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Some Admissible Rules in
Nonnormal Modal Systems

TIMOTHY WILLIAMSON

Abstract Epistemic logics for subjects of bounded rationality are in effect non-
normal modal logics. Admissible rules are of interest in such logics. However, the
usual methods for establishing admissibility employ Kripke models and are there-
fore inappropriate for nonnormal logics. This paper extends syntactic methods for
a variety of rules (e.g. the rule of disjunction) and nonnormal logics. In doing so it
answers a question asked by Chellas and Segerberg.

1 Introduction The admissibility of a rule by alogic depends only on the logic’s set
of theorems. It does not depend on a choice of semantics or proof system (for which
reason the phrase “rule of proof” is not ideal; but see Humberstone [4]). However, the
usual methods of proving the admissibility of a rule in modal logic are semantic; they
use standard “possible worlds” model theory. This semantic treatment is applicable
only to normal model systems (see below). Thus the usual methods do not allow one
to prove the admissibility of a rule in a nonnormal modal system. The aim of this
paper is to extend the use of syntactic methods for proving admissibility, methods
applicable to both normal and nonnormal systems.

An important example is the rule of disjunction. A system S provides (admits)
this rule just in case for all formulas A, ..., An:

if ks OA;v...vOA4,
then k¢ A; forsomei (1 <i <n).

Lemmon and Scott established the rule of disjunction for a variety of modal systems
by amodel-theoretic technique that is now standard (Lemmon and Scott [9] pp. 4446
and 79-81; Chellas [1] pp. 181-182; Hughes and Cresswell [3] pp. 96—-100; see also
Kripke [5], Lemmon [8], McKinsey and Tarski [10] and Segerberg [13]). Powerful
though such techniques are, they are restricted to systems amenable to the model
theory in question. Thus if a modal logic is nonnormal, because it lacks the rule
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of necessitation RN (if - A then - OA) or the K axiom schema (O0(A —» B) —
(OA — 0OB)), it cannot be shown in the standard way to admit the rule of disjunction.
Such a limitation is serious for two reasons.

(a) If the admissibility of a rule is preserved when a normal system is weakened
to a nonnormal one by the dropping of necessitation or the K schema (as is often the
case), a model-theoretic technique obscures the generality of the phenomenon.

(b) The formalism of modal logic is often applied to epistemic or doxastic issues,
with Oread as “itis known that” or “itis believed that.” Normality is then equivalent to
the closure of knowledge or belief under logical consequence: unbounded rationality.
If one wishes to avoid this idealization, one will use a nonnormal logic. Even if one
makes the idealization about individual subjects, but reads O as “‘someone knows that”
or “someone believes that,” one may reject the schema (OA AOB) — O(A A B) on
the grounds that the perfect logicians who know or believe that A may not include
any of the perfect logicians who know or believe that B, and normality is again lost.
Yet one would still like to know what rules are admissible in the nonnormal epistemic
or doxastic logic.

Standard “‘possible worlds” model theory can be generalized for systems without
the rule of necessitation by the introduction of nonnormal worlds at which everything
is possible. Asabyproduct, Kripke showed that the nonnormal logics S2 and S3 admit
the rule: if - OA v OB, then either - OA or - OB (Kripke [6], p. 220). However,
this semantics still enforces the K schema and the rule RM that if A — B then
+ OA — 0OB. A much wider generalization is to neighbourhood semantics or
minimal models, but this still enforces the rule RE thatif - A = B then OA = OB
(11 pp. 207-210; by definition, the classical logics of [13] admit RE). Similar remarks
apply to the use of algebraic semantics (for a recent example of its application to
problems of admissibility in modal logic see Rybakov [12]). Even this form of
deductive closure is too strong for many epistemic and doxastic applications. It is
avoided in the impossible worlds semantics of Rantala [11], but there the K schema
is valid; yet real knowledge or belief cannot be assumed to be closed under modus
ponens.

The proper response to the problem is not to seek further generalizations of the
semantics, not least because anything general enough may be too trivial to be of use
in establishing the admissibility of rules. It is more natural to develop a nonsemantic
approach.

2 Framework The language is standard, with a countably infinite class of propo-
sitional variables po, p1, P2, . . . ; the only primitive operators are the O-place L (fal-
sity), the 1-place O and the 2-place — (material conditional). Other operators are
treated as metalinguistic abbreviations, e.g. —A for A — L, T for =1, ¢A for
-0-A. O0°4 = A; Ot'A = O'DA. “A”, “B”, “C”, ... are metalinguistic
variables over all wif; “p”, “q” and “r” are metalinguistic variables over propo-
sitional variables. A function o from wff to wif is a substitution iff 01 = 1,
c0A = OcA and 6(A > B) = 0A —> oBforall Aand B. If X is a set
of wif, 6 X = {0A : A € X}. The modal degree #A of A is defined as usual:
#p =#1 =0; #(A > B) = max{#A, #B}; #0A = #A + 1.

A theory is a set of wif containing all classical truth-functional tautologies and
closed under modus ponens (MP). A logic is a theory closed under the rule of uniform
substitution (US). A subtheory (sublogic) of a theory is a subset of it that is a theory
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(logic). PC, the set of all classical truth-functional tautologies, is the smallest theory
and the smallest logic. If S is a theory, -5 A justin case A € S. If X is a set of wff,
X 5 Ajustincase s B — A for some conjunction B of members of X. A logic is
normal just in case it contains schema K and is closed under the rule of necessitation.
The closure of alogic £ under a set of inference rules is the intersection of all logics
containing £ that admit those rules.

A rule is treated as a sequent X I Y, where X and Y are sets of wff (written
without { and }).

Definition 2.1 S admits the rule X I Y just in case for every substitution o, if
FsoAforall Ae XthentsoB forsome BeY.

Thus the rule of necessitation RN is treated as a sequent p I+ Op, the rule RE as
p = ¢q |- Op = Ogq, and Lemmon and Scott’s rule of disjunction (for fixed n) as the
sequent

Opyv...vOpulF py,..., Dn.

A special class of rules is of particular importance:

Definition 2.2 X I+ Y isaO-introduction rule just in case for some wif G, .. ., Gg
and H,Y = {(/\,.sk 0G,) — 0"} and X Fpc (/\isk G;) - H, where X, G; and
H are nonmodal (i.e., #A =0for A € XU {Gy,..., Gy, H}).

The special case k = 0 is allowed, where the rule is in effect X I+ OH, and
X Fpc H. Some O-introduction rules are:

RN pl-0Op

RM p—>ql-0Op - Og

RR (pAg)—>ri-@p AQg) - Or
RE p=qltOp > 0Oq

Note that a theory admits p = ¢ IF Op — Ogq just in case it admits p = ¢ I+ Op =
Ogq. The rule of disjunction is obviously not a O-introduction rule, even for n = 1;
nor are p V g I Op v Og and —p IF —0Op, for their conclusions are of the wrong
form.

The case X = {} is also allowed, where Fpc (/\isk G;) » H. O-introduction
rules of this special kind will prove important, and deserve a special name:

Definition 2.3 X I Y is an axiomatic O-introduction rule just in case it is a O-
introduction rule and X = {}.

Some axiomatic O-introduction rules are:
I-OT
I @ — q) AOp) - Oq
IF@pAQg) —>0O(pAg)
FO(P Agq) —» Op
IF3O(p A q) »> Oq

IF Op is not an axiomatic O-introduction rule, since not Fpc p.

