Pr(Ah B & CCS")) = 1 by T2.2(b). Or suppose
Ai is an axiom. Then Pr(Aj, B & COS")) = 1 by T2.6. Or suppose Aι is the
ponential of Ag and Ah, where g,h < i. Then by the hypothesis of the induction
PiiAg, B & C(S')) = Pr(Ah, B & C(S')) = 1, and hence Pr{Au B & C(5')) = 1 by
T2.2(a).

Hence, taking S to be <f>, in which case Pr{A, B & COS")) is just Pr(A, B):

T2.8 (The Weak Soundness Theorem for IL) If tj.A, then \=jA.

Hence, as all the preceding lemmas and all theorems through T2.6 hold with
IL+, Pr+, \j, and tf in place of IL, Pr, \j, and tf.

T2.9 Let S \j A. Then for every term extension IL+ of IL, every intui-
tionistic probability function Pr+ for IL+, and every statement B of IL+,
Pr\A, B & C(S')) = 1 for at least one finite subset S' ofS.

Hence:

T2.10 (The Strong Soundness Theorem for IL) If S \j A, then S `FA.

3 Completeness theorems The key theorem in this section, T3.5, will
concern sets (of statements of IL) that are infinitely extendible. Since φ is
infinitely extendible, T3.5 will ensure that \jA if \jA (T3.6). The argument
used to prove T3.5 will then be extended to cover all sets. The resulting
theorem, T3.7, will ensure that S \jA if S \=A (T3.8).

The proof of T3.5 hinges on two ancillary theorems: (i) T3.3, according
to which a certain function Pr meets constraints Cl-Cll, and (ii) T3.4, a
provability counterpart of T2.2. T3.3 itself will follow from two multiclause
lemmas regarding provability in IL, L3.1-2. We sketch proofs of only two
clauses of L3.1 and only three of L3.2; the rest are obvious. Lemmas L3.1-2
and Theorem T3.4 hold true for IL°° as well as for IL (hence with /Z,°°, h°°, and
tt° in place of IL, h, and ί, ), a fact we shall take for granted when proving T3.7.

The definition of Pr in T3.3, the proof of T3.6, and that of T3.7 are not
constructive. All else in the section, however, meets intuitionistic demands.
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L3.1

(a) SYjADA.
(b) S\jfDA.
(c) S \jCD(ADB) if and only ifS ϊ](A&C)DB.
(d) S fy C D (A & B) if and only if S \j {B & C)D A and S Y] C D B.
(e) S \jCD(A & B) if and only if S ϊjCD(B &A).
(f) S \j(B&C)DA if and only if S \j(C&B)DA.
(g) S Yj{B M C)D A if and only if S \j B D A and S \j (C &(B D A))D A.

Proof-
Ad (d): Suppose, on one hand, that S \j C D (A & B). Then S fy C DA and
S fy C D B, and hence S fy (B & C) D A and S fy C D B. Suppose, on the other
hand, that S fy (B & C) D A and S ty C D B. Then S \j C D A and S \j C D B,
and hence S fj C D (A & B). Hence (d).
^rf (g): Suppose, on one hand, that S ϊj (B v C) D A. Then S \j B D A and
5 [j C D A, and hence 5 t j£ D A and 5 ίy (C & (B D A)) D A. Suppose, on the
other hand, that S \j B D A and S \j (C & (B D A)) D A. Then S \jB D A and
S ίy C 3 i4, and hence S rj (5 v C) D A

L3.2

(a) 7/5 ty iyX)A, then S\jBD((... (A\&A'2) & . . .)&A}).
(b) If S \j B D A(T/X) for any term T foreign to S and B D (\/X)A, then
S t]BD(VX)A.
(c) 7/5 Y-jB D((. . . (A[&A2)&. . . ) & ^ i ) , ^ ^ ^ \jB DA'g for each g<h.
(d) 7/5 ty(aX)£I},4, r/zen.S rj ((. . ΛB\M B'2)\ι . . . ) v ^ ) 3 ^ .
(e) 7/ 5 fy 5(Γ/Z) D ̂ 4 /or α^y ίerw T foreign to S and (3X)B D A, then
S lj(3X)BDA.

