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Inequality in Constructive Mathematics

WIM RUITENBURG

Abstract We present difference relations as a natural generalization of in-
equality in constructive mathematics. Differences on a set S are defined as
binary relations on all powers S” simultaneously, satisfying axiom schemas
generalizing the ones for inequality. The denial inequality and the apartness
relation are special cases of a difference relation. Several theorems in con-
structive algebra are given that unify and generalize well-known results in
constructive algebra previously employing special cases of difference rela-
tions. Finally, we discuss extended differences for a set S as collections of re-
lations defined on all powers S¥ simultaneously.

Introduction In mathematics the natural generalization of equality is equiv-
alence. A theory with equivalence involves the reflexive, symmetric, and tran-
sitive equivalence, and functions and relations respecting this equivalence. In
constructive mathematics the same theory with equivalence relations works with-
out difficulty. For inequality the situation is more complicated. There are dif-
ferent versions of constructive inequality that only in classical mathematics are
equal to the one standard inequality. Examples are: denial inequality, where
x # y if and only if it is not true that x = y, that is, —x = y; and tight apartness,
whose axiomatization we will present later on. The natural inequality on the set
of real numbers R, defined by r # s if and only if | — s| > 1/n for some natu-
ral number n, is a tight apartness. Tight apartness and denial inequality are in-
dependent; a tight apartness need not be a denial inequality, a denial inequality
need not be a tight apartness. We know of no definition of a binary relation on
a set S, generalizing both denial inequality and apartness, that allows for a sub-
stantial constructive theory of inequality.

There are several theorems in algebra and elsewhere that hold if we use denial
inequality as the intended inequality, and that also hold if we use a tight apart-
ness as the intended inequality. Sometimes there may even be a third version of
inequality that makes the theorem work. For each of these cases we need a new
proof to establish our result. For a uniform treatment of such theorems we
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present a generalization of the inequalities mentioned above, called a difference.
Rather than defining a binary relation on a set S, a difference is a collection of
binary relations defined on all powers S” simultaneously. Then for some the-
orems we only need a difference to establish the conclusion. In Section 2 we
present examples of theorems that have generalizations employing differences
instead of denial inequality or apartness.

To illustrate why inequality is more troublesome than equality when we gen-
eralize to a constructive context, we consider the problem in the context of some
first-order language with equality =. Besides the logical axiom schemata and
rules concerning the logical operators and constants we have for equality the ax-
iom schemas

Tkx=x
x=yFAx— Ay,

where in the last schema the variables x, y are not bound by a quantifier of A4.
If = is an equivalence relation, then A4 is any formula built up from functions
and relations that preserve the equivalence. It is well-known that we may restrict
Ax to atomic formulas and equations f = g. The general case follows from this
subcollection. The schemas above work in constructive mathematics as well as
in classical mathematics.

From the schemas for equality we derive the obvious axiom schemas for in-
equality # by reversing the entailments:

x#+xk1
AyFx#yvAx,

where in the last schema the variables x, y are not bound by a quantifier of A.
The schemas for inequality are just fine in classical mathematics. Unfortu-
nately, the introduction of a disjunction in a rule for a generalized inequality is
unacceptable in constructive mathematics. In general, even denial inequality fails
to obey the schemas.
To find a way out, suppose that Ax is the equation f(x) # ¢, where f: S— S
and x, ¢t € S. Classically that gives

f) #tkx#+yvf(x) #t.

Then one inequality introduces a disjunction of two inequalities. Repeated ap-
plication implies that, unless we somehow interfere, we end up with disjunctions
of inequalities, a prospect unacceptable in constructive mathematics. The par-
tial solution proposed in this paper is to replace the introduction of disjunctions
like

XI#EYIV VXpE Y
by introducing differences among sequences of elements:

(xla- . ~’xn> #* (.}"1,- . -9yn)-

This seems to be the best that one can hope for without introducing disjunctions,
but it requires an extension from a definition of # on a set S to a definition
of # involving all powers S”. The axiom schema involves functions f: $” — §”
only.
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In Section 1 we show that in a first-order context the logical motivation pre-
sented above provides us with a natural generalization of the notion of inequality.
In Section 2 we demonstrate the necessity and sufficiency of difference in elemen-
tary algebra. In Section 3 we hint at a more general formulation of difference,
employing all powers S¥ rather than only finite powers S”.

1 Difference relations We define difference relations and strong extension-
ality in a way motivated by the discussion in the Introduction, and show that they
satisfy the right properties. This presents us with the problem that the original
definition, though well-motivated, lacks the elegance of a compact set of axioms.
Fortunately, with Propositions 1.5 and 1.6, we are able to reduce the complicated
definition below to a set of six axioms for difference, and a simple schema for
strong extensionality.

From here on we use boldface letters to represent sequences of elements. Let
S be a set, and let A be a set of partial functions f:.S” — S” between powers
of S. Using partial functions rather than total functions is useful for later when
we discuss functions f: S — T between different sets with difference relations.
Then E(A) denotes the smallest set of partial functions between powers of S that
includes A, all projections =;:S” — S, and is closed under composition and
products. The set E = E () is called the set of elementary maps. So elementary
maps f:S” — S” are such that for all i the coordinate maps «;f: S” — S are pro-
jections.

A difference on S consists of relations #,, on the powers S”, all usually writ-
ten #, satisfying the axiom schemata

@ (x,a) #(y,a) > X #y;

2 f(y) #t - <x,f(x)) # (y, 1),

wherea € S, x,y € $", f:S™ > S" € E, and t € S". We tacitly assume that
f(y), £(x), etc. are defined when they occur in formulas. A difference is called
proper if it satisfies the additional axiom schema

3 S DYECD).

A set A is strongly extensional with respect to a difference relation +# if (2) holds
for allf € E(A).

There are two questions that we must answer to justify our definition of dif-
ference: Does it provide us with a useful theory; and does it provide us with a
natural generalization of the notion of nonequivalence? We start with a quick
look at the second question by looking at the complement of difference and at
the complement of nonequivalence.

A difference induces relations ~ on the sets S” defined by x ~y & =x #y.
We say x is nearby y if x ~ y. Then ~ satisfies the schemas

{ )~ () if #is proper;
X ~y—-<(x,a) ~ (y,a); and
<X,f(x)> -~ <yyt> - f(y) -~ t’

wherea € S, x,ye $",£:8" > S" € E, and t € §”. The relation ~ is symmet-
ric (see Proposition 1.1) and, if # is proper, reflexive; but ~ need not be tran-
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sitive. In Examples 1.14 and 1.15 we present models showing that even in classical
mathematics it is possible to have elements X, y, z such that x and y are nearby,
Yy and z are nearby, but x # z. So differences are essentially more general than
the complements of equivalence relations. Nearness is stable, that is, " —x ~y
implies x ~ y.

A difference is an inequivalence if its nearness relation is an equivalence re-
lation on each of the powers S”. From Proposition 1.16 it follows that a differ-
ence is an inequivalence if and only if it is proper and its corresponding nearness
relation satisfies

4) x ~ y if and only if Vi(x; ~ y;).
A difference is an inequality if it satisfies
x ~yif and only if = x =y

for all n and x,y € S”. Obviously, inequalities are inequivalences.

