442

Notre Dame Journal of Formal Logic
Volume 30, Number 3, Summer 1989

Propositional Functions and Families of Types
JAN M. SMITH*

Abstract When specifying the task of a computer program, it is often nat-
ural to use recursion on a data type. In Martin-L6f’s type theory, a universe
must be used when defining a propositional function by recursion. Using a
logical framework for type theory, formulated by Martin-L6f, an extension
of type theory is proposed by which propositional functions can be directly
defined without using a universe.

1 Introduction In order to capture some programmers’ errors several com-
puter languages, like Pascal and ML, are equipped with a type system. Using
the Curry-Howard interpretation of propositions as types (see [4] and [8]), or,
as we shall say here, propositions as sets, a type system can be made strong
enough to be used to specify the task a program is supposed to do. This is one
of the bases for Martin-L6f’s suggestion in [12] to use his formulation of type
theory for programming; his ideas are exploited in [14] and there are several
computer implementations of type theory (see [3] and [16]). Similar ideas are
also behind Coquand and Huet’s calculus of constructions [2].

The idea of propositions as sets is closely related to the intuitionistic expla-
nations of the logical constants given by Heyting [7]. In Martin-Lo6f’s type theory
the interpretation of propositions as sets is fundamental, since the notions of
proposition and set are identical. So a logical constant is definitionally equiv-
alent to the corresponding set constant. Conversely, every set forming opera-
tion can be viewed as a logical constant, although some sets are more natural
to think of as data types.

When using Martin-L6f’s type theory for programming one often has to
use strong principles, such as a universe or well-orderings, when writing speci-
fications or defining data types. For instance, a universe must be used when

*The convenient possibility of defining propositions by induction on sets has been made
clear for a long time by people using type theory as a programming logic. For the exten-
sion proposed here I am particularly indebted to Per Martin-L6f, Bengt Nordstrém, and
Kent Petersson for many discussions.
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defining a proposition by induction on natural numbers or lists. There are dis-
advantages to using a universe and I will thus introduce an extension of type the-
ory in which the use of a universe can often be avoided.

The main reason that the rules given here have not been formulated before
is that they require the distinction between sets and types. This is a basic idea
of Martin-L6f’s framework for type theory, which he first presented in a lec-
ture in Goteborg in March 1986. The extension put forward here is that the
elimination rules for the various set forming operations should be generalized,
so that the conclusion of such a rule is not restricted to be of the form “c is an
element in the set C” but will be of the form “c is an object of the type v”. This
means that it will be possible to define type valued functions by recursion on
a set and, in particular, to define propositional functions by recursion without
using a universe. It is then important that the elimination rules be formulated
in the general way suggested by Schroeder-Heister [18],[19].

I will first briefly describe, following [15], how sets in Martin-L6f’s type
theory can be viewed as specifications, and then why a universe sometimes must
be used when expressing propositions. A presentation of the separation of sets
and types will be given before the extension is formulated. Finally, I will give
an interpretation of the extended type theory into type theory with one universe.

2 Specifications as sets The idea of viewing a specification of computer pro-
grams as a set in Martin-Lo6f’s type theory has its origin both in understanding
propositions as sets and in Kolmogorov’s explanation in [9] of propositions as
problems. Kolmogorov explains the sentential constants in the following way:

A A B is the problem of solving both of the problems A and B

A v B is the problem of solving at least one of the problems A and B

A D B is the problem of solving the problem B provided that a solution to
the problem A is given

1 is a problem which has no solution.

Using the interpretation of propositions as sets, and viewing a specification as
a problem which a program satisfying the specification solves, we can read these
explanations as:

A X B is a specification of programs which, when executed, give a pair
{a,b) where the program « satisfies the specification A4 and the program
b satisfies the specification B

A + B is a specification of programs which, when executed, give either
inl (@) where the program a satisfies the specification A or inr(b) where the
program b satisfies the specification B

A — B is a specification of programs which, when executed, give Ax.b(x)
where the program b(a) satisfies the specification B if a is a program satis-
fying the specification A

@ is a specification which is not satisfied by any program.