Proposition 2.4 A logic L is normal just in case L admits all O-introduction rules.
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Proof: If L admits all O-introduction rules, it admits RN and the rule I (O(p —
q) A Op) — Ogq, so every instance of the K schema is a theorem; thus £ is nor-
mal. Conversely, let £ be normal, X I+ (/;.,0G;) - OH a O-introduction rule,
and o a substitution. Suppose that -z oA for all A € X. By definition of a
O-introduction rule, X Fpc (A\;; Gi) = H, s0 06X Fpc 0((\;<; Gi) — H).
Hence b 0 ((A\i Gi) - H),ie. bp (N 0Gi) — o H. Since L is normal,
Fo (Nik OoG;) — OoH,ie. kg a((/\isk 0G;) — OH). Thus £ admits the
rule.

3 Cancellation rules The aim is to find ways of establishing the admissibility of
rules generalizable to theories in which not all O-introduction rules are admissible.
Chellas gives an example of the kind of proof we are after ([1] pp. 124-125), in
showing that the weakest normal logic K admits the rule

Op—->0Ogqlkp—gq.

In other words, for any wif A and B, if -k OA — OB then Fx A — B (on an
epistemic reading, this rule has a constructivist flavor: if knowledge of A entails
knowledge of B then A entails B). Chellas uses a mapping t from wif to wif, defined
as follows:

TDi = Di
tl=1
t(A—> B)=1tA—> B
tOA=A

Consider an axiomatization of K with all truth-functional tautologies and all wff of
the form O(A — B) — (OA — OB) as the only axioms and MP and RN as the
only primitive rules of inference (note that US is a derived rule). One can show by
induction on n that if kg A with a proof of n lines then ¢ 7 A, as follows. If A
is a truth-functional tautology, so is T A, for ¢ commutes with all truth-functional
operators. t(0(A - B) > (DA — 0OB)) = (A - B) > (A - B), a truth-
functional tautology. Thus t maps axioms to axioms. Now assume the induction
hypothesis for all proofs of less than # lines, and that Fx A with a proof of # lines.
If A is an axiom we are done. If A was derived by MP, then, for some B, g B and
Fx B — A with proofs of less than n lines; by induction hypothesis, -x B and
Fx (B — A),ie. Fx tB — tA; by MP, ¢ tA. If A was derived by RN, then
A = 0B for some B such that g B; but tA = OB = B. This completes the
induction. For any wff A, if Fx A then g T A; in brief, K is closed under . Thus
if -k OA — OB then g (A — OB); but t(OA — OB) = A — B. Hence K
admits the rule Op — Ogq I+ p — gq.

The aim of this section is to make a detailed case study of the mapping v and its
use in proving results of this kind. Later sections study other mappings. Two kinds
of generalization of the result just proved are possible. We can generalize on the rule
Op — Og I+ p — g, and we can generalize on the system K. We begin with the
former.
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The closure of K under 7 implies that K also admits all of the following rules:

Op—>90qlkp—>gq
Op—>0Oqlkp—>gq
Op—>0qlkp—>gq
Op=0qlFp=gq
Op=0qiFp=gq
Op=0qlFp=gq
Opl-p
OplFp

The same proof technique works, for t0A = t—0-A = ——A, and it does not
matter what truth-functional operator takes the place of —. Thus a general class of
rules needs to be studied.

Definition 3.1 op is the substitution such that oo p = Op for every propositional
variable p.

Definition 3.2 X I Y is a cancellation rule just in case X = {ogA} and Y = {A}
for some nonmodal wif A (#A = 0).

Thus the following are cancellation rules: Op — Og IF p — ¢q; Op = 0Oq I+
p=gq,andOp |- p. Op — g I+ p — g, for example, is not a cancellation rule,
but is admitted by a theory whenever the cancellation rule Op — —Og I+ p - —¢q
is.

Proposition 3.3 If a theory is closed under t then it admits all cancellation rules.

Proof: Let S be a theory closed under z , ogA I+ A a cancellation rule and o a
substitution. What needs to be shown is that if -g cogA then ks o A. Suppose
ks ocopA. By hypothesis, s toon A. Thus it suffices to show by induction on the
complexity of A that toogA = 0 A. Now toopp = toOp = tOop = op and
toonl =1 =0l. If toogB = oB and toogC = oC then toog(B — C) =
toogB — toonC = 0B — oC = o(B — C). This completes the induction; the
case of OB does not arise, for #A = 0 by definition of a cancellation rule.

‘We shall be concerned with proofs that a system admits all cancellation rules.
Proposition 3.5 shows that not every such result can be proved as for K, by means
of r. Proposition 3.4 is a lemma of general use, formulated relative to a particular
choice of truth-functional primitives in the language.

Proposition 3.4 If0 is a mapping from wff to wff such that 6 L. = 1 and, for all wff
Band C,0(B — C) =0B — 6C, then PC is closed under 6.

Proof: If Fpc B then B = o A for some substitution o and some wif A such that
#A = 0 and Fpc A. Define oy as the substitution such that oy p; = 8o p; for all i.
One can then show that 0y A = 6o A by induction on the complexity of A. Since PC
is closed under US, Fpc 0y A, ie. Fpc 80 A, i.e. Fpc 6B.

Proposition 3.5 Not every normal logic that admits all cancellation rules is closed
under t.
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Proof: Let L be the smallest normal logic containing p = OOp. £ admits all
cancellation rules but is not closed under . A semantic proof of this uses standard
correspondence theory: L is the logic of a two-point frame in which each point is
accessible from the other but not from itself, but t(p = O0Op) = p = Op, which is
not valid on that frame. However, in the spirit of this paper a syntactic proof of the
same result will be sketched. One first shows that ¢, O(p — ¢) = (Qp — Og)
and g O1 = 1. Thenlet ogA I A be a cancellation rule and o a substitution. By
induction on the complexity of A, k¢, ogA = OA; hence g OoopA = o A. Thus
if ¢, oog A, by RN ¢ OoopA, so ¢ 0 A. Thus £ admits the cancellation rule
opnA IF A. To show that £ is not closed under 7 , let o,; be the substitution such that
Ox D2i = Daiv1 and oy Poiy1 = po; for all i, and define a mapping 7 on wif by:

TTpi = Dai
nl=1
wn(A—> B)=nA—> 7B
n0A =o0,TA

Axiomatize £ with all theorems of PC and wff of the forms 0(A — B) —» (UA —
OB) and A = OOA as axioms and MP and RN as the only rules of inference. By
induction on the length of proofs (using 3.4), if ¢, A then pc 7 A (the converse also
holds, but need not be proved). Finally, if £ is closed under t , ¢ 7(po = O0Opo),
i.e. k¢ po = 0Opo, 80 Fpc w(po = Opo), i.e. Fpc po = p1, which is absurd.

In spite of 3.5, there is a close connection between the mapping t and the
admissibility of cancellation rules. A logic L can admit all cancellation rules “because
itis weak,” in the sense that every sublogic of L (i.e. everylogic all of whose theorems
are theorems of £) also admits all cancellation rules. This property of £ turns out to
be equivalent to the property that t maps every theorem of £ to a theorem of PC. A
strongest logic with this *“weakness property” will be identified. Normal logics, such
as K, lack this weakness property, for OOT is a theorem of K while :00T = OT is
not a theorem of PC; correspondingly, the weakest logic containing OOT is included
in K but does not admit the cancellation rule Op I+ p. However, it will be shown that
if £ has the weakness property, then the closure of £ under any set of O-introduction
rules is closed under t and therefore admits all cancellation rules. K and a number
of other normal logics are the closures of logics with the weakness property under
the set of all O-introduction rules. In this way we can achieve a wide generalization
of the result about K.