(f) IfS fy ((. . . (5i v 5 j ) v . . . ) v ^ ) D 4̂> ̂ ^ 5 ly B'g D A for each g<k

Proof-
Ad (b): Suppose S \j B D A(T/X), where T is foreign to S and B D (VJSΓM (and
hence to 5 U \B\ and (VJSTM). Then 5 U {Bi \j A(T/X), hence S UiBl \j
(\/X)A by Theorem 4 in [11] and the hypothesis on T, and hence S \j B D
(\/X)A. Hence (6).

^ d ( d ) : Supposed \j(3X)B DA.ΎhenS ly (VX)(5 D ^ ) by *96 in [7], hence
5 fy B\ D A, and hence S fy ((. . . (#; v 5^) v . . .) v B\) DA. Hence (d).
Ad (e): Suppose S fy ̂ (Γ/Z) D Λ, where T is foreign to S and (3X)£ 3 1̂ (and
hence to S and (\fX)(B D A)). Then 5 fj (VX)(£ 3 1̂) by Theorem 4 in [ 11 ]
and the hypothesis on T, and hence S \j (3X)B D A by *96 in [7], Hence (e).

T3.3 Let S be an arbitrary set of statements of IL that is infinitely ex-
tendible, and for any statements A and B of IL let Pr(A, B) equal 1 or 0
according as S fy B D A or not. Then Pr constitutes an ίntuίtionistίc proba-
bility function for IL.19

Proof:
(i) That Pr meets Constraint Cl follows from the definition of Pr, and that it
meets Constraints C2-C8 follows from the definition and L3.1(a)-(h).
(ii) Suppose, on one hand, that Pr((VX)A, B) = 1, and hence by definition that
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S \j B D (yX)A. Then by L3.2(a) S [j B D ((. . . (A\ & A2) & . . .) &A-) for
each / from 1 on, hence by definition Pr((. . . (A[ & A'2) & . . .) & A\t B) = 1 for
each / from 1 on and hence Limit Pr{{. . . (A\ & A'2) & . . . ) & A\t B) = 1.

Suppose, on the other hand, that Pr((\/X)A, B) = 0, and hence by definition
that S tfjBD (yX)A. Then by L3.2(b)S ty B D A(J/X) for any term T foreign
to S and B D (VX)A. But, as S is infinitely extendible, there is sure to be such a
term. So S b£ B D A'g for some g, hence by L3.2(c) S \fB D ((. . .(AΊ&A2) &
. . .) & A'h) for any Λ > g, hence by definition Pr((. . . {A\ & 4 2) & •) &
i4i, £ ) = 0 for any h>g, and hence Limit Pr((. . . (A\ & ^ 2 ) & . . . ) & -4/, 5) = 0.
So Pr meets Constraint C9. '`"0 0

(iii) Suppose, on one hand, thatiVC4, (BX)B) = 1, and hence by definition that
S fj (BX)BDA. Then by L3.2(d) S ty ((. . . (B[ v B'2) v . . .) v 5j) D^ί for each/
from 1 on, hence by definition Pr(A, (. . . (B[ v B'2) v . . . ) v 5 j ) = l for each /
from 1 on, and hence Limit Pr{A, (. . . C#i v B2) v . . .) v 2?J) = 1. Suppose, on

the other hand, that Pr(A, (3X)B) = 0, and hence by definition that S Hf

(3X)B DA. Then by L3.2(e) S tf B(T/X) D A for any term T foreign to S and
(3X)B DA. But, as S is infinitely extendible, there is sure to be such a term. So
S Hj B'g D A for some g, hence by L3.2(f) 5 ^ ((. . . (#1 v 5^) v . . .) v £/,) D A
for any A > g, hence by definition Pr(A, (. . . (#i v B2) v . . .) v B'h) = 0 for any
h > g, and hence I/mίί Pr(^l, (. . . (#i v B2) v . . .) v £•) = 0. So iV meets
Constraint CIO. /"1>o°

T3.4

(a) I^ίS \]D.IfS tfjA, thenS HjDDA.
(b) Zeί ^ Z?e β« arbitrary axiom ofIL, and Sf be an arbitrary finite subset of S.
ThenS YJB8LC{S').