Type constructors corresponding to X, +, and — occur in many typed pro-
gramming languages. However, in order to obtain a type system in which any
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interesting specifications can be expressed, we need cartesian products and dis-
joint unions on families of sets so that the quantifiers can be interpreted:

(Ilx € A)B is a specification of programs which, when executed, give
Ax.b(x) where the program b(a) satisfies the specification B(a) if a is a
program satisfying the specification 4

(Zx € A)B is a specification of programs which, when executed, give a pair
{a,b) where the program a satisfies the specification A4 and the program
b satisfies the specification B(a).

In addition to these set forming operations corresponding to the logical
constants we need a set Id(A4,a, b), expressing that the elements a and b of the
set A are identical. We also need a number of basic data types, such as the set
N of natural numbers and the set List(A) of lists of elements in a set A. How-
ever, many specifications still cannot be expressed with these sets, but require
a universe.

3 The need of a universe Martin-Lof’s first formulation of type theory [10]
contained a universe V in which all sets were elements, including V itself. Such
a universe would have been very practical to use but, by Girard’s paradox,
V € V implies that all sets are nonempty; hence, it is impossible to interpret
propositions as sets. In Martin-Lo6f [11] the universe V is replaced by a series
of universes Uy,Uy, ... where Uy is the set of small sets and U, € U,,,,. Fol-
lowing the semantics in Martin-Lof [12], where a set is defined by prescribing
how the canonical elements are formed, it is natural to view an element in a uni-
verse as a code for the corresponding set; this is the approach found in [14] and
[20] and will be used here.

In this section I will give two examples of why one is forced to use a uni-
verse in two basic applications: the first is when defining a simple proposition
by induction, and the second is when proving negated equalities.

If we want, informally, to define a predicate member (a,l) which expresses
that a € A is a member of the list / € List(A) where A is a set, we can do that
by structural induction on the list /

member(a,nil) = 1
member(a,b.s) = (a =4 b) v member(a,s)

where nil is the empty list and b.s is the list obtained by adding the element b
to the left of the list s. Structural induction on a list in Martin-L6f’s type the-
ory is expressed by the list-elimination rule

[ € List(A)

C(v)set[v € List(A)]

c € C(nil)

e(x,y2) €C(x.y) [xe A, y € list(A), z€ C(y)]

listrec(/,c,e) € C(l)
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where listrec(/,c,e) is computed according to the rules
listrec(nil,c,e) — ¢
listrec(a.s,c,e) — e(a,s,listrec(s,d,e)).

Using listrec and the interpretation of propositions as sets, we could write the
definition given above of member as

member(a,l) = listrec(/,D,(x,»,2)(1d(A4,a,x) + 2)).

However, member is a set valued function. So in order to be able to apply list-
elimination to show that member(a,!) is a proposition, i.e., a set, we must have
a family C(v) of sets on List(A) so that & € C(nil) and Id(A4,a,x) + z €
C(x.y) [x € A, y € List(A4), z € C(»¥)]. Hence we must have a universe in
which the sets we are using are elements.

To express member we need the following codes, writing U for the first uni-
verse Uy,

leu
A+BeU[4€U,BeU]
Id(A4,a,b) €U [A €U, a € Set(A), b € Set(A)]
where Set is the decoding function for which we have the set-formation rule
Set(A)set [A € U]
and the set-equalities
Set(Q) = O
Set(A + B) = Set(A) + Set(B)[A € U, B € U]
Set(Id(A,a,b)) = Id(Set(A),a,b)[A € U, a € Set(A), b € Set(A)].
Now we can define member in type theory by
member(a,l) = Set(listrec(l,D, (x,,2)(1d(A,a,x) + 2)))
and we can show, using list-elimination, that
member(a,l)set [a € A, | € List(A)].

There are two disadvantages with this definition of member. First, the
definition involves some coding compared with the informal definition of mem-
ber. This is not so serious, since we could introduce some syntactical sugar-
ing to avoid the coding. The second objection is more severe: the judgment
member(a,l)set[a € A, | € List(A)] holds only when A is a small set, i.e., when
A € U. So member is actually not defined for all sets A4; in particular, we cannot
use the above definition if U was used when defining the set A.

I will here just suggest how a universe can be used to show that 0 is dif-
ferent from 1; for the details see [14]. By recursion on the natural numbers we
can define a function F such that

F0)=¢
F(1) =T
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where T is the singleton set {tt}. Since F is set valued, the formal definition of
F in type theory requires a universe

F(n) = Set(natrec(n,D,(x,») T))

where natrec is the recursion operator on the set of natural numbers. Assum-
ing Id(N,0,1) it is easy, using tt € F(1), to show that F(0) is nonempty. Since
F(0) = & we then obtain Id(N,0,1) » &, i.e., by definition, —~1d(N,0,1).