Some preliminary lemmas are needed for the proof of the results just mentioned.
In particular, it helps to consider wiff without propositional variables, for if A is any
such wff, A is the premise and 7 A the conclusion of an instance of a cancellation rule
(see 3.9). Wff with propositional variables do not in general have this feature: for
example, the proof of 3.5 shows that no cancellation rule has an instance of which
p = O0Op is the premise and t(p = O0Op) = (p = Op) the conclusion. 3.8 (for
which 3.6 and 3.7 are preliminaries) shows that if 7 maps a theorem of some logic to
a nontheorem of PC, then it maps a theorem of that logic containing no propositional
variables to a nontheorem of PC.

For k > 0, let o} be the substitution such that for all i, o p; = O¢tDE+D) |
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Define a mapping u by:
Mk Di = Di
Ml =1

uk(A — B) = puxA - B
wOA=p;, ifA=0"Lwhereh+1<G+1)(k+2) <h+2
=0OurA otherwise.

We must check that uy is well defined: if h +1 < ( + 1)k +2) < h+2and
h+1<(G+1Dk+2) <h+2theni = j. Otherwise (i + 1)(k + 2) and
(j + 1)(k + 2) differ by at most 1; since they are both multiples of £ + 2, they differ
by at least 2 if they differ at all; thus (0 + 1)(k +2) = (j + 1)(k + 2),50i = j.

Proposition 3.6 If#A < k then urorA = A.

Proof: By induction on the complexity of A.

Basis. o p; = w0@tV®+2) | — p. The cases of L and — are standard.

Induction step for 0. The induction hypothesisisthat uroxrA = Aand #0A < k.
Suppose for a contradiction that o3y A = 0" Lwhereh+1<(@+1)((k+2) <h+2.
If A contained —, o3 A would contain —, which is impossible, since 0% L does not.
Thus for some m, n, either A = O™ L or A = O™ p,,. Inthe former case, oy A = O™ L.
In the latter, oy A = O®@+D&+2+m | Hence h = morhk = (n+1)(k+2) +m. Since
h+1<(@+1)(k+2) <h+2eitherm + 1 orm + 2 is a multiple of k + 2; since
m+l#0andm+2#0,k+2<m+2,50k <m+1=#0OA. But#0A <k
by induction hypothesis, so the supposition cannot arise. Thus by definition of s,
urox0A = pOox A = Opgox A = OA by induction hypothesis.

Proposition 3.7 If#A <k + 1then ugtorA = tA.

Proof: By induction on the complexity of A.

Basis. metopp; = uyrOFOED | — 4, n@DEED-1 | — 5 — 75 The
cases of L and — are standard.

Induction step for 0. The induction hypothesis is that uztorA = tA and
#OA <k+1,50 #A <k. By 3.6, uytor0A = uptorA = oA = A = tOA.

Proposition 3.8 If bpc to B for every substitution o such that o B contains no
propositional variables, then t-pc tB.

Proof: Let #B = k. By definition of oy, ox B contains no propositional variables.
If l—pc tO'kB then |"pC ,ukrakB by 34,0 |—pc B by 3.7.

Proposition 3.9 If B contains no propositional variables, then there is a wff A such
that #A = 0 and a substitution o such that conA = Band o A = tB.

Proof: Let “C” be the Godel number of the wif C on some standard enumeration
such that every natural number is the number of some wiff. Let o “” be the substitution
such that o “” p«c» = C for every wif C. Define a mapping A as follows:

ADi = pi
Al=1
MC - D) =AC - AD
AOC = pecr.
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Evidently #AC = 0 for any wif C. We now show by induction on the complexity of
B that if B contains no propositional variables then o “’ogAB = B and 0 “”AB =
vB. The only interesting case is the induction step for O, where o “ogA0B =

o ogp«pr = O'“”DpuB" = Oo “”P“B" = 0B and c“”’A0B = U“”P“B" = B =
0B (without use of the induction hypothesis). Put A = AB and 0 = o ",

Proposition 3.10 Either #A = #tA =0o0r#A =1+ #tA.
Proof: By induction on the complexity of A.

Proposition 3.11  Ifevery sublogic of the logic L admits all cancellation rules, then
l—L A implies ‘—pc TA.

Proof: Suppose that every sublogic of £ admits all cancellation rules. It suffices
to show that if A contains no propositional variables then - A implies Fpc T A.
For if ¢ B then ¢ o B by US for every substitution o such that o B contains no
propositional variables, so it will follow that -pc To B, s0 Fpc T B by 3.8. We show
that if A contains no propositional variables then ¢, A implies Fpc T A by induction
on #A.

Basis. Suppose that -, A and #A = 0. Thus tA = A. Unless bpc A, L is
inconsistent (by US; A is nonmodal). If L is inconsistent, K4 is a sublogic of £, and
does not admit all cancellation rules (e.g. Op — Ogq I p > ¢q). Thus Fpc A, i.e.
'_PC TA.

Induction step. Suppose that #A = n+ 1, A contains no propositional variables
and ¢ A, and that for all B if #B < n and B contains no propositional variables
then ¢ B implies Fpc TB. Put L* = {B : Fpc (A — A) — B}. We first
show that L* is a logic. It evidently contains all truth-functional tautologies and
is closed under MP. Thus we need only check that L* is closed under US. Let
o be any substitution. Suppose that .+ B. Thus Fpc (rA — A) — B, so
Fpc 0((rA - A) — B),i.e. Fpc 0(tA - A) — oB. Since TA — A contains
no propositional variables, c(trA — A) = 1A — A. Thus bpc (A - A) > 0B,
80 .+ oB. Thus L* is a logic. Moreover, L* is a sublogic of L. For suppose
Fe* B,sobpc (A - A) — B,solg (tA — A) — B;butl A by assumption,
S0 kg TA — A; thus g B. We can now show that Fpc T A, as required to
complete the induction step. Since L* is a sublogic of £, by assumption it admits
all cancellation rules. By 3.9, there is a cancellation rule with an instance of which
TA — A is the premise and t(trA — A) = ttA — tvA is the conclusion. Now
Fpc (tA > A) > (tA — A),s0.x TA — A;since L* admits the cancellation
rule, .+ TTA — 7A,ie.,

1) Fpc (TA —> A) —> (rTtA —> TA).

Since £ is a sublogic of itself, by assumption it admits all cancellation rules. By 3.9
again, there is a cancellation rule with an instance of which A is the premise and T A
is the conclusion. Since g A, g TA. But #4A = n 4+ 1, so by 3.10 #7A = n.
Thus the induction hypothesis can be applied to T A, yielding:

2 Fpc TTA.
By (1) and (2):
3) Fpc (tA —> A) —> TA.
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From (3) by truth-functional logic (Peirce’s Law):
(4) I—pc TA.
This completes the induction.

Proposition 3.12 Ift-r Aimpliestpc t A forall A, then every sublogic of L admits
all cancellation rules.

Proof: By 3.3, since PC is a sublogic of L.