Many natural examples of difference relations are derived from equivalence
relations. One easily verifies that each equivalence relation = induces an inequiva-
lence by

x;&yeﬂxsy,

where x =y is short for Vi(x; = y;). The relation ~ is the double negation of =.
The set A of all partial functions that preserve the equivalence is a strongly ex-
tensional set. One example is the empty inequivalence, where = is the maximum
equivalence relation and the underlying set is one single equivalence class. The
derived relation ~ is identical to =. Another example is the denial inequality,
where = is the minimum equivalence relation, that is, = is the equality rela-
tion =. All partial functions respect equality and the maximal equivalence re-
lation. So the set of all partial functions is strongly extensional with respect to
the empty inequivalence as well as the denial inequality.

Proposition 1.1 Differences are symmetric.

Proof: From y # t we get {x,Xx) # (y,t) for all x. Substitute t for x and apply
(1) repeatedly to get t #y.

Proposition 1.2 Let A be a strongly extensional set of partial functions. Then
for all f € E(A),

) (f(x),z) # {£(y), W) = (x,z) # (y,wW).

Proof: From (f(x),z) # <f(y),w) we get, using (2), {p,q,f(p),q> # <x,2,{(y),w)
for all p and q with f(p) defined. Substituting y for p and w for q gives us
y,w,E(y),w) # {x,z,f(y),w). By repeated application of (1) we get (y,w) #
(x,z). So by Proposition 1.1, {x,z) # (y,w).

Corollary 1.3

© (x,a,a) #<y,b,b) > <x,a) #y, b);

@) X #y—<(X,a) #y,b); and

® ptsevosXan) FValse v s Van) 2 LX5 s Xn) FLV1se o5 Vn)s
where w is a permutation on {1,...,n}.



INEQUALITY IN CONSTRUCTIVE MATHEMATICS 537

Proposition 1.4
)] (x,a) #y,b) > (x,b) #(y,a);
(10) (x,a) #(y,b) > (x,a,c) #y,c,b).

Proof: From the assumption of (9) we get {z,c,z,c) # {(X,a,y,b) for all z
and c. Substitute x for z and b for c to get {x, b,x, b) # (X, a,y, b). So by (8) and
(1) we have {x, b) # (y,a).

The assumption of (10) implies ¢z, ¢,z, c) # {X, a,y, b) for all z. Substitute
x for z and use (8) and (1) to get {x, ¢, c) #<y,a, b). So by (8) and (9) we have
(X,a,c) #<y,c,b).

Proposition 1.5 Let + be a relation on the powers S™ of a set S. Then + is
a difference if and only if the following conditions hold.

¢y x,a) #{y,a) > X #Y;

) (x,a,a) #(y, b, b) —> (x,a) ¥y, b);

@) X #y—><(x,a) #(y, b);

® Kty oo o3 Xand F Va1 e oo Vand X3 Xn) FL V15005 Vnds
®) (x,a) #(y,b) > (x,b) # (y,a); and

(10) (x,a) #y,b) > (x,a,c) #(y,c,b),

where (8) holds for all permutations «.

Proof: Clearly conditions (1) and (6) through (10) hold for a difference rela-
tion. Conversely, suppose we have relations # on the powers S” of a set .S satis-
fying the conditions above. To prove (2), let f: S — S” be an elementary map
such that f(y) # t. The map f is a sequence of projections (myy,. .., Ta,). SO
{(Ins- -+ s any * t. Repeated application of (8) and (10) yields ¢ yx1, X5 - - »
Yns x)\n> * (x)\l’ Loy Xnns tn)- So by (8), <f(y)’f(x)> * (f(X),t). Applylng (8)
and (9) repeatedly, we get (f(x),f(x)) # (f(y,)t). So by (6), (7), and (8) we get
<x,£(x)) # <y, 0.

Proposition 1.5 has two applications. First, it replaces schema (2) by a short
sequence of elementary rules. Second, it suggests natural ways for generalizing
difference relations. Prime choices are generalizations # satisfying the conditions
of Proposition 1.5 but with (6) or (10) removed. The structure of Example 1.15.1
satisfies all the conditions of Proposition 1.5, except (6). On domain S = Z, de-
fine x # y by |x; — y;| = 2 for some i. Then # is a generalized difference rela-
tion satisfying all conditions of Proposition 1.5, except (10).

The definition of strongly extensional sets of functions allows for the pos-
sibility that a set need not be strongly extensional even if all its members are. For-
tunately, this does not happen. Theorem 1.6 expresses strong extensionality of
sets in terms of the individual functions.

Theorem 1.6 Let # be a difference on S and let A be a set of partial functions
between finite powers on S. Then A is a strongly extensional set if and only if each
f € A satisfies the schema

) f(x),z) #<f(y),w) = <x,z) #y,wW).
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Proof: By Proposition 1.2, (5) follows from the strong extensionality of A. Con-
versely, suppose that (5) holds for all f € A. A trivial induction on the complex-
ity of f shows that (5) holds for all f € E(A). Now suppose f(y) # t and f(x)
exists, for some f € E(A). Substitution in the schema h # t — (g, g) # (h,t) gives
<E(x),f(x)) # <f(y),t>. Applying (5) yields <x,f(x)) # <y, ).

By Theorem 1.6 we are justified to define a function f to be strongly exten-
sional if it satisfies the schema (5).

Proposition 1.7 Constant functions are strongly extensional.

Proof: Let f be a constant function with value a. Then (a,z) # (a,w) implies
z # w, and thus {x,z) # {y,w).

By Theorem 1.6 we know that the collection of strongly extensional functions
is closed under composition and product. Next we show that the collection is also
closed under a natural form of implicit definition. Traditionally, a (partial) func-
tion 4 is implicitly defined by the (partial) functions f and g when f(x, hy) and
g(x, hy) exist whenever hAx and Ay exist; when f(x, Ax) = g(x, hx) whenever hx
exists; and when f(x, p) = g(x, p) Af(x, q) = g(x, q) implies p = g, for all x, p, q.
In ring theory, for example, the partial function of multiplicative inverse is im-
plicitly definable from multiplication and the constant 1. We show that functions
that are implicitly defined in the way explained below are strongly extensional
if the functions used in its construction are.

Let S be a set with difference #. A partial function h is implicitly defined
with respect to + if there exist strongly extensional partial functions f and g such
that £(x,h(y)) and g(x,h(y)) are defined whenever h(x) and h(y) are defined,
satisfying

f(x,h(x)) = g(x,h(x)) whenever h(x) is defined; and
(p,2) # (q,w) - <E(x,p),f(x,q),2z) # (g(x,p),g(X,q), W)
whenever f(x,p), f(x,q), g(x,p), and g(x,q) are defined.

Proposition 1.8 Partial functions that are implicitly defined with respect to
a difference relation are strongly extensional.

Proof: Let h(x) =y be implicitly defined with respect to a difference by the
equation f(x,y) = g(x,y). Suppose ¢h(r),z) # ¢h(s),w). For all x such that h(x)
is defined we have (f(x,h(r)),f(x,h(s)),z) # (g(x,h(r)),g(x,h(s)),w). Substitute
x = r. Using f(r,h(r)) = g(r,h(r)) we get (f(r,h(s)),z) # (g(r,h(s)),w). By (2)
we have (s,f(s,h(s)),z) # <r,g(r,h(s)),w). By (8) and (10), {s,f(s,h(s)),
g(s,h(s)),z) + (r,g(s,h(s)),g(r,h(s)),w). Since f(s,h(s)) = g(s,h(s)) and g is
strongly extensional we have s, s,h(s),z) # {r,r,h(s),w). So (r,z) # {(s,w). Thus
h is strongly extensional.