In Smith [21] it is shown that in type theory without a universe no negated
equalities at all can be proved.

4 The logical framework The main reason for introducing a type level more
basic than the level of sets is to have a framework in which sets can be intro-
duced by simple declarations. This is important when building a computer sys-
tem, since one does not want to make major changes of the implementation
when introducing a new set forming operation. The Edinburgh LF in [6] is based
on similar ideas.

The type level introduced by Martin-L6f has judgments of the forms

a is a type

« and B are equal types

a is an object of the type o

a and b are equal objects of the type «,

which we formally write as

o:type
a = (3:type

a:«a
a=b:«

respectively. In a series of lectures given in Florence in the Spring of 1987,
Martin-Lof presented a detailed semantics of the type level in which judgmen-
tal equality is intensional. When building up Martin-L6f’s set theory using the
framework, we need function types, the type of sets, and to each object in the
type of sets the type of elements of that set. The rules are formulated in a nat-
ural deduction style, but here we will not give the general rules concerned with
substitution, equality, and handling of contexts; for a more detailed formula-
tion of the framework, see [14].

If we have a type o and a family 8 of types on «, then we can form the
dependent function type from « to G:

Fun-formation
a:type B:type[x:al
(x:a)B:type
Functions may be introduced by abstraction and we have the rules:
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Abstraction
b:B[x:«a]
xX)b:(x:a)p
Application
a:a c:(x:a)p
c(a):B(a/x)

where (8 (a/x) denotes the result of substituting a for the free variable x, assum-
ing the usual restrictions on the free variables of a. We also have the following
definitional equalities for objects in a function type:

B-conversion

a.o b:B[x:al
((x)b)(a) = b(a/x):B(a/x)

n-conversion

c:(x:a)pB
(xX)(c(x)) =c:(x:a)B

£-conversion

(x must not occur free in c)

b=d:B[x:a]
x)b = (x)d: (x:a)B’

We will use the abbreviation («)8 for (x:«a)8 when 8 does not depend on
x and we will often display f: (x;: 1) ... (X,:a,)B as

Si(x1iay)

(Xn:ap)

g .

The notation f(x;,...,x,) will be used for the repeated applications
f(x1) ... (x,), and similarly we will write (xy,...,x,)e for the repeated abstrac-
tions (x;) ... (x,)e.

That there is a type of sets is expressed by the rule

set-formation
set : type.

If we have a set A we may form a type El(A) whose objects are the elements
of the set A:

El-formation

A set
El(A):type’
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The notation a € A, which we used in the beginning of the paper, can now be
seen as an abbreviation of a: El(A).
We will now illustrate how sets can be introduced in the framework by
declaring the constants for the set of natural numbers and cartesian products.
That N is a set is expressed by

N :set.
The constructors for elements in N are then declared by
0: EI(N) and succ: (E/(N))EI(N).

When declaring the recursion operator natrec for natural numbers, we need de-
pendent function types:

natrec : (C: (El(N))set)
(n:EI(N))
(d:EI(C(0))
(e: (x:EI(N)(y: (EI(C(x)EI(C(succ(x))))
ElI(C(n)).

The computation rules for the recursion operator are expressed by the defini-
tional equalities

natrec(C,0,d,e) = d: EI(C(0))
[C: (EI(N))set, d: EI(C(0)),
e: (x:EI(N))(ElI(C(x))EI(C(succ(x)))]

and

natrec(C,succ(n),d,e) = e(n,natrec(C,n,d,e)) : El (C(succ(n)))
[C:EIl(N)set, d: EI(C(0)),
e: (x:EI(N)(EI(C(x))EI(C(succ(x))),
n:EI(N)].

Using the rules of the framework we may derive the natural deduction rules
for the natural numbers in Martin-Lof’s set theory. For instance, from the decla-
ration of natrec, we may obtain the elimination rule for natural numbers

C(v):set [v:EI(N)]

n:EI(N)

d:EI(C(0))

e(x,y):El(C(succ(x))) [x:EI(N), y:EI(C(x))]
natrec(C,n,d,e) : EI(C(n)).