3.11and 3.12 imply that there is a largest logic L such that all its sublogics admit
all cancellation rules, for we can put Lo = {A : Fpc to A for every substitution o'}.
It is easy to see that Lo is alogic; by 3.12 every sublogic of L, admits all cancellation
rules; by 3.11 every logic £ of which every sublogic admits all cancellation rules is
a sublogic of Ly (since £ must be closed under US). Note that L, is not the same
as {A : Fpc tA}. For example, t7(p — Op) = p — p is a theorem of PC, but
p — Op is not a theorem of Ly, for it has the substitution instance Op — OOp, and
7(@p — O0p) = p — Op is not a theorem of PC. The next task is to identify L.

Definition 3.13 If A;, ..., A, are some wff, KA; ... A, is the smallest logic con-
taining A4, ..., A, and closed under all axiomatic O-introduction rules.

Proposition3.14 KA, ... A, is axiomatizable with MP as the only rule of inference
and the following axioms: B and OB for all B such that Fpc B; (A(B — C) A
OB) — OC for all B, C; all substitution instances of Ay, . . ., Ap.

Proof: The axiomatized system is clearly a logic; call it L. £ is a sublogic of
KA;... Ay, for if Fpc B (#B = 0), I OB is an axiomatic O-introduction rule,
and IF A(p — q) A Op) — Ogq is another such rule. To show that KA, ... A, isa
sublogic of L, it suffices to show that £ admits every axiomatic O-introduction rule
IF (\i<0G:) — OH, ie. ¢ ()\;DOoG;) — Oo H for every substitution o

Since Fpc ( /\l<k G;) > H by definition of an axiomatic O-introduction rule, Fpc
(/\zskC’G) — oH. Thus g O((A\;,0Gi) —> oH), s0 k¢ D(/\zsk"G) -
Oo H by the K axiom. Thus it suffices to show ¢, (Op AOq) — O(p A q), for then
Fo (N O0Gi) = O(A; 4, 0G:). Butb¢ O(p — (g > (p A g)) and the result
follows by the K axiom again.

For example, Lemmon’s system 0.5 is K™T, where T is the wff Op — p (Lem-
mon [7]). Note that K™, ... A, is not in general a normal logic (e.g. K™ does not
contain the theorem OO T).

D and Altl are the wif O-p — —0Op and ~Op — O-p respectively. It will
be shown that L, the largest logic of which every sublogic admits all cancellation
rules, is K"DAItl. The crucial property of K'DAIt1 is that O commutes in it with
all truth-functional operators (see 3.16); K'DAIt1 is in fact the smallest logic with
this property. Given 3.11, it suffices to show that for every logic £, -z A implies
Fpc TA for all A if and only if £ is a sublogic of K'DAIt1. The next propositions
are preliminaries to this result.

Define two auxiliary mappings o and 8 on wff by:

api = pi Bpi = pi
al = 1 BL = L
2¢(A—> B) = aA—>aB B(A—> B) = BA— BB
odp; = pi BOA = OOA
adA = OaAifA=p;fornoi.
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Proposition 3.15 «opA = A.

Proof: By induction on the complexity of A.

Basis. aopp; = aOp; = p;. The cases of | and — are standard.

Induction step for O. Suppose that aogA = A. Now ogA = p; for no i, by
definition of o, 80 ®on0A = aOog A = Oaopn A = OA by induction hypothesis.

Proposition 3.16 Fg-paly L =01, Fgpam O(p — q) = dp — Og).

Proof: For the former, note that IF O—_L is an axiomatic O-introduction rule, so
Fx-pair 0L, and Fgpayy O—1 — —0OL by D. For the latter, left to right:
I+ (@(p — ¢q) AOp) — Og is an axiomatic O-introduction rule. Right to left: note
that IF Og — O(p — ¢) and I O—-p — O(p — ¢q) are axiomatic O-introduction
rules and Fg-paiy —Op — O—p by Altl.

Proposition 3.17 For all A, Fg-pa @ftogA = A.

Proof: By induction on the complexity of A.

Basis. aftogp; = afr0p; = aBp; = ap; = p;i, S0 Fk-pam eBrogp; = p;.
aBfropgl = 1,80 Fxpam ¢ftogl = 1.

The induction step for — is standard. For O, there are four cases.

Case 1: Op;: aftopOp; = aftOopp; = afogp; = «f0p; = o«O0p; =
OaOp; = Op;. Thus Fg-pain ¢Bfrog0p; = Op;.

Case 2: OL: afrop0Ll = afr01 = afL = L. The result follows by 3.16.

Case 3: OOB: aBftogd0B = afr000onB = of0ogB = o000 B = DO,
onB = O0aop B (since og B = p; is impossible) = OOB by 3.15.

Case4: O(B — C): Since OB and OC are less complex (shorter) than O(B — C),
Fxpai1 ¢Btog0B = OB and Fg-pain ¢BtopOC = OC by induction hypothesis.
Now aftopd(B — C) = aftOog(B — C) = afog(B —» C) = afonB —
afogC = afr0opB — aft0onC = aftogdB — afron0OC. Hence Fx-pam
aftopd(B — C) = (OB — 0OC) by hypothesis. Thus Fg-pain efrog0(B —
C) =0(B — C) by 3.16.

Proposition 3.18 If L is a logic such that -, A implies -pc T A for all A, then L
is a sublogic of K'DAIlt1.

Proof: Suppose that - A implies Fpc tA for all A, and ¢ B. Since L is a
logic, ¢ ogB. By hypothesis, Fpc TogB. By 3.4, bpc aftogB. By 3.17,
l_K‘DAltl a,B'L’UUB = B. Hence ‘_K"DAltl B.

Proposition 3.19 IfFg-pan: B thenbpc TB.

Proof: Axiomatize K"DAIt1 as in 3.14, and use induction on the length of proofs.
If Fpc B then Fpc TB by 3.4; moreover t00B = B s0 bpc t0OB. (OB —
C)AOB) - 0OC)=((B—~ C) AB) —» Cand v(—~0OB = 0-B) = (-B =—-B).
The induction step (MP) is obvious.

Theorem 3.20 Foralogic L, (i)—(iii) are equivalent: (i) Every sublogic of L admits
all cancellation rules. (ii) 5, A implies Fpc T A for all A. (iii) L is a sublogic of
K™DAIt1.

Proof: (i) implies (ii) by 3.11; (ii) implies (i) by 3.12; (ii) implies (iii) by 3.18; (iii)
implies (ii) by 3.19.
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Proposition 3.21 If L is the closure of a subtheory of K'DAIt1 under a set of
O-introduction rules, then L admits all cancellation rules.

Proof: Axiomatize £ with all theorems of the subtheory of K"DAIt1 as axioms and
MP and all O-introduction rules in the set as the rules of inference, and show by
induction on the length of proofs that - A implies - tA. By 3.3 and 3.20,
it suffices to show that if o is a substitution, X I+ (A\;,0G;) — OH is a O-
introduction rule and for all A € X F o A then ¢, ‘EO’((/\Kk 0G;) —» OH),i.e.
Fo t((A\i<x 0o G;) — Oo H), ie. g (/\l<k 0G;) — o H. But by definition of a

O-introduction rule, X tpc (A;<; Gi) > H, 500X Fpc (/\;,0Gi) - o H, 50
ke (A\ick 9Gi) = oH.