If there exists x such that x # x, then everything is different from everything
in each S”, as follows from Proposition 1.9 below.

Proposition 1.9 Forallx,y, andz we have X # X >y + Z.

Proof: Suppose x # x for some x. Repeated application of (1) implies{ ) #¢ ).
Repeated application of (7) then yields y + z for all y and z.
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So a difference is proper if and only if it is contained in the denial inequality.

The tight apartness on the real numbers R was introduced by Brouwer [2]
and subsequently axiomatized by Heyting in 1925 (see [6]). The following is a
new way of defining apartness relations: By employing the notion of difference
relation. An apartness is a proper difference relation satisfying the extra axiom
schema

X #y <« (x; +y; for some i),

for all n and x,y € S”. By Proposition 1.16, an apartness is an inequivalence.
By Propositions 1.4 and 1.9 an apartness must satisfy the well-known conditions

(11 -a # a;
(12) a#b—-b+#a;and
13) atb->(a#cvc#Db).

An apartness relation is tight if ~a # b implies @ = b. A tight apartness is an in-
equality. By Proposition 1.6, a function f is strongly extensional if and only if
f(x) # f(y) implies that x; # y; for some i. Properties (11), (12), and (13) suffice
to reconstruct an apartness relation.

Proposition 1.10 Let + be a binary relation on S. Define + on S" by x #y
if and only if x; + y; for some i. If + satisfies (1), (12), and (13), then the ex-
tension to all 8" is a difference. If + satisfies (11), (12), and (13), then it is an
apartness.

Proof: Clearly, (11) implies (1). As to (2), let f:.S” — S” be an elementary map,
y € 8™, and t € §” such that f(y) # t. So m;f(y) # ¢; for some i. If =;f is the
projection on the j™ coordinate, then y; # #;. So x; # y; as j™ coordinate of
(x,£(x)) # (y,t), or x; # t; as (m + i)™ coordinate of (x,f(x)) # (y,t).

The standard example of a tight apartness relation is the one on the real line.
Define r # s if and only if there exists a positive natural number n such that
|r —s| > 1/n.

A generalization of the apartness on R is the apartness on local rings. A
local ring is a ring (satisfying the usual universal properties for rings) such that
if r + s is a unit, then r is a unit or s is a unit. A local ring is nontrivial if 1 is
not equal to 0. A Heyting field is a nontrivial commutative local ring such that
0 is the only nonunit, that is, if 7 is not a unit, then r = 0. The real numbers form
a Heyting field (see Mines et al. [10]).

Let R be a local ring. Define r # s if and only if r — sis a unit. If r —sis a
unit, then s — 7 is a unit. So # is symmetric. If  # s, then r — ¢ + ¢ — s is a unit,
so by the local ring property, r — ¢ is a unit or ¢ — s is a unit. Thus r # for ¢ #s.
If r # r, then O is a unit, so s # ¢ for all s and ¢. By Proposition 1.10 # is a dif-
ference relation on R. It is an apartness on R if and only if R is nontrivial. If R
is commutative, then # is a tight apartness if and only if R is a Heyting field.

Unions and intersections of differences are again differences:

Proposition 1.11 Let #;, i € I, be a collection of relations, each defined on
all finite powers of S simultaneously. Define + by x #y if and only if X #;y for
some i € I. If all #; satisfy one of the properties (1) through (3) or (6) through
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(13) then + satisfies that same property. In particular, if all +; are differences,
then so is #; if all #; are proper, then so is +; and if all #; are apartnesses, then
so is #. If all #; are inequivalences, then so is #.

Proof: The cases for conditions (1) through (3) and conditions (6) through (13)
immediately follow from their logical form. Suppose that all #; are inequiva-
lences, and suppose that x ~y and y ~ z. Then x ~; y and y ~; z for all i. So
x ~; z for all i, and thus x ~ z.

Proposition 1.12 Let #;, i € I, be a collection of relations, each defined on
all finite powers of S simultaneously. Define + by x #y if and only if x #;y for
all i € I. If all #; satisfy one of the properties (1) through (3) or (6) through
(12) then + satisfies that same property. In particular, if all #; are differences,
then so is #; and if at least one #; is proper, then so is +.

Proof: The cases for conditions (1) through (3) and conditions (6) through (12)
immediately follow from their logical form.

Proposition 1.13 Let {#;}; be a collection of differences on a set. Then par-
tial functions that are strongly extensional with respect to all #; are also strongly
extensional with respect to their union and intersection.

Proof: Suppose # is the union of the differences #;, and let f be strongly ex-
tensional with respect to all #;. If (f(x),z) # {£(y),w), then {f(x),z) #; (£(y),w)
for some i. So (x,z) #; {y,w), and thus (x,z) # (y,w). A similar argument
works for the intersection case.

Local rings with inequality defined by r # s if and only if r — s is invertible
are examples of structures that need not have a proper difference relation. The
standard difference on a local ring is proper only if the ring is nontrivial. For
some applications, however, it may be essential to have a proper difference. In
that case Proposition 1.12 is useful: Intersect the existing difference with denial
inequality to make it proper. All functions are strongly extensional with respect
to the denial inequality. Then Proposition 1.13 guarantees that functions that
are strongly extensional with respect to the original difference are still strongly
extensional with respect to the intersection of the original difference with denial
inequality.

Examples 1.14 Even in classical mathematics, intersections of inequivalences
need not be inequivalences. So we use Proposition 1.12 to construct an exam-
ple of a discrete set with a decidable difference relation that is not an inequiva-
lence.

1.14.1. Consider the discrete set S = {a, b, c} with differences #, and #, that
are complements of the equivalence relations on S with partitions {{a, b},{c}}
and {{a},{b, c}} respectively. Then the intersection # of #; and #, is such that
a#c,a~Db,and b ~ c. So # is a decidable difference that is not the comple-
ment of a transitive relation even though #, and #, are decidable apartnesses.
Thus differences are essentially more general than complements of equivalence
relations.

1.14.2. Even if a difference is such that for some 7 the associated nearness is
an equivalence relation on S* for all i < n, then it still need not be an inequiva-
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lence. Example: Let R be a nontrivial commutative ring, and set S = R”. Define
x #y if and only if S = 3J; (x; — ¥;)R. By Proposition 1.5 # is a difference on
S. Then x ~ y for all i < n and x,y € S’. But the nearness relation is not an
equivalencein S”, forife,,. .., e,is abasis of S, then(0,0,...,0)~(0,e,,...,e,)
and €0, e3,...,e,) ~ (e1,€3,...,e,), but (0,0,...,0) #<ej,es,...,e,).