Note that, in the conclusion of the rule, the expression natrec(C,n,d,e)
contains the family C(v) on N. This is a consequence of the explicit declaration
of natrec in the framework, but C is also needed in the expression if we want
mechanical type checking. So, when expressing set theory in the framework, we
obtain a monomorphic theory. We may define a stripping function on the
expressions which takes away the set information, and we would then obtain
expressions of the polymorphic theory in [12] and [13]. However, the poly-
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morphic theory is fundamentally different from the monomorphic theory; in Sal-
vesen [17] it is shown that there are derivable judgments in the polymorphic
theory which cannot come from any derivable judgment in the monomorphic
theory by stripping.

The cartesian product on a family of sets is formed by the declaration

I1: (A:set)((B: El(A))set)set.
The elements in a cartesian product are obtained by A-abstraction

A: (A:set)
(B: (El(A))set)
(b:(x:ElI(A)EI(B(x)))
EI(II(A,B)).
From the declaration of A we get the introduction rule for the cartesian product
A :set
B(x):set[x:El(A)]
b(x):El(B(x))[x:EI(A)]
N(A,B,b):EI(IL(A,B)).
If we declare the constant apply by

apply : (A :set)
(B: (El(A))set)
(EI(II(A, B)))
(u:EI(A))
El(B(u))

we obtain the elimination rule

A :set
B(x):set[x:El(A)]
c:FEI(II(A,B))
a:El(A)

apply(4, B,c,a) : EI(B(a)).

This rule corresponds to V-elimination when interpreting propositions as sets.
However, this elimination rule does not follow the pattern of the other elimi-
nation rules of Martin-Lof’s set theory in that it does not express a recursion
principle. In the preface of Martin-L6f [13], higher-order assumptions were
introduced by which it was possible to formulate recursion on a cartesian prod-
uct. The selector apply is then replaced by funsplit, which is declared by

funsplit: (A4 :set)
(B: (El(A))set)
(C: (EI(II(A, B)))set)
(d: (y: (x:EI(A)EI(B(x))EI(C(N(A,B,»)))
(c:EI(II(A,B))
EI(C(c)).
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Associated with it is the definitional equality

funsplit(A4, B,C,d,\(A,B,b)) = d(b):EI(C(\(A,B,b)))
[A:set, B: (El(A))set, C: (EI((II(A,B)))set, b: (x: EI(A))EI(B(x)),
d:(y:(x:EI(A)EI(B(x))EI(C(NA,B,y)).

As in [13], apply can now be introduced by the explicit definition

apply (4, B,c,a) = tunsplit(4, B,(x)(B(a)),(»)(y(a)),c)
[A:set, B: (El(A))set, c: EI(II(A,B)), a: El(A))

thereby replacing the above declaration of apply. From the declaration of fun-
split we get the elimination rule for cartesian products

A :set

B(x):set[x:El(A)]

C(z):set[z EI(II(A,B))]

c.EI(II(A, B))

d(y):EI(C(N(A,B, ) [y: (x:EI(A)EI(B(x))]

funsplit(A4,B,C,d,c) : EI(C(c))

where the assumption y: (x: El (A))El(B(x)) corresponds to the higher-order
assumption y(x) € B(x) [x € A]. By the interpretation of propositions as sets,
this rule corresponds to the generalized V-elimination in Schroeder-Heister [19].

5 The extension In the elimination rule for natural numbers

n:EI(N)

C(v):set[v: EI(N)]

d:El(C(0))

e(x,y):El(C(succ(x))) [x:EI(N), y:EI(C(x))]

natrec(C,n,d,e) : EI(C(n))

we have as one of the premises that C(v) is a family of sets on the set of nat-
ural numbers. In order to strengthen the rule so that we can define a family of
sets (say) by recursion without using a universe, we generalize the rule to an arbi-
trary family vy of types on the natural numbers

n:El(N)

v:typelv: El(N)]

d:v(0/v)

e(x,y):v(succ(x)/v) [x:EI(N), y:v(x/v)]

Natrec, (n,d,e) :y(n/v).