Recall that a modal logic is classical (monotone, regular) just in case it is closed
under the O-introduction rule RE (RM, RR) and normal just in case it is closed under
all O-introduction rules. 3.21 yields:

Proposition 3.22 If L is the smallest classical (monotone, regular, normal) logic
containing a given sublogic of K"DAIt1 then L admits all cancellation rules.

Note that if £ is axiomatized by the addition of all O-introduction rules to a
sublogic of K'DAIt1, and L’ is a normal sublogic of £, it does not follow that £’
can be axiomatized by the addition of some O-introduction rules to some sublogic of
K'DAIt1. Consider, for example, KDG, the smallest normal logic containing the D
axiom, O0—p — —0Op, and the G axiom ¢Op — OQp. KDG can be axiomatized
by the addition of all O-introduction rules to the sublogic of K"DAIt1 generated by
Op — ¢p and (OOp — OOp) v O¢p. Thus KDG admits all cancellation rules.
However, its normal sublogic KG does not, for Fgg OO T but not Fgg ¢ T. Thus
KG cannot be axiomatized by the addition of any set of O-introduction rules to any
sublogic of K'DAIt1.

4 Cancellation rules in systems with T axioms 1t is natural to study nonnormal
logics with the T axiom Op — p. For example, if O is read as “it is known that,”
the T axiom should hold, since knowledge entails truth, yet ordinary knowledge is
not closed under logical consequence. Logics with the T axiom are not in general
closed under the mapping 7, for although r maps the T axiom itself to the PC theorem
p — p, T maps its instance O0—-0Op — —Op to -Op — —p, whose addition to a
logic with the T axiom yields modal collapse. Indeed, logics with the T axiom do not
in general admit all cancellation rules. For example, we have gt —O(p A —Op) but
not kgt —(p A —0Op), so that KT does not admit the cancellation rule —=Op I+ —p.
Nevertheless, it is natural to ask whether logics with the T axiom admit modified
forms of cancellation rules. This section gives a limited positive answer to that
question.
‘We can adapt the mapping t to logics with the T axiom by combining it with the

following mapping v:

upi = pi

vl=1

v(A > B)=vA > uB
vOA=vAAOA

Consider the mapping tv. tvOA = (VA A OA) = tvA A A; hence tv(OA —
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A) = (tvA A A) - tuA. Thus Tv maps all substitution instances of the T axiom
to PC theorems. It will play the role played by t in the previous section.

We begin with some consequences of closure under zv for the admissibility of
rules (4.1-4.4) and then ask what logics are closed under v (4.64.15).

Proposition 4.1 Ifalogic L is closed under tv then L admits the cancellation rule
Vi< Opi IF Vi pi for all k.
Proof: For any substitution o, tv(\/,, Oopi) =V, (zvop; A op;).

Note in particular the case ¥ = 1, sometimes known as denecessitation: if
g OA then ¢ A. If £ has the T axiom, it automatically admits that cancellation
rule. A wide class of logics without the T axiom were shown to admit all cancellation
rules in the previous section. 4.1 is useful in proving the admissibility of the rule
for logics with a weakened version of the T axiom. For example, Lemmon and
Scott discuss the schemata L (0T — (OA — A)), N (substitution instances of T in
which every occurrence of a propositional variable is within the scope of a (0) and Ny
(O(@A vOB) — (OA v OB)). A variety of logics with such axioms can be shown
to be closed under tv. The next propositions concern less obvious rules.

Proposition4.2  Ifalogic L is closed under tu then & admits the rule \/; ; 0Op; I+
Vi< (pi v Op;) for all k.

Proof: For any substitution o, Fpc Tv(V; 4 00op;) = Vi «((tvop; Aopi) v
Oop;).

Proposition 4.3 Either #A = #tvA = 0 or #A = 1 + #1vA.
Proof: By induction on the complexity of A.

Proposition 4.4 If a logic L is closed under tv then L admits the rule Op =
Og,0p=0q Ik p=gq.

Proof: Suppose that L is closed under tv and ¢ OA =0B and ¢ 0A = OB, so
¢ O—A = O0-B. By assumption, -z, Tv(0A = 0OB) and ¢ rv(0—A = 0O-B),
ie. Fo (tvAAA) = (tvBAB)and g (-tvA A —A) = (—tuB A —=B). Thus
¢ (AA-B) »> (-tvAATuB) and g (mA A B) - (tvA A —TtuB), ie.
Fo (AA=B) - tv(mAAB)and gy (FAAB) - tv(AA—B). Let (tv)°C =C
and (zv)"*'C = tu(zv)"C. By repeated use of closure under tv, for all n, ¢
(TV)*(AA-B) »> V)"t (=AAB)and ¢ (zv)*(mAAB) = (tv)**1(AA—B).
By 4.3, n can be chosen so that #(tv)*(A A =B) = #(zv)"(—A A B) = 0. Then,
by definition of tv, (Tv)"*'(A A =B) = (tv)*(A A =B) = (zv)*A A =(zv)"B
and (zv)"*1(=A A B) = (zv)*(mA A B) = =(ru)*A A (zv)"B. Hence
(tv)*A A =(TV)"B) > (=(tv)*A A (zv)"B) and k¢ (—(zv)"A A (TU)"B) —
((zv)"A A =(zv)"B). Hence kg =((tv)"A A =(tv)"B) and g —~(—(tv)"A A
(tv)*B), ie. g =(zv)*(A A —-B) and g =(zv)*(mA A B). If n > 0,
(zv)""'(AA—B) — (zv)*(mAAB)and - (Tv)* '(=AAB) — (Tv)*(AA—B),
s0 k¢ =(zv)* "1 (A A=B) and ¢ —~(tv)""!(—=A A B). Continuing the process, -¢
—~(zV)°(AA=-B) and ¢ ~(tv)°(~AAB), ie. Fr ~(AA—B)and ¢ ~(—AAB),
sobg A= B.

See Williamson [14] for brief discussion of the philosophical interest of the
“double cancellation” rule established by 4.4 on an epistemic reading of O (the



390 TIMOTHY WILLIAMSON

method of proof used for 4.4 can be seen as a generalized syntactic version of the
main semantic construction in [14]).

We now ask what logics are closed under tv. The role of K"DAIt1, the largest
logic all of whose theorems are mapped by t to PC theorems, will be played by
K"TAlt2, the smallest logic closed under all axiomatic O-introduction with as addi-
tional axioms T and the wif Alt2:

Definition 4.5 Alt2isO(p — ¢) vO(p — —q) VvV Op.

One can think of T and Alt2 as together saying that each world can see itself and
at most one other world, just as one can think of D and Alt1 as saying that each world
can see exactly one world, although this interpretation is of merely heuristic value
in the context of nonnormal logics. The point is not that Altl or Alt2 is plausible
on some reading of O, but that they are so strong that many systems of interest can
be axiomatized by the addition of O-introduction rules to sublogics of K"DAIt1 or
K TAIt2. The following propositions lead to a characterization of some interrelations
between K'DAIt1, K'TAIt2 and tv. After that, closure under tv will be used to
establish the admissibility of various rules.

Proposition 4.6 +pc TvogA = toguA.

Proof: By induction on the complexity of A.

Basis: tvogpi = tvlp; = Tupi Api = pi Api;Togup; = tonp; = t0p; =
pi. The cases of L and — are standard.

Induction step for O. Suppose that Fpc TvogA = toguA. tvopOA
tvdogA = tvogAAocgA. But toguOA = tog(VAAOA) = t(opvAAOog A)
tonVA A ogA. By induction hypothesis, Fpc Tvon0A = toguOA.