1.14.3. If # is an apartness relation, then the schema
f(x) #f(y) > x#y

suffices to show that f is strongly extensional. In general, the schema is insuf-
ficient as it is essentially weaker than (5). Let S be the discrete set of Example
1.14.1 with decidable difference #. Define f: S — S by f(a) = a, f(b) = a, and
f(c) = b. Then the schema above holds since f(x) ~ f(y) for all x, y € S. But
f is not strongly extensional since ¢ f(b), b) # {f(c),c) and (b, b) ~ {c,c).

Examples 1.15 Let (S, d) be a set S with pseudometric d, that is, d is a func-
tion from S? to R such that d(x,x) =0, d(x,y) = d(»,x), and d(x,z) <
d(x,y) + d(y,z). It is well-known that a pseudometric induces an apartness re-
lation on S by s # ¢ if and only if d(s, t) > 0. The apartness is tight if and only
if the pseudometric is a metric. Let 7 be a real number. A difference with reso-
lution r = 0 on S is a difference +# satisfying @ # b if d(a, b) > r, and a ~ b if
d(a,b) < r, forall a,b € S. So the standard apartness on S is a difference with
resolution 0. For each r = 0, do there exist differences with resolution » on S?

1.15.1. Before resolving this question, consider the following nonexample. De-
fine x #, y if and only if >J; d(x;,y;) > r. Then #, satisfies the conditions of
Proposition 1.5 except for condition (6). Functions f satisfy (5) if X; d(f;(x),
Ji(y)) < 2;d(x;, y;). This nonexample suggests ways by which to generalize the
notion of difference relation.

1.15.2. To construct differences with resolution r on S, we follow a less ele-
gant route. A subset X < S is open if for all x € X there exists ¢ > 0 such that
B(x,¢e) € X, where B(x,¢e) = {y € S|d(x,») < ¢}. For each pair of open sets
p = (Ap, B,) such that 4, U B, = § we define the difference #, by x #,y if and
only if there exists i such that d(x;, y;) > 0, and x; € A and y; € B, or x; € B and
yi € A. We easily verify that #, is an apartness relation. For A € S and r € R,
define d(A) < r to mean that d(a, b) < r for all a, b € A. Similarly, d(A4) > r
means that d(a, b) > r for some a,b € A. A cover of S is a collection « of pairs
p = (Ap, Bp) of open sets A, and B, with A, U B, = S, such that U,e, A, = S.
By Proposition 1.11, the union #, of the apartnesses #, is again an apartness.
A cover v has refinement r if d(Ap,) < r for all p € . Clearly, if v has refine-
ment r, then @ #, b whenever d(a, b) > r. Let #, be the intersection of all cov-
ers #, of refinement r. We leave it as an exercise to show that #, is a difference
with resolution r. If r < s, then (#;) S (#,).

Unfortunately, difference relations #, usually have few strongly extensional
functions.

A nearness relation associated with an inequivalence is completely determined
by its binary relation ~ on S:
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Proposition 1.16 A difference is an inequivalence if and only if it is proper
and satisfies

) X ~yeoVi(x; ~y).

Proof: Suppose # is proper and satisfies (4). Obviously, ~ is reflexive and sym-
metric. Let x ~ y and y ~ z. Then by (4) {x,y) ~ {y,z). Repeated application
of (8) and (10) yields x ~ z. Conversely, suppose that the difference is an in-
equivalence. Reflexivity implies that # is proper, and (7) and (8) imply x ~ y —
Vi(x; ~ ;). Suppose x ~ y and a ~ b. It suffices to show ¢x, a) ~ (y, b). This
follows immediately from <x, @) ~ {x, b) and {x, b) ~ (y, b), and the transitiv-
ity of ~.

Lemma 1.17 A proper difference is an inequality if and only if ~a = b im-
Dplies ~—a # b, for all a, b.

Proof: Suppose # is a proper difference such that ~a = b implies ~—a # b, for
all a, b. From Proposition 1.9 it follows that x # x implies L. So we have x #
Yy —» Ox =Y. Assume -x =Y. Then —~—3i-x; = y;,. So ~—3i——x; # y;. And
thus = —3ix; # y;, hence 7—x #y. So # is an inequality.

The converse is trivial.

Corollary 1.18 The union of a proper difference and an inequality is an in-
equality.

Proof: Let # be the union of a proper difference #; and an inequality #,. By
Proposition 1.11, # is a proper difference. Suppose —a = b. Then = —a #, b,
so 7 —a # b. So by Lemma 1.17 # is an inequality.

There is no unique way to define what a strongly extensional relation is. In
this paper we present two ways. One involves functions between sets with dif-
ferences.

We may identify an n-ary relation on a set S with a function from S” to
Q = ®{0}, the truth value object. Following an approach along that line, an n-
ary relation is a special case of a function f: S — T between sets with differences,
be it that we have to choose a difference relation for Q. If there exists a set
U = S U T with difference such that this difference with restriction to S and T
is the difference of S and T respectively, then f is just a partial function f: U— U.
Instead of the union of S and T there may be difference maintaining embeddings
of S and T into a set U with difference, that is, the differences on S and T are
the same as those of U restricted to the images of S and T respectively. If such
U exist, then define f: S — T to be strongly extensional if f: U — U is strongly
extensional in the sense of Theorem 1.6. This definition of strong extensional-
ity depends on our choice of U and on the difference on U.

In many cases there is a natural choice for U. If f:S™ — $" is a map be-
tween powers of a set S with difference, then S and S” are sets with differ-
ences induced by the difference of S. For all k, the embedding f: S¥ — Sk+1
defined by f{x,a) = (x, a,a) maintains difference. So choose U = S” with
p = max(m, n). There exist difference preserving maps of S and S” into S”.
Then f: S§™ — §" is strongly extensional as defined in Theorem 1.6 if and only
if f: U — U is strongly extensional in the sense of Theorem 1.6.
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If there is no choice for U as described in the example above, the disjoint
union can be an alternative. Let U = S II 7. We extend the difference relations
of S and T'to U, and consider the function f: S— T as partial function fy,: U— U.
Define # on powers U” by setting x # y if and only if either for some i, x; and
y; come from different sets S and 7, or else, up to a permutation 7 of the indi-
ces, there exist s;,8, € S and t;,t, € T? such that 7x = {(s;,t;), 7y = ¢S, 1),
and s; # s, over S or t; # t, over T. The relation # on U is called the canoni-
cal extension of the difference relations on S and T.

Proposition 1.19 Let S and T be sets with proper difference relations, and
let U= S 11 T be the disjoint union. Then the canonical extension + to U is a
proper difference relation whose restrictions to S and T are the differences on S
and T respectively.

Proof: Clearly, the canonical extension satisfies (1) and (3), and the restrictions
of # to S and T reproduce the original differences on them. Note that this re-
quires the differences on S and 7 to be proper. Let f: U™ — U” be an elemen-
tary map such that f(y) # t. Then f is a sequence of projections (i, ..., T\n)-
So Wiy - -y ) # LIy # £; for some i because they are from different sets
S and T, then for the same reason {xy;, X»;> # { ¥\, %), and so by repeated
application of (7), (8), and (10) ¢x,f(x)) # (y,t). Otherwise, suppose we have
X # y because for some i, x; and y; are from different sets S and 7. Then by (7),
{x,f(x)) # (y,t). Finally, suppose that for all i either both x; and y; are in S or
both are in 7, and that for all i either both y,; and ¢; are in S or both are in T.
Then there exists a permutation 7 such that wf(y) = (f5(y),f7(y)) and «t =
{ts,tr), where fg(y) # tg over S or f7(y) # tr over T. Let xg5, X7, ¥s, and y7 be
the subsequences of x and y of elements that belong to S and T respectively. Then
(xg,f5(X)) # (¥s,ts) or {X7,f7 (X)) # (y7,tr). After merging the two relations,
we get (x,f(x)) # (y,t).