Formally, given + : fype[v: N], we introduce the constant Natrec, by the decla-
ration
Natrec, : (n:EIl(N))
(v (0/v))
(e: (x:EI(N)) (v (x/v))y(succ(x)/v))
v (n/v).
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We also have to assert the definitional equalities

Natrec,(0,d,e) = d:v(0/v)
[d:y(0/v), e: (x: EI(N))(y(x/v)))y(succ(x)/v)] and

Natrec,(succ(n),d,e) = e(n,Natrec, (n,d, e)) : y(succ(n)/v)
[d:v(0/v), e: (x: EI(N)) (v (x/v))y (succ(x)/v), n: EI(N)].

Note that we cannot introduce a Natrec-operator uniformly over all fam-
ilies v of types on the set of natural numbers, but instead have to, given a family
v, introduce a new constant Natrec,. This is in contrast to the declaration of
natrec, which is the same constant for all families C(v) of sets on the natural
numbers. If we wanted a uniform operator, we would have to extend the frame-
work with yet another level where we would have fype as object; such a level
would correspond to the level of kinds in the Edinburgh LF in [6].

To introduce a type valued recursion operator on a cartesian product
II(A, B) where A :set and B: (x: El(A))set, we must first have a family of types
on the cartesian product. So let

v:type [v: EI(I1(A,B))]
be given. The constant Funsplit, is then introduced by the declaration

Funsplit, : (d: (y: (x:EI(A))El(B(x)))y(\(A4,B,y)/v))
(c:EI(II(A,B))
v(c/v)

and we assert the definitional equality

Funsplit, (d,\(A4,B,b)) = d(b) :v(\(A,B,b))
[d: (y: (x:EI(A)EI(B(x))v(MA,B,y)/v)].

Note that it is impossible to generalize apply in this way, since in the declara-
tion of apply there is no family C(v) of sets which we can replace by a family
of types. This also holds for the selectors fst and snd for a cartesian product of
two sets. Instead we have to use the selector split, by which we have the elimi-
nation rule

A :set

B:set

C(v):set[v:EI(A X B)]

D:ElI(A X B)

e(x,y) : EI(C(Kx,y)) [x:EI(A), y:EI(B)]

split(A4,B,C, p,e): EI(C(p)).

This rule corresponds to the generalized elimination rule for conjunction in nat-
ural deduction, formulated in [18] as

AnB Cl[A,B]
C .

Given sets 4 and B and a family of types on a cartesian product of 4 and B
v:typel[v:EI(A X B)]
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we declare the constant Split, by

Split, : (c:El(A X B))
(d: (x:EI(A)(y: El(B))y(x,y>/v))
v(c/v)

and assert the definitional equality

Split,(a,b),d) = d(a,b) :y(a,b)/v)
[a:El(A), b:EI(B), d: (x:EI(A))(y:El(B))y(x,y)/v)].

In the same way as for N, TI(A4,B) and A X B, it is now straightforward
to introduce type valued recursion operators for the other sets.

6 Applications of the extension We can now define member in type theory
so that the definition really captures the informal definition we gave earlier. We
first introduce a type valued recursion operator on lists. So, let a set 4 and a
family

v:typelv: El(List(A))]
both be given. The constant Listrec, is declared by

Listrec, : (/: El(List(A)))
(v (nil/v)
(e: (x:EI(A))(y: El(List(A)) (v (y/v))y(x.y/v))
v (/v)

and we also assert the definitional equalities
Listrec, (nil,d,e) = d:v(nil/v)
[d:v(nil/v), e: (x: EI(A))(y: El(List(A))) (v (¥/v))y(x.y/v)]
and
Listrec, (a./,d,e) = e(a,l Listrec,(l,d,e)) :y(a.l/v)

[d:y(nil/v), e: (x: EI(A))(y: El(List(A))) (v (¥/v))y (x.y/v),
a:El(A), l:List(A)].

To express member, the family v in Listrec, is chosen to be the constant family
set
Listrec.o; : (El(List(A)))
(set)
(e: (EI(A))(El(List(A)))(set)set)

set.

We can now introduce member by the explicit definition

member(a,l) = Listrec,; (1,3, (x,3,2)(Id(A,a,x) + 2)) : set
[: El(List(A)), a: EI(A)].
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Negated equalities can now be derived without a universe. In the proof
of —Id(N,0,1) a function F satisfying

F) =<
Fl) =T
was used. F can now be defined by
F(n) = Natrecye; (1,D,(x,y)T)

and —Id(N,0,1) can be proved.