Our Completeness Theorems are now at hand:

T3.5 Let S be an arbitrary set of statements of IL that is infinitely
extendible. If S \\Ay then there exists an intuitionistic probability function Pr
for IL and a statement B of IL such that Pr(A, B & C(S')) Φ 1 for every finite
subsets' of S.

Proof: Suppose S Wj A\ let B be some axiom or other of IL; let S' be an
arbitrary finite subset of S; and let Pr be defined as in T3.3. S )rjB & C(Sf) by
L3.4(b), hence S ^ (B & C(S')) DA by T3.4(a), and hence Pr(Af B & COS")) = 0
by the definition of Pr. So, if S \1j A, then by T3.3 there is sure to be an
intuitionistic probability function Pr for IL and a statement B of IL such that
Pr{Af B & C(S')) Φ 1 for every finite subset Sf ofS.

Hence, taking S to be φ, in which case Pr{A, B & COS")) is just Pr(A, B):

T3.6 (The Weak Completeness Theorem for IL) If \=A, then fy A.

Proof: Suppose Y/j A. Then by T3.5 ttjA. Hence by (the classical Law of)
Contraposition \j A if \jA.20

When as in T3.5 5 is presumed to be infinitely extendible, there is sure to
be, as we noted, a term of IL that is foreign to S and B D (VX)A (Constraint
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C9) or to S and (BX)B D A (Constraint CIO). Not so, however, when S is an
arbitrary set of statements of IL, the case we must now tackle. One way out of
this predicament is to call on the language IL°° (Section 1) an extension of IL
that boasts tt0 terms over and above those of IL, and use in place of our
original Pr the function Pr°° such that, for any statements A and B of IL00,
Pr°°(A, B) = 1 if B D A is provable in IL°° from the present S, Pr°°(A, B) = 0
otherwise. Since tt0 terms of IL°° are foreign to S (a set of statements of IL,
recall), there is sure to be a term of IL°° that is foreign to either: (i) S and any
conditional B D (\/X)A of IL°° you please, or (ii) S and any conditional
(3X)B D A you please. Further, the terms of IL°° (like those of IL) were
alphabetically ordered. So, we may now think of Γ/ in A(Tj/X) and B(Tj/X) as
the ιth term of IL°° (rather than IL); and, writing again A\ for A(Ti/X) and B\
for B{Ti/X), we can count on there being for any term T of IL°° ag such that
A(T/X) is A'g and B(T/X) isB'g. Finally, as demonstrated in Section 1, S \j A if
5 fy^l (and hence, of course, S \~/γA if S Ήj A) when, as is the case here, S is a
set of statements of IL and A is a statement of IL.

Minimal editing of the proof of T3.3 will thus ensure that Pr°° constitutes
an intuitionistic probability function for IL°°\ and minimal editing of the proof
of T3.5 will ensure that if S Wj A and hence S h/y A, then Pr°°(A, B &
C(S')) Φ 1, where B is some axiom or other of IL°° and S' is any finite subset
of S.

Hence:

T3.7 Let S be an arbitrary set of statements of IL (and A be an arbitrary
statement of IL). If S Yfj A, then there exists a term extension IL+ of IL, an
intuitionistic probability function Pr+ for IL+, and a statement B of IL+ such
that Pr+(A, B & C(S')) Φ X for every finite subset S' of S.

Hence by Contraposition:

T3.8 (The Strong Completeness Theorem for IL) If S \=A, then S \j A.

Incidentally, since our account of \j is such that S \j A if and only if
S' \j A for some finite subset S' of S9 we have by T2.10 and T3.8 that:

T3.9 (The Compactness Theorem for IL) S tjA if and only if S' if A for
some finite subset Sr of S.

NOTES

1. To be more exact, "as Popper's and Gaifman's functions do to classical logic". Popper
limited himself in [15] to the probability of negations and conjunctions, and Con-
straint C9 below, which is commonly used to handle quantifications, stems from a
paper of Gaifman's [3].