The assumption of properness is essential in Proposition 1.19. If we don’t
assume the differences on S and 7T are proper, we may not be able to derive (1)
for the canonical extension # on S II 7. If for example s # s for some s € S,
then (s, t) # (s, t) for all t € T, and thus by (1) we would have ¢ # ¢ for all t €
T. So the difference on T could not be proper either.

Another way to define strongly extensional n-ary relations is by returning to
the original classical axiomatization of inequality:

X#ExF L
Ay bFx +yv Ax,

where in the last schema the variables x, y are not bound by a quantifier of A.
We wish to replace the right-hand side of the second schema by a difference be-
tween sequences {x, A) # {(, x). So defining strong extensionality for relations
using sequences reduces to introducing a new constant A4 to S and extending the
difference relation from Sto SU {A4}. Let R be an n-ary relation on S. Then R
is a unary relation on S”. Rather than defining strong extensionality of R over
S, we define strong extensionality of R over S”. So without loss of generality we
define strong extensionality for unary relations only. Let R be a unary relation
on a set S with difference. Then R is strongly extensional if there is an extension
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U = S U {r} with difference relation, such that the difference of U with restric-
tion to S is the original difference of S, and such that for all s € S, Rs holds if
and only if s # .

Example 1.20 Let S be a set with apartness, and let R be a unary relation on
S satisfying
(14) Rs— (s #tV Rt).

Then R is strongly extensional: The apartness of S extends to be apartness on
S U {r} by setting r # s if and only if Rs. Conversely, if the difference on
S U {r} is an apartness, then R satisfies (14).

2 Applications to algebra Groups and rings with differences are defined by
the usual universal axioms together with the condition that the standard func-
tions are strongly extensional. So a group G with difference consists of a set G
with a difference relation, constant e, unary function ~! : G —» G, and binary
function - : G X G- G such that ~! and - are strongly extensional and such that
for all g, h,i € G we have

ge=eg=g;
g+ (h-i) =(g-h)-i; and
ggl=glg=e

Proposition 2.1 Let G be a group with a difference relation on the underly-
ing set. Then G is a group with difference if and only if for all a, b, x,c,d we have
that {a,c) # {b,d) implies {ax,c) # {bx,d) and {xa,c) # {xb,d).

Proof: It suffices to show that multiplication and inverse are strongly exten-
sional. Suppose {ab,z) # {cd,w). Multiply by ¢ ~! on the left and by »~! on the
right to get (¢ 'a,z) # (db~!,w). So {c"'a,1,z) #(1,db~!,w). So after two
more multiplications we arrive at (a, b,z) # {c,d,w). Thus multiplication is
strongly extensional.

The strong extensionality of the inverse follows from Proposition 1.8 with
f(x,y) =xyand g(x,y) = L.

Let G be a group with normal subgroup N. Define #, by x #x ¥y if and
only if the normal subgroup generated by {...,x;y7',...} contains N. One
easily verifies that #, satisfies the conditions of Propositions 1.5 and 2.1. So G
with #, is a group with difference.

The following example of a group with difference was suggested to us by
Fred Richman. It illustrates that there exists an elementary algebraic structure
whose natural relation # is a difference that cannot be shown to be an inequiva-
lence. Let Z be the group of integers and let N be the set of natural numbers.
Define Q to be the quotient group Q = ZV/Yy Z. A natural way to define an
inequality on Q would be to set a # 0 if and only if there are infinitely many
n € N such that a(n) is not 0, that is, for all m > 0 there exists » > m such that
a(n) is not 0. Define # by ¢a,,...,a,) # 0 if and only if there are infinitely
many elements unequal to 0; and (a,...,a,) # <(by,...,b,) if and only if
(a; —by,...,a,—b,) #0. It is immediate from Propositions 1.5 and 2.1 that
this makes Q a group with difference.
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A subset X C Y is detachable from Y if the union of X and its complement
equals Y. Let E be the set of even numbers and let O be the set of odd numbers.
So E and O are countably infinite detachable subsets of N such that EU O =N,
and EN O = . Consider the principle EO: If A € N is a detachable subset such
that A N E and 4 N O are not infinite, then A is not infinite.

Now assume that the difference # on Q is an inequivalence. Let A € N be
a detachable subset such that A N E and A N O are not infinite. Define ¢, b € Q
by a(n) =1if and only if 2n € A4, and b(n) =1if and only if 2n + 1 € A. Then
a ~0and b ~ 0. If # is an inequivalence, then {a, b) ~ 0. But this means that
A is not infinite. So if # is an inequivalence, then EO holds.

The principle EO is not derivable in constructive mathematics. In Section 4
we present a topos &g whose natural number object N has a detachable subset
X such that both X and N\ X are not infinite. EO implies that there exists no
such X: a detachable infinite subset A < N is isomorphic to N, and 4 N E and
A N O then are isomorphic to a partition X and N/X of detachable subsets of N.

A ring with difference is a set R with difference satisfying the well-known
universal axioms for zero, one, addition, and multiplication such that addition
and multiplication are strongly extensional. A ring is nontrivial if 1 # 0. The par-
tial function of multiplicative inverse f(x) = x~! is implicitly defined by the
equation xy = 1, hence by Proposition 1.8 is strongly extensional.

Proposition 2.2 Let R be a ring with a difference relation on the underlying
set. Then R is a ring with difference if and only if for all a, b, x,c,d we have
that {a,c) + {b,d) implies {a + x,c) # (b + x,d), and {ab,c) # {0,d) implies
{b,c) #0,d) and {a,c) # €0,d).

Proof: By Proposition 2.1 the additive abelian group is a group with difference.
Suppose {ab,z) + {cd,w). Then {ab,ad,z) + {ad,cd,w). So (a(b — d),
(a — c)d,z) # {0,0,w), and thus (b — d,a — c¢,z) # {0,0,w). So {a, b,z) #
{c,d,w).

The abelian group Q above is a ring with difference with multiplication
a-b = ¢ with ¢(n) = a(n)b(n) for all n.

Let R be aring, I a two-sided ideal of R. Define #; by x #;y if and only if
the ideal >}; R(x; — y;)R contains I. We immediately see from Propositions 1.5
and 2.2 that this makes R a ring with difference #;.

Proposition 2.3 Let R be a ring with difference, and let n > 0. Then we have

@) {axy,...,ax,,y) #0—-<a,y) #0;

(i) x#0-1+0;

(iii) a’,yy # 0> <a,y) #0; and

@iv) {a",b + ac,x) # 0> {a, b,x) # 0.