The two examples above are quite obvious uses of type valued recursion.
I have no such basic application of Funsplit,, but here is a nice example, sug-
gested by Bengt Nordstrom, of a simplification of the definition of application
in a cartesian product on a family of sets. Given A4 : set and B(x) : set[x: A] we
introduce applyn(4,5) by the definition

applynica, 8y = Funsplitv.grayeiBx) (¥)¥) : (x: EI(A))EI(B(X)).

So applyrn(4, ) is defined by just applying Funsplit .4y z1(B(x) On the iden-
tity function of ((x: E/(A))El(B(x)))(x:EI(A))El(B(x)).

In Synek [22] type valued recursion is used when defining a set construc-
tor for mutual recursive sets in terms of well-orderings. In this application type
valued recursion is crucial, since otherwise (using a universe instead) the inter-
pretation would only work for recursion involving small sets. A similar appli-
cation of type valued recursion is also used in [14] when interpreting subsets in
type theory.

7 Relation to universes In this section I will sketch an interpretation of set
theory with type valued recursion without a universe into set theory with a uni-
verse without type valued recursion. Aczel has shown in [1] (see also [5]) that
the proof-theoretic ordinal of Martin-L6f’s type theory with a universe is, in
Veblen’s notation, ¢.,(0). So we will then get an upper limit on the strength of
set theory extended with type valued recursion. In particular, we will know that
the extension is consistent.

The universe U is defined by an inductive definition, so one can justify an
elimination rule expressing a recursion principle on U; such an elimination rule
is formulated in [14]. Since the concept of set is open there is no correspond-
ing induction principle for set, and this is an important difference between type
theory with a universe and type theory extended with type valued recursion. The
formulation of type theory investigated in [1] does not include an elimination
rule for U; if such a rule were added, one would expect a considerable increase
of the proof-theoretic strength.

The interpretation is defined in the following way. To each type o we
associate a set o’ and to each object a of type o an element ¢’ in the set o”. The
judgments
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are then interpreted by

’

o' set
a’ = f':set
a' :El(a’)
a’ =b':El(a’)
respectively. If a judgment depends on a context x;: ay,...,X,: a,, then the

interpreted judgment will depend on the context x; : El («{),...,Xx,: El(a,).
It is easy to see that a type must have the form

(x1:01) - (X¥pi0y)B R =0,1,...
where ( is either set or E/(A) for some A : set. We define set’ by
set’ = U.

For A :set, A’ will be an element in U and EIl(A)’ is then defined to be Set(A’).
A function type (x;:a;) - (x,:a,)B is interpreted as the cartesian
product

(Ixysaf) - -+ (Ixy : ) B’

where (Ilx: A)B(x) is a sugared notation for II(A,B). An abstraction intro-
duced by

b:B[x:al
(x)b:(x:a)B

is interpreted by A («’, 8%, (x)b’), and an application introduced by

a:o fi(x:a)B
f(a):B(a/x)

is interpreted by apply (', B’,f,a’).

Since we have n-conversion for objects of a function type but not for ele-
ments in a cartesian product, assumptions cannot be directly interpreted by a
corresponding assumption; instead we must interpret an assumption

xX:i(xpiop) o (Xpian)B [X:(X1iaq) -0 (X0 ) B6]

by the derivable judgment

Axp...x,.apply (.. .apply(x,x1),...,X,) :
El((Ixy:af) -« (Tlxy i ap)B) [x: EL(TIxy oef) - - - (TDxp ) B7)]

where stripping is used on A\ and apply in order to avoid heavy notation. I will
often use stripping in the sequel, but it will always be clear from the context how
to decorate the terms with types.

Given these definitions, together with the interpretation below of the var-
ious constants, it is straightforward but tedious to prove, by induction on the
length of the derivation, that if a judgment is derivable in type theory with type
valued recursion then the interpretation of the judgment is derivable in type the-
ory with a universe.
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7.1 Interpretation of the set theoretic constants  The interpretation follows
the same pattern for all the set theoretic constants. So we will only give the defi-
nitions for cartesian product and natural numbers, including type valued recur-
sion on the natural numbers.

For each constant we first give the interpretation of its type, and then it
is quite obvious how the interpretation of the constant must be defined. When
a constant is declared to be an object in a function type it is always the case that
the interpretation is on A form; hence it is y-convertible.