2. Some of the pertinent references are [2], [3], [5], [6], [8]-[10], [12], [15], and [16].

3. Most formulations of intuitionistic logic have a negation operator, say ~, in place of /.
Here, ~A may be thought of as short for A D f. See Notes 6 and 10 for further details
on ~.
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4. The statements of IL are what some would call closed statements. Indeed, we shall
make no mention here of open statements. Note, however, that IL has terms (No of
them, as a matter of fact). So the statements of IL, though closed, are not all closures of
open ones. Because of (iv) identical quantifiers cannot overlap in a statement, a depar-
ture from common practice that is quite opportune (and conceptually immaterial).

5. There are various ways of alphabetically ordering the statements of a first-order lan-
guage. The one in [13]', which stems from [17], is particularly simple and easily adapted
to suit/L.

6. We borrowed A3 from Exercise 26.19 in [1]. With ~ substituting for /as a (primitive)

sign of IL, the following two axiom schemata:

(A D B)D ((A D ~B)D ~A)

and

AD(~ADB),

or equivalents thereof, would be wanted in place of A3.

7. Note that with A D (\/X)A— and hence A—presumed to be a statement of IL, JΠs sure

not to occur in A (see Note 4). (\/X)A here is thus a vacuous quantification, as is the

(3X)>lofA14.

8. A16 stems from an axiom schema of Fitch's. It permits one to dispense with Generaliza-
tion as a primitive rule of inference and makes for a strongly complete axiomatization of
intuitionistic logic. Many axiomatizations of first-order logic, be it classical or intui-
tionistic, that use Generalization as a primitive rule of inference are only weakly
complete, as shown by Montague and Henkin. For further information on the whole
matter, see [11].

9. Following recent practice we shall write `S \ij A' for 'It is not the case that S \jA9',
S \fcjA for 'It is not the case that S \jA\ etc.

10. With ~ substituting for /as a primitive sign of IL, the following two constraints:

Pr\~A, B) = Pr\~A, A&B)

and

PrXA,B8c~B) = \,

or equivalents thereof, would be wanted in place of C3.

11. The following constraint, incidentally, would do the same work as C8:

C8'. Pr\{A vB)DC,t)= Pr\(A DC)&(BD C), t),

where V is short for 6fD f. C8; holds in classical probability theory, whereas C8 does
not. See the sequel to this paper for further information on the matter.

12. The account stems from [16], where (given a different choice of probability functions)
it characterized logical truth in the conditional logic of Stalnaker and Thomason. Use of
it was later made in [5], [2], [9], etc., where (given again different choices of proba-
bility functions) it characterized logical truth in classical logic (sometimes with, but
most frequently without, identity).

13. The account is a simplification of one we used in [14] to characterize (given a different
choice of probability functions) entailment in classical logic.
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14. Readers in a hurry may take L2.1-T2.6 for granted and move on to T2.7.

15. Because of L2.1(b) the sequence consisting of Pr{A\, B),Pr(Af

ί&At

2iB)ίPr((A'ι &Af

2) &
Af

3, B), etc., is nonincreasing. So, if its limit equals 1, each term is sure by Cl to equal 1,
too. The fact will prove crucial when it comes to proving T2.5(a).

16. Because of L2.1(g) the sequence consisting of (Pr(@X)A, A\ & B), Pr((3X)A, (A\ v
A'2) & B), PrφX)A, {{A\ vA2) vA'3)&B), etc., is nonincreasing. So, if its limit equals 1,
each term is sure by Cl to equal 1 too. The fact will prove crucial when it comes to
proving T2.5(d).

17. Recall that B\ and (later in the text) A\ are short for B(Ti/X) and A(Ί`i/X), where T{ is
the I t h term of IL.

18. Recall that A" is short for (A(X/T)χΓi/X), where T{ is the I t h term of IL.

19. As there is (in point of fact, can be) no effective way of ascertaining for arbitrary S, A,
and B whether or not S \j A D B, the definition of Pr is not constructive. It would be,
though, if IL were a nonquantifϊcational language and S were finite: under these
circumstances there is, as Gentzen showed in [4], an effective way of ascertaining
whether or not S \jA DB.

20. Contraposition, as the reader well knows, is not intuitionistically acceptable as a rule of

inference.
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