Proof: For (i) we have (axy,...,ax,,y) # 0— {axy,...,ax,,y) # {0x;,...,

0x,,0). So <{a,y) # 0.
(ii) follows immediately from (i).
By (i), ¢a™*!,y) # 0 implies {a",y) # 0. Repeated application yields (iii).
For (iv), <a", b + ac,x) # <0",0 + 0Oc,0,...,0), so {a, b,x) # 0.
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The polynomial ring R[ X] over a commutative ring R with difference is de-
fined in the usual way. It remains to construct a difference on R[X]. R[X] can
be considered as a subset of U,<n R”, and so borrows the difference from R by
defining { fi, ..., fn) #{&1,..., g, if and only if the sequences of coefficients
differ over R, that is,

<a01:~--’amla---’aOn,-”;amn)¢<b01a---,bmls---;bOna--'sbmn>9

where fi=ao; +-- -+ a; X™ and g; = by; + -+ - + b,,,; X™. We easily see that the
addition and multiplication operations of R[X] are strongly extensional since
they are built up from the addition and multiplication operations of R.

Wesaydegf<nif f=ay+---+ a,X" for some a; € R. We say deg f=n
if f=g+ hX" for some g,h € R[X] with degg < n — 1 and & + 0. Let
g=by+---+ b, X™ for some b; € R. We say deg f < deg g if for all k,
(ag,...,ay) *# 0 implies {(bg,...,b,) + 0. We say deg f < deg g if for all k,
{ag,...,a,) # 0 implies {bxy1,...,bn) #O.

The definition of integral domain presents us with the problems of establish-
ing what structures we want to be integral domains, and what properties we
should be able to derive for integral domains. The ring Z of integers and the ring
R of real numbers with apartness must be integral domains; integral domains
must have quotient fields, where a field is an integral domain such that ¢ is in-
vertible whenever a # 0; and polynomial rings in one variable over integral do-
mains must be integral domains.

A commutative ring with difference is an integral domain with difference if
it satisfies:

1) 1#0;

) a#0Aab=0-b=0;

3) a#0Ab+0-ab+0;

4) x#0A(...,x;b,...)=0-b=0; and
) XF0AYy#0-(...,xY,...) #0.

A field with difference is an integral domain with difference satisfying
©6) If a # 0 then a is invertible.

Clearly, (4) implies (2), and (5) implies 3). Let R=Z[ X, Y, Z1/(XZ,YZ, Z?),
and let / = XR + YR, the ideal generated by X and Y. Define x # y if and only
if the ideal 3; (x; — y;) R contains some power I" of I. Then R is a commuta-
tive ring with difference. We have ¢ # 0 if and only if a =1+ rZ or —1 + rZ for
some 7 € R. So a # 0 if and only if a is a unit. We easily verify that R satisfies
1), 2), (3), (5), and (6). But (4) fails since (X, Y) # 0 and (XZ, YZ) = 0.

Let R =Z[X, Y]. Define x # y if and only if the ideal 3}; (x; — y;)R con-
tains the ideal / = XR + YR. Then R is a commutative ring with difference, and
a #0if and only if a =1 or —1. So we easily verify that R satisfies (1), (2), (3),
(4), and (6). But (5) fails because (X, Y) # 0 while (X2, XY, Y2) ~ 0.

Let Z be the ring of integers. The prime ideals 2Z and 3Z induce the usual
decidable equivalence relations ~, and ~3 on Z with corresponding difference
relations #, and #5. The standard ring operations preserve the equivalences, so
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Z is an integral domain with difference with respect to #, as well as with respect
to #3. Let # be the intersection of #, and #;. Then by Proposition 1.13 Z is
an integral domain with difference with respect to #. Note that the decidable re-
lation # is not an inequivalence as 2 ~ 0 and 3 ~ 0, while (2,3) # 0.

Proposition 2.4 Let R be a commutative ring with difference satisfying (1),
(2), and (3). If + is an apartness, then R is an integral domain. If + is denial
inequality and equality is stable, that is, ——a = b implies a = b, then R is an in-
tegral domain.

Proof: The case for apartness is trivial.

Suppose that # is denial inequality and = is stable. If x # 0 and (...,
X;Y,...» =0, then - —3i(x; #0AX;y =0). So -~y =0, and thus y = 0. That
proves (4). Let x and y be such that x # 0, y # 0, and ..., x;y;,... ) = 0. Then
for all i and j we have =~ (x; =0v y; =0). So for all i, == (x; =0vy =0).
Thus = (x =0 vy = 0). Contradiction. Thus R satisfies (5).

So not only the ring Z and the ring R with apartness, but even the ring of
real numbers R with denial inequality are integral domains with difference.

From ([10], p. 47) we know that (1), (2), and (3) are necessary and sufficient
to embed a commutative ring with difference in a field. The quotient field Q of
an integral domain R is constructed by localizing to the set S = {s € R|s # 0}.
Then S is a multiplicative set because of (1) and (3), and R embeds in Q because
of (2). The difference on Q is defined by (x,/sy,...,X,/s,) # 0 over Q if and
only if {x;,...,x,) # 0 over R. Obviously, this relation satisfies (1), (4), and
(5).

It remains to present the motivations for (4) and (5) in the definition of in-
tegral domains with difference. Suppose R[X] is a commutative ring satisfying
(2). Then for all f=>;x; X’ # 0 and y € R such that fy = 0, we have y = 0.
So R satisfies (4). Suppose R[.X] is a commutative ring satisfying (3). Let f =
ix;.X"and g = 3; y; X/ be such that f # 0 and g # 0. Then fg # 0. So

<Xoyo, . - ,Z XeYh—ks - - - ,xm)’n> #0.
k

Using the strong extensionality of addition we get ..., x;y;,...) #0. Thus R
satisfies (5). So if polynomial rings R[X] over integral domains R must be in-
tegral domains themselves, then (4) and (5) are necessary. With Proposition 2.7
we establish that (1) through (5) are sufficient.

Lemma 2.5 Let R be a commutative ring with difference satisfying (5). Then
(i) <aly~-"an)¢O—><alm’---’a:’>¢0;
(ii) {a,x) # 0A{b,x) # 0 - (ab,x) # 0.

Proof: {ay,...,a,> # 0 implies (..., a;a;,...)> # 0. Repeated application
of Proposition 2.3(i) yields {ay,...,a,_1,a2) # 0. Iteration of this process
yields (i).

If {a,x) # 0 and {b,x) # 0, then (5) implies

{ab,axy,...,axp, bx1,...,bxy, ..., xiXj,...) #0.

Repeated application of Proposition 2.3(i) yields {ab,x) # 0.
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Lemma 2.6 Proposition 2.5(i) is equivalent to (5).

Proof: Letx Xy =<(...,X;)j,...>, and t~/ the sequence t with ¢; removed.
Suppose x # 0 and y # 0, and let z = {x,y). Then ¢{x X y,z~) # 0 for all i. So
by Proposition 2.5(ii), (x X y,z~*~/) # 0 for all i < j. Applying Proposition
2.5(ii) to this new collection by comparing all sequences that differ in one coor-
dinate gives (x X y,z~>~/~ky # 0 for all i < j <k. After sufficiently many ap-
plications of this operation we obtain x X y # 0.

Proposition 2.7 If R is a commutative ring with difference satisfying one of
the properties (1) or (5), then R[X] satisfies the same property. If R satisfies
both (4) and (5), then so does R[ X]. If R is an integral domain with difference,
then so is R[ X].