Proposition 4.7 If L is a logic and \-1, A implies bpc TvA for all A, thent¢ A
implies '—K”DAltl UAfor all A.

Proof: Suppose that - A implies Fpc TvA for all A, and - B. Since L is
a logic, k¢ opB. By assumption, Fpc tvogB. By 4.6, Fpc toguB. By 3.4,
Fpc aBtoguB. By 3.17, Fgpam @BtoguB = vB. Hence Fg-pan vB.

The following mapping will be used to translate theorems of K™DAIt1 into
theorems of K™TAIt2:

$p;i = Di
pl=1
9©(A—> B)=9¢A > ¢B
eOA =0A vV (A A -O-A).
Proposition 4.8 IfFg-pai1 A then Fx-taie ¢A.

Proof: Axiomatize K"DAIt1 as in 3.14 and use induction on the length of proofs. If
Fpc A then Fpc @A by 3.4, s0 Fx-taiz @ A; moreover Fg-tayy OA since K'TAIt2
admits all axiomatic O-introduction rules, so Fg-taiz @A by definition of ¢. To
show Fg-tanz ¢ ((O(A - B) A 0OA) — OB), consider the following sequence of
theorems of K™TAIt2:

¢)) (O(A — B) AOA) » OB Ax O-int
@3] (O(A — B) AOA) —» ¢OB 1,def ¢
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?3) (DA AO-B) -» O0-(A — B) Ax O-int
(D) ((=(A - B) A—O—(A — B)) AOA) » (=B A—=0O-B) 3

) ((=(A - B) A—=0O—-(A - B)) AOA) — OB 4,def ¢
6) (p0O(A - B) AOA) - ¢OB 2,5,def ¢
@) ¢0(A > B) > ((A—> B) > 0(A - B)) def ¢
®) ¢0(A - B) > (A - 0O(A - B)) 7

©) (O(A - B)AO-B) > 0O-4 Ax O-int
(10) (¢O(A — B) A (mA A —-0O—A)) - -O0—-B 8,9

¢8)) O(—A — B)vO(—A —» =B)vO-4A Al2
(12) (O(A - B) AO(—A — B)) —» OB Ax O-int
(13) (¢O(A - B) A (mA A—-0O-A)) - (@BvO(—A — —B)) 8§,11,12
(14 O(A— —B) > (A — —B) T

(15  (¢0O(A — B) A (A A—=O-A4)) - (@B V (=B A -0O-B)) 10,13,14
(16) (¢0(A —> B) A (—A A—-0O-A)) > ¢OB 15,def ¢
an (pO(A — B) A pOA) — ¢OB 6,16,def ¢

The proof that Fx-tan2 ¢(—OA = O—A) is simpler and not given here. The induction
step for MP is standard.

Proposition 4.9 Fg-ta A = pUA.

Proof: Byinductiononthe complexity of A. The only interesting case is the induction
step for O. Suppose that Fx-tare A = pvA. Now guOA = ¢(VA AOA) =
VA A (dOAV (A A-O-A)). Byhypothesis, Fx-taie 9vOA = (AAOAV (mAA
=[O-A))). Butpc (AA (DA V (A A—-O—-A))) — OA, and since Fg tayy OA —
A, }_K”I'AltZ 0A — (A A (DA \ (—'A A —||:|"‘A))). Hence |_K'TA112 0OA = (pUDA.

Proposition 4.10 If Fk-Taiz A then Fgpa VA.

Proof: Axiomatize K"TAIt2 as in 3.14 and use induction on the length of proofs. If
Fpc A then Fpc vA by 3.4, 80 Fx-pai1 VA; moreover Fg-par; OA since K'DAIt1
admits all axiomatic O-introduction rules, so Fg-pain vOA by definition of v.
v((@(A - B) AOA) - OB) = (WA — vB) AO(A — B)) A (VA ATA)) —
(vB AOB), which is a theorem of K'DAIt1 since (O(A — B) AOA) — OB is. For
the T axiom, v(OA — A) = (VAADOA) — vA, aPCtheorem. For an instance X of
axiom Alt2, vX = v(d(A — B) vO(A - —=B)vVOA) = (WA »> vB)AO(A —
B))V((vA - —~uB)AO(A — —B))Vv (vAADOA). Toprove Fg-pa1 vX, consider
the following theorems of K'DAIt1:

¢)) OB — O(A — B) Ax O-int
) (-~vAAOB) - (WA — vB) AO(A — B)) 1

3) (—~vAAOB) - vX 2,def v
(G (—vA AO-B) -» (VA - —-uB) AO(A — —B)) As2

6)) -0B — O-B Altl

6) (—vA A=0OB) - (VA - —~uB) AO(A — —B)) 45

©) (—~vA A-OB) - vX 6,def v
®) —-vA - vX 3,7

©) -0A - O0-A Altl
(10) O0-A - 0O(A — B) Ax O-int
an (VA AuB A—-0A) - (VA - vB) AO(A — B)) 9,10

(12) (WA AuB A—-D0OA) »> vX 11,def v



392 TIMOTHY WILLIAMSON

(13) (VA A —UB A-0OA) - (VA > —uB) AO(A — —B)) As11

(14) (VA A=UB A -0O4) > vX 13,def v
(15) (VA A=-DOA4) > vX 12,14
(16) (VA ADA) > vX Def v
(17)  vA —> vX 15,16
(18) uvX 8,17

The induction step for MP is standard.

Proposition 4.11 For a logic L, F5, A implies Fpc Ttv A for all A if and only if L
is a sublogic of K"TAIt2,

Proof: For the “only if,” suppose that -, A implies Fpc TvA forall A. If ¢ B
then by 4.7 I_K"DAltl vB; so by 4.8 }'K"I‘Ala (pUB; SO by 49 *_K“'I‘Altz B. Thus L is a
sublogic of K™TAlt2. For the “if,” what needs to be shown is that Fg-tay, A implies
l—pc tuA. Butif '_K‘TAltZ A then by 4.10 "'K"DAltl vA; so by 3.19 |—pC TUA.

Proposition 4.12 If L is the closure of a sublogic of K"TAIt2 under a set of O-
introduction rules, then L is closed under tv.

Proof: Axiomatize L with all theorems of the sublogic of K™TAIt2 as axioms and
MP and all O-introduction rules in the set as the rules of inference. We show by
induction on the length of proofs that - A implies ¢ TvA. By 4.11, it suffices
to show that if o is a substitution, ¥ I+ (/\;,0G;) — OH is a O-introduction
rule, and for all A € Y both - oA and (the induction hypothesis) g TtvoA,
then ¢ tvo((\;0G:) — OH), ie. Fg (A, 7v00G;) — tvlOoH, ie.
e (/\,<k(tuaG, A 0G;)) — (tvoH A o H). For the latter it is sufficient that
be (Ni0Gi) > oH and ¢ (\; TvoG;) — tuoH. By definition of a
O-introduction rule, ¥ Fpc (/\;<; Gi) — H, so for some members Fi, ..., Fp of
Y, Fec (Nicm Fi A Ni<k Gi) > H, s0 Fpc (N\icw0Fi A \i0Gi) — oH.
By assumption F, /\,<m oF;, s0 kg, (/\,<kaG,) — o H. Moreover, by 3.4 Fpc
(Ni<m TV Fi A \i Tv0G;) — tvo H. By assumption b5 A, Tvo F;, 50
e (/\,<k tvoG;) — tvoH.