Interpretation of IT The set theoretic constant II is declared by
II: (X:set)(Y: (El(X))set)set.
The code II for II is declared by
II: (X:EI(U))(Y: (El(Set(X)))El(U))El (U). 1)
The interpretation of the type of II is, according to the definitions above,
(IIX:U)I1Y:Set(X) - U)U

where we have used the notation Set(X) — U for II(Set(X), (x)U), since x does
not occur in U. Using function application, we obtain from (1)

(X, Y):EI(U) [X:EI(U), Y: (El(Set(X))El(U)]. )

Since apply(Y,x) : EI(U) [ X: EI(U), x: El(Set(X)), Y: El(Set(X) — U)], we get
from (2)

(X, (x)apply(Y,x)) : EI(U) [X: El(U), Y:El(Set(X) — U)]
which gives
AXY.II(X, (x)apply (Y,x)) : (ILX : U)IIY : Set(X) — U)U.
So we define I’ by
I’ = AXY.TI(X, (x)apply (Y, x)).

Interpretation of \ The constant A is introduced by

N (X:set)(Y: (El(X))set)(z: (x: EI(X)EI(Y(x))EI(II(X, Y)). 3)

The type of A is translated to
(IIX:U)I1Y: Set({() - U)(IIz: (IIx: Set(X))apply (Y, X))
Set(I1(X, (x)apply (Y, x))).
From (3) we get
NMX,Y,z): EI(II(X, Y))

under the assumptions X :set, Y: (El(X))set and z: (x: El(X))EI(Y(x)). From
the assumptions

X:EI(U), Y:El(Set(x) — U), and z: El(ILx: Set(X))Set (apply(Y,x)))
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we obtain
Set(X):set, (x)apply(Y,x): (El(Set(X)))set,
and
(x)apply(z,x) : (x: El(Set(X)))El(Set (apply (Y, x))).
Hence, we define the interpretation of A by
N = ANXYzZ.N(El(Set(X)), (x)apply(Y,x), (x)apply(z,X)).
Interpretation of apply The constant apply is introduced by
apply : (X :set)(Y: (El(X))set)(z: EI(II(X, Y))(u: EI(X))EI(Y(u)).

The type of apply is translated to

(ILX : U)(ITY : Set(X) — U)(IIz: Set (M1 (X, (x)apply (Y, x)))
(ITu : Set (X)) (Set (apply (Y, u))).

From the assumptions
X:El(U) and Y: El(Set(X) —» U)
we get
Set(X):set and (x)Set(apply(Y,x)): (El(Set(X)))set.
We also make the assumptions
z: El(Set (I1(X, (x)apply (Y, x)))) and u: El (Set(X)).
Since
Set(I1(A4,B)) = II(Set(A),(x)Set(B(x)))

when A : El(U) and B(x): El(U) [x: El(Set(A))], we obtain

apply (Set(X), (x)Set (apply(Y, x)),z,u) : Set (apply (Y, x)).
Hence, we define apply’ by

apply’ = NXYzu.apply (Set(X), (x)Set (apply(Y,x),z,u)).

Interpretation of N, 0 and succ The constant N is declared by N :set. So
N’ can simply be defined to be the code for N

N’ = N.

Since 0 : EI(N) we just interpret 0 by
0 =0.

The constant succ is introdgced by the declaration succ : (E/(N))EI!(N) whose
type is interpreted by Set(N) — Set(N), which is equal to N — N. Hence, we
define succ’ by

succ’ = Ax.succ(x).

The constant natrec is interpreted in a similar way.
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Interpretation of Natrec, Let 4 be a family of types on the set of natural
numbers

v:typelv: EI(N)].
The recursion operator Natrec, is introduced by the declaration
Natrec, : (n: EI(N))(D:vy(0/v))(E: (x: EI(N))
(Y:v(x/v))y(succ(x)/v)y(n).

The interpretation of the type of Natrec, is
(IIn:NYIID: v (0/v))(IIE: (IIx:N) (Y : v’ (x))y’ (succ(x)/v)y’ (n/v).

In a similar way as for the constants for the cartesian product, we see that
Natrec, must be defined by

Natrec!, = AnDE.natrec((v)v',n, D, (x, Y)apply (apply (E, x), Y)).
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