Proof: The case for (1) is trivial.

Suppose R satisfies (5). Let A be an n X n matrix and b € R” such that d =
det A # 0 and b # 0. Let A’ be the adjoint of A4, that is, AA’ = A’A =dI. Then
A’Ab = db # 0. From the strong extensionality of 4’ we obtain Ab # 0. So
if det A # 0 and b # 0, then Ab # 0. Let f,g € R[X], h € R[X]" be such
that {f,h) # 0 and {(g,h) # 0. Then f = 3,4, X' and g = 3; b; X’ for certain
a;, b; € R. Identify polynomials of degree at most p with vectors in R”. Then
the coefficients of fg = 3x cx X * form the vector Ab, where

a O o ... 0
a ap 0 cen 0
a, a a - 0
qm Qm-1 Gm-—2 -°*° ()
A=
an Qp-1 Qp—3 - An-m
0 an Qpy 0 Apemy
0 0 0 a,
and
bo
b,
b=| .
b

So we must show that (Ab,h) # 0. Let A; be the (m + 1) x (m + 1) submatrix
of A with the a; on the diagonal, and let d; = det A;. Then d; = a/**! +
2j<i a;pj(a) for some p;. Now R satisfies (5), so aftt, .. .,a" L h) £0. So
by a finite induction on #n, using Proposition 2.3(iv), d = {dj, . . ., d,,h) # 0.
Let A} be the adjoint of 4;. So AKc;,...,Ciym)T = d;b. There exists a linear
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map F={(...,Ajm;,...): R™T1 5 Rm+D(n+D) gych that Fis a strongly exten-
sional map satisfying FAb=<...,d;b;,...)and F0=0. So (FAb,h) #<F0,0).
Hence {Ab,h) # 0. Thus { fg,h) # 0.

Suppose R satisfies (4) and (5). Let (fi,...,fn> # 0 and g be such that
{f18&,...,fmg)> =0, for f;, g € R[ X]. We may identify g and all f; with vectors
in R™"*! for some n. Then f;g is a vector in R?>"*1, and f;g = A;b, where A4; is a
(2n + 1) X (n + 1)-matrix as above, and b is an (n + 1) X 1 vector associated
with g. Let 4;; be the (n + 1) X (n + 1) submatrix of 4; with the Jjt coefficient
on the diagonal, and set d;; = det A;;. Then (...,d;;,...)> # 0. Apply a se-
quence of elementary maps F; as above. Then (. ..,d;;bg,...> =0.Sob=0.
Thus g = 0.

3 Differences for all powers In Section 2 we were just able to extend the
difference from a ring R to the polynomial ring R[ X'] because R[ X] € U,en R".
Extending the difference to the power series ring R[[X]] requires a substantial
extension of the definition of difference: define # on all powers SX simulta-
neously rather than on finite powers S” only. The definition presented in this
section follows the ‘finite’ version of Section 1.

A generalized (proper) difference # on a set S is defined on all powers §X
simultaneously. It satisfies axiom schemata that are straightforward generaliza-
tions of Section 1(1), Section 1(2), and Section 1(3).

We generalize Axiom (1) of Section 1 as follows: Let X =Y U Z. If fis a
function with domain X, then we write fy and f for the functions restricted to
the subdomains Y and Z respectively. The generalization of Section 1(1) now
reads: for all X, Y, Z such that X = YU Z, and all f, g: X — S, we have:

1) If f # g and f; = gz, then fy # gy.

For a generalization of Axiom (2) of Section 1 we must extend our defini-
tion of elementary function. Let S be the set for which we define a difference
tion. For each function f: Y — X there is a corresponding map f*: 8% - SY
defined by f*(g) = gf. The elementary maps of Section 1, defined between finite
powers of S, are of the form f*:S8™ — S”, where f is a function from n =
{0,...,n—1}tom={0,...,m— 1}. More generally, elementary maps between
SX and SY are defined as the maps f*, with f: Y — X. The generalization of
Section 1(2) now reads: For all sets 4 and B, f:S4 — S? an elementary map,
x,y€S4,and t € B,

Q) if fy # ¢, then (x, fx) # {, 1), where {x, fx),{y,ty € SA4U5,

Proper differences satisfy
3) Y #( )is false,

where ¢ ) is the unique element of S° = 1.

We define nearness ~ by f ~ g if and only if —f # g. An inequivalence is a
proper difference such that for allsets X = YU Zand f,g: X - S, if fy ~ gy
and f7 ~ gz, then f ~ g.

A proper difference is an apartness if for all X and f, g: X — S, if f # g, then
f(x) # g(x) for some x € X. Clearly, an apartness is an inequivalence.
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For each collection A of partial functions between powers of S, E(A) is the
smallest subcategory of partial maps between powers of S that includes A and
the elementary maps. The collection E = E(J) of elementary maps itself forms
a subcategory. We define A to be a collection of strongly extensional maps if all
(partial) maps of E(A) satisfy (2). As in Section 1, we easily show that A is
strongly ;xtensional if and only if for all f: SX—~SY € A, all Z,x, y € S¥, and
zZ,we S4,

{fx, 2) # {fy, w) implies {x, z) # (¥, w).

There is a canonical way to extend differences defined on the finite powers
S” to differences on all powers SX. Let # be a difference on all finite powers.
For all X define # on SX by f # g if and only if there is an n € N and a map
e:{l1,...,n} > X such that fe # ge, that is, { fe(1),...,fe(n)) # (ge(1),...,
ge(n)). We call this the infinite extension of #. The extension preserves strong
extensionality of functions.

Proposition 3.1 The infinite extension of a difference relation on the finite
powers S" is a difference. If the finite difference is proper, an inequivalence or
an apartness, then so is the infinite extension.

Proof: Let f,g: X — S be maps such that f # g, and suppose X = Y U Z such
that f, = g. There is amap e: {1,...,n} — X such that fe + ge. Since # is a
difference on the finite powers S”, we can remove all coordinates i for which
e(i) € Z, because for them fe(i) = ge(i). So there is a subsequence generated
byamapd:{l,...,m}— Y for some m < n such that fd # gd. Thus fy # gy.
So +# satisfies (1).

Suppose fy # ¢t for y € §4, f = g*: 54 — S& elementary, and ¢ € S&. So
yge * te for some e: {1,...,n} > B. Then (x, fx)(ge,e) = (xge, fxe) +
{yge,te) = {y,t){ge,e). Thus {x, fx) # {(y,t). So # satisfies (2).

Clearly, if a finite difference is proper, then so is its infinite extension.

Suppose the finite difference is an inequivalence, and let X = Y U Z be sets
and f, g: X — S such that fy ~ gy and f; ~ gz. If f # g, then fe + ge for some
e:n— X. There are p,q such that p+ ¢ =n, e,:p— Y and e;:q — Z. Then
Je, ~ ge, and fe, ~ ge,. So fe ~ ge. Contradiction. Thus f ~ g.

The case for apartness is trivial.

If # is the denial inequality on the finite powers S”, then its canonical ex-
te;lsion as defined above usually is not the denial inequality on infinite powers
S4.

Example: the denial inequality on the set N of natural numbers is the well-
known discrete inequality, while the infinite extension to NN is the apartness re-
lation defined by f # g if and only if f(n) # g(n) for some n.