Proposition 4.13 If L is the smallest classical (monotone, regular, normal) logic
containing a given sublogic of K"TAN2 then L is closed under tv.

Proof: From 4.12.

Proposition 4.14 If L is the closure of a sublogic of K"TAIt2 under a set of O-
introduction rules then L admits the rules \/; ,Op; It \/; pi, Vi< 00Opi I
Vi< (pi vVOpi), andOp =0q,0p=0q F p=gq.

Proof: From4.12by4.1,4.2 and 44.

Proposition 4.15  If L is the smallest classical (monotone, regular, normal) logic
containing a given sublogic of K"TAIt2 then L admits the rules \/; «Opi Ik Vi <k Di»

Vi< 00pi Ik V4 (pi VOp:), andOp =0q, 0p = 0q Ik p = q.
Proof: From 4.14.

The scope of 4.14 and 4.15 is quite wide; in practice, however, it is sometimes
easier to show directly that alogic is closed under T v than to show that it is the closure
of a sublogic of K"TAIt2 under a set of O-introduction rules (the normal logic KTG
is a case in point).

i<m
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5 Lemmon and Scott’s rule of disjunction The mappings t and rv allow one
to establish the admissibility of the special case of Lemmon and Scott’s rule of
disjunction where n = 1, the rule Op I+ p, in various systems. However, they do
not allow one to establish the rule for n > 1. If L is closed under = or Tv and
¢ OA v OB then ¢ A v B, but it does not follow that - A or ¢ B. A
different mapping is needed; it is defined below. A detailed investigation like that
of the previous sections will not be carried out. Rather, a few typical results will
be given. They concern subsystems of the provability logics KW and KT4Grz (=
KGrz), where W is Lob’s axiom O0p — p) — Op and Grz is Grzegorczyk’s
axiom O (p —» Op) — p) - p.
Let S be a theory. Define a mapping §5:

dspi = pi
dsLl =1
3s(A - B) =385A — ésB
SsOA=T if FgA
= 1 otherwise.

Proposition 5.1 Ifatheory S is closed under s then S admits the rule of disjunction.

Proof: Suppose ks \/;,, OA;. By assumption, s &5 \/,;, OA;, which is to say,
Fs V< 8s0A;. Unless -5 A; for some i < k, \/,; 8s04; = \/,; L, in which
case S is inconsistent and kg A; for any i < k.

Lob’sruleistheruleOp — p I p. Itis well known that KW can be axiomatized
by the addition of L6b’s rule to K.

Proposition 5.2 IfS is axiomatized by all PC theorems, MP, a set of O-introduction
rules and possibly Lob’s rule, then -5 A implies pc d5A.

Proof: By induction on the length of proofs in the axiomatization of S. If Fpc A
then Fpc 85A by 3.4. The case of MP is trivial. Let Y I+ (/\; ., 0OG;) — OH beaO-
introduction rule and o a substitution. We need to show that if g o A and Fpc 850 A
for all A € Y then Fpc 83((/\i<k DO’G,‘) - DUH), ie. Fpc (/\i<k és00G;) —
8s0o H. There are two cases. -

Case 1: g oG; for all i < k. By definition of a O-introduction rule, ¥ Fpc
(/\,.<k G;) »> H,s00Y bFpc (/\i<kUGi) — oH. Sincets ocAforall A €Y,
Fs (/\i<x 0 Gi) = o H, so by assumption s o H. Thus 8500 G; = 8s0c H = T
fori <%k, 50 Fpc (/\i<t 8s00G;) > s00 H.

Case 2: 5 oG; fails for some i < k. Then §s00G; = L for some i < k, so
Fpc (Ai<x 8s00Gi) — 8s00 H.

For Lob’s rule, we need to show that if S admits Lob’s rule, s OA — A and
Fpc 8s00A — 35A then Fpc dsA. Butthen g A, 50 6s00A = T,s0pc T — 854,
SO Fpc d5A.

Proposition 5.3  IfS is axiomatized by all PC theorems, MP, a set of O-introduction
rules and possibly Lob’s rule, then S admits the rule of disjunction.

Proof: From 5.1 and 5.2.
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Many variations can be played on the theme of 5.3. For example, we can add
some or all substitution instances of the 4 axiom Op — OO p to the axiomatization
of S, provided that S admits the rule RN. Alternatively, we could add some or all
substitution instances of the 4 axiom and L6b’s axiom, without insisting on RN, if
we revised the definition of &5 so that the condition for §s0A = T was g O A rather
than b5 A; this would yield the rule \/;_, Op; I+ {Op; : i < k} rather than Lemmon
and Scott’s rule of disjunction (neither rule need imply the other in the absence of
RN).

In order to cope with the T axiom in KT4Grz, we need a mapping that stands
to 85 as Tv stood to T in Section 3. The composite ésv would do, but an equivalent
variant of it is more concise:

8spi = pi
Ssl=1
3%(A - B) =383A > 8B
SO0A=65A if s A
=1 otherwise.
Proposition5.4 Ifatheory S is closed under 85 then S admits the rule of disjunction.
Proof: Asfor5.1.

Proposition 5.5 If S is axiomatized by all PC theorems, any set of instances of
axioms T, 4 and Grz, with MP and some O-introduction rules including RN, then
Fs A implies Fpc 5% A.

Proof: By induction on the length of proofs. The cases of PC theorems and MP are
as before. For T, §5(0A — A) is either A — 85A or L — 83A. For4,ifts A
then g OA by RN, so 65(0A — O0A) = 354 — 630A = §5A — 83A; if not
Fs Athen §3(0A — 0O0A) = L — §500A. For Grz, suppose that s 0(0(A —
0A) -» A) > A If g O(A — OA) — Athen g O@0(A — OA) — A) by
RN, so -5 A by MP, so -5 OA by RN again, so g A — [A; hence §3(0((A —
04) - A) - A) = §00(A —» 0OA) - A) - §5A = 804 - DA) —
A) > 81A = (BI0(A > DA) — 8%A) — StA = (B5(A — DA) — 8%A) —
85A = ((B3A — 830A) — 83A) — 85A = ((65A — 83A) — 83A) — 834, a
PC theorem. If not s O(A — OA) — A then §3(0(1O(A - OA) - A) > A) =
1 — 8%A. Finally, let Y I+ (A;.,0G;) — OH be a O-introduction rule and o
a substitution. We need to show that if s 0 A and pc 830 A for all A € Y then
Fpc (A\; < 6500 G;) — 800 H. There are two cases.

Casel: b5 oG;foralli <k. Asin52,FsoH. Thus §500G; = 850G, fori <k
and §300 H = 830 H, 50 (\; 8500 G;) — 8500 H = (/\; 850Gi) — 850 H.
As in the proof of 4.12, for some members A, ..., Ap of ¥, Fpc (\; ., 0 4i) —
((/\isk 0G;) - oH). By 3.4, Fpc (/\ism 8t Ai) — ((/\isk 8% G;) — %o H).
By induction hypothesis, Fpc A, 850 Ai, 0 Fpc (N\; £ 850Gi) — 80 H, as
required. B -

Case 2: +gs oG; fails for some i < k. The argument is as in 5.2.

Proposition 5.6 If S is axiomatized by all PC theorems, any set of instances of
axioms T, 4 and Grz, with MP and a set of O-introduction rules including RN, then
S provides the rule of disjunction.
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Proof: From 5.4 and 5.5.