A map f: 8% > SY is strongly extensional with respect to a difference if for
alngZand v, w € 8%, if (fx;, v) # {fxa, w) in STYZ, then (x;, v) # {x,, w) in
S*e,

Obviously, if f: S™ — S" is strongly extensional with respect to a difference
relation on the finite powers, then it is also strongly extensional with respect to
the infinite extension.
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Proposition 3.2 Let R[[X]] be the power series ring over a commutative ring
R with difference. The difference on R[[X]1] = RN is the infinite extension of the
difference on R. If R satisfies Section 2(5), then so does R[[X]].

Proof: Let f= 3,4, X', g = 3;b;X’ € R[[X]], h € R[[X]]" be such that
(f;h) #0and {g,h) # 0. Let f,, = ¥;,n @' X" and g, = 3;<, b; X’. By Propo-
sition 2.7 there are m, n such that { f,,,g,,h) # 0. Write fg = 3; ¢c;X’. We prove
by induction on m + n that {cy, . . . , Cpyen,h) #0. If m + n =0, then {cy,h) #0.
Induction step: If { f,gn,h) # 0, then {co,...,Cmsns--.,a:bj,...,h) #0,
where i, j are all pairs such that i+ j<m 4+ nand i <mor j < n. So {c,.. .,
CransSfm—1>8n—1,h) # 0, where f_; = g_; = 0. And thus by induction {cy,. ..,
Cmnsh) # 0.

In general, if R is an integral domain with difference, then R[[X]], with the
infinite extension as difference relation, may not satisfy Section 2(4). Let R =
Z2[S8,20,2,,2,,...]1/J, where J is the ideal generated by SZ, and SZ;, + Z;,
for all i. Define x # y if and only if the ideal >; (x; — ¥;)R equals R. Then R is
an integral domain with difference. Let f, g € R[[X]] be defined by f=S + X
and g =2, Z;X'. Then f # 0, fg = 0, but g is not identical to 0. So R[[X]] does
not satisfy Section 2(4).

Acknowledgment — The idea of a generalized notion of inequality arose following sug-
gestions by William Julian during the writing of [10]. Thanks are due to Fred Richman
for suggesting one of the examples, and to John Simms for some helpful discussions on
set theory.

REFERENCES

[1] Barwise, J., ed., “Handbook of Mathematical Logic,” Studies in Logic and the
Foundations of Mathematics, vol. 90, North-Holland, 1977.

[2] Brouwer, L., Collected Works, Vol. 1, Philosophy and Foundations of Mathemat-
ics, edited by A. Heyting, North-Holland, 1975.

[3] van Dalen, D., H. Doets, and H. de Swart, Sets: Naive, Axiomatic and Applied,
International Series in Pure and Applied Mathematics, vol. 106, Pergamon Press,
1978.

[4] Diaconescu, R., “Axiom of choice and complementation,” Proceedings of the
American Mathematical Society, vol. 51 (1975), pp. 176-178.

[5] Fourman, M., “The logic of topoi,” pp. 1053-1090 in Studies in Logic and the
Foundations of Mathematics, vol. 90, North Holland, 1977.

[6] Heyting, A., Intuitionism, an Introduction, Studies in Logic and the Foundations
of Mathematics, vol. 34, North-Holland, 1956.

[7] Johnstone, P., “Topos theory,” London Mathematical Society Monographs, vol.
10, Academic Press, 1977.

[8] Johnstone, P., Notes on Logic and Set Theory, Cambridge University Press, 1987.



552 WIM RUITENBURG

[9] Lambek, J. and P. Scott, Introduction to Higher Order Categorical Logic, Cam-
bridge Studies in Advanced Mathematics, 7, Cambridge University Press, 1986.

[10] Mines, R., F. Richman, and W. Ruitenburg, A Course in Constructive Algebra,
Universitext, Springer, 1988.

Department of Mathematics, Statistics
and Computer Science

Marquette University

Milwaukee, WI 53233

4 Appendix: A topos model We construct a topos & whose natural num-
ber object N has a detachable subset X such that both X and N\ X are not in-
finite, where a subset Y < N is infinite if for all m there exists n > m such that
n € Y. We hasten to add that the construction of the topos model itself uses prin-
ciples from classical logic and set theory.

All languages that we consider are for a higher-order logic as described in
Fourman [5] or Lambek and Scott [9], with additional type constants and func-
tion constants. We construct a sequence of higher-order languages L;, theories
{T;|i € N} for the languages L;, and topos models {&;|i € N} for the theories
T;.

Let Ly be the language with extra type constant N, extra function symbol
s:N— N, and extra constant symbol 0 of type N. Let T; be the theory of higher-
order logic for Ly with the Axiom Schema of Choice (epimorphisms split), im-
plying excluded middle Diaconescu [4], and the additional schema: (N, s,0) is
a natural number object in L, ([5] or Johnstone [7] or [9]). Obviously, T; has
a topos model contained in the category of sets S. Define exp, for all ordinals
A by expg = Ry, expy41 = 2P+, and expy = U, <) exp,, for limit ordinals A. Set
&o = V, with \ a regular cardinal bigger than exp,,, where ¥, is an initial seg-
ment of the cumulative hierarchy (see van Dalen [3], p. 168, or Johnstone [8],
p. 71).

Suppose L; and T; have been defined and a model &; constructed. Define
L;,, as the extension of L; obtained by adding constant symbols for all elements
of the natural number object N; € |&;|, plus one more symbol c;, . Define T},
as the extension of 7; by adding all properties for the constants satisfied by the
corresponding elements of N; in §;, plus the axiom schema c;,; > n for all
constants n of N. Set §;,; = &M/F, where F is an ultrafilter on N; that exists
and is free in §;. The category &;,, is a subcategory of &; with embedding
0;: 841 — &;, and is a topos with natural number object N;,; = NNi/F. For ¢,
choose the diagonal element (id : N; - N;)/F. Then §;,, is a model of T, ;.

Consider the sequence of categories

L2508, 9 8 -2 8,

where the o; are the inclusion functors. Note that the o; are left exact. We use the
glueing construction as described in [7], p. 109, to construct a new topos. Let
& =11, §;. Let G = (G, ¢,6) be the comonad on & defined by
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o(ma) =T

i j=i
SHiAi — H T G(HAI> - ]:[A,; and
i i i

L A; = [T IT II m: G(A) = G*(A).
i j=i k=j
The functor G is left exact. So by ([7], Theorem 2.32) the category 8¢ of co-
algebras is a topos.
The objects of ¢ are most easily described as sequences

A=(A0&>A1LA2L ),

where A4; € |§;| and g; is a morphism of §;. Morphisms f: A — B consist of se-
quences f = (fo, f1,/2, - . . ), where the f;: A; > B; are such that b, f; = fi11 a;.
We easily see that N = (Ny, N1, N, . ..) is the natural number object of &¢. Let
X = (Xo, X1, X,,...) bethe subobject of N defined by X;; = {n € Ny; | Coj1 =
n < ¢y for some j < i} and Xz = {1 € Nyji1|c2j—1 = 1 < cy; for some j < i
Or Czi41 < n}. We easily verify:

Theorem 4.1 X is a detachable subobject of N such that neither X nor N\X
is infinite.