As before, many variations are possible. For example, the use of 8§ can be
extended to systems with instances of the D axiom, McKinsey’s axiom M (Q¢p —
00O p) and Lemmon and Scott’s variant on it M™ (0 A\; ,(Op; — Op;), k > 1) as
axioms. The method subsumes many results in [9] on the admissibility of the rule of
disjunction, e.g. in K, KD, KT, KN, KL, KM*, K4, KD4, K4N (= KD4N,), K4L,
K4M (= K4M*°), KT4M and KT4M (= KT4M>). Other examples are KM, KDM
and KTM. The method also applies to the smallest classical (monotone, regular)
systems containing the axiom sets in question.

6 Otherrules Chellas and Segerberg [2] investigate what they call the Maclntosh
rule:
p—~>0plkOop — p.
S provides the MacIntosh rule just in case whenevertg A — OAthentg 0A — A.
Chellas and Segerberg prove semantically that KD and KT provide the rule, and
ask for syntactic proofs. These are supplied below. As before, they extend to some
nonnormal logics with D or T as an axiom schema.
The Maclntosh rule will be established as a corollary of the rule of margins:

p—0plk p,—p.

S provides the rule of margins just in case whenever -5 A — OA then either s A
or g —A. Some applications of the rule of margins in epistemic logic are proposed
in Williamson [15] and [16]; they give reason to investigate the rule in the context of
nonnormal logics. The systems discussed below are quite natural ones, considered
as epistemic logics for subjects of bounded rationality.

The rule of margins will in turn be established as a corollary of the alternative
rule of disjunction, which for a fixed n is the sequent:

pov \ 09 j@) =0} Ik {pi:1<i<n)

1<i<n

S provides the alternative rule of disjunction just in case whenever -5 Ao VIV A, v
...vOi®™A, forall j(1),..., j(n) > 0, then s A; for some i. The rule of margins
and the alternative rule of disjunction are investigated in the context of normal logics
in [15] and Williamson [17].

For the case of KD, what is needed is a mapping d5 ; that acts like &5 after going
through i nestings of O, so that Js is ds; the second subscript works as a delay
mechanism:

Ss,mDi = Pi
dsml=1
8S,m(A g B) = BS,mA —> 35’mB
dso0A=T ifksA
=1 otherwise
Ssm+10A = 0O8s mA

Proposition 6.1 Let S be axiomatized by all PC theorems and {jE_I" L:i>0}
with MP and a set of O-introduction rules. If -5 Ao Vv V4 0/ @ A; for some
JQ, ..., j(n) > #Ay, thent-s A; for somei(0 <i <n).
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Proof:
Claim (i): b5 85 =" L for all i, m.

Proof of Claim (i): i < m, §gm—0' L = 08yl = -O°L. If m < i,
8s,m—0¢ L = —0Om85,o00° ™1 L; but not - O'~™~1 L since it is easy to show that
if g A then the result of deleting all modal operators in A is a theorem of PC; hence
85,000 ™11 = 1,50 85,,~0' L = =0O™ L. In both cases, -5 85— L.

Claim (ii): For all A, if -5 A then -5 ds,A.

Proof of Claim (ii): By induction on m.

Basis: m = 0. Since d5 g is ds, an argument like that for 5.2 can be used, with
Claim (i) supplying the only new point.

Induction step: Suppose that (ii) holds for m. We conclude that it holds for
m + 1 by induction on the length of proofs in S. Given (i), the only interesting case
concerns a O-introduction rule Y I+ (A; ., 0G;) — OH used in the axiomatization
of S. It suffices to show that if o is a substitution, and 5 oB for all B € Y,
then ks 8s,m+1((/\; <x 00 G;) — Oo H). By induction hypothesis, s 8s,,0 B for
all B € Y. Let 0" be the substitution such that 6"p; = 85 ,0p;. By induction
on the complexity of B, if #B = 0 then 0'B = J5,,6 B. Now forall B € Y,
#B =0, 50 0'B = d5,,0B, s0 s "B by the above. Since S provides the rule,
Fs (N\;i<x00°Gi) - Oc"H. But#G; = #H = 0,500G; = 85,,0G;ando"H =
8s.mo H. Thus kg (Ni<k D85,m0Gi) — O8s,mo H. But 85, m+1((/\;< D0 Gi) —
Oo H) = (\;<x 08s,m0 G;) - Oésmo H.

Claim (iii): If #A < m then 5 ,A = A.
Proof of Claim (iii): By induction on the complexity of A.
Claim (iv): S admits the rule of disjunction. § is closed under ds by (ii) for m = 0;
the result follows by 5.1. y

Now suppose that ks Ao v /., 07D A; for some j(1), ..., j(n) > #Ao.
Letm = #Ao. Fs Ssm(Ao V Vi< @@ A)) by (). Now 85 mAo = Ao by
(iii); since j(i) > m by assumption, 8sm/®OA; = O™ 00/ O-m—14;. Thus
Fs AoV Vg O™8s,000/@-m=14;. There are two subcases.

Subcase 1: Fs O/®-m=14; for no i. Thus for all i, §5,00/P™1 = 1 so
Fs AoV Ve O™ L. But kg ~0" 1,50 b5 Ao,

Subcase 2: g 0J®-m—14; for some i. By repeated application of (iv), s A;.

Proposition 6.2 If S is the closure of {(—=0' L : i > 0} under some O-introduction
rules then S provides the alternative rule of disjunction.

Proof: Immediate from 6.1.

Proposition 6.3 If S is the closure of (= L : i > 0} under some O-introduction
rules including RM then S admits the rule of margins.
Proof: Supposets A — OA. ByRM, s 0'A — 0! Aforalli,so -5 A — O'A
and s ~AVv*Aforalli,so s —Aor ks Aby6.2.

Proposition 6.4 If S is the closure of {(—~F L : i > 0} under some O-introduction
rules including RM and RN then S admits the Maclntosh rule.
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Proof: Suppose s A — OA. By 6.3, either g A or g —A. If g A, then
s —0—A - A. If s —A, then g O-A by RN, s0 g -0—-A — A.

The next proposition shows that 6.3 and 6.4 would be false if the qualification
about RM were omitted.

Proposition 6.5 There is a set of O-introduction rules including RN under which
the closure of {—[0' L : i > 0} admits neither the rule of margins nor the MacIntosh
rule.

Proof: Let S be the closure of {=J‘ L : i > 0} under the O-introduction rules RN
and IF O—-T — O(L Vv p). The weakness of S makes the latter rule quite different
from IF OL — Op, since S is highly sensitive to syntactic differences between truth-
functionally equivalent wff. The proof will exploit this fact; the strategy is to show
that if S admits the MacIntoshrule then g ¢ T, but that the latter is impossible. By the
secondrule, g O-T — O(LvO=-T),sobs (LvO-T) — O(LvO=T). Suppose
that S provides the Maclntosh rule. Then ¢ —0O—~(L v O-T) —» (L v O=T). By
the proof of 6.1, S is closed under ds,, i.e. &g, s0 ks ds(—~O—(L v O-T) —
(LvO-T)),ie ks —6sO0-(LVvDO-T) > (LvVvEO-T). NowdsO-T = L,
for otherwise g —T, which is impossible since the result of deleting all occurrences
of O in a theorem of § is a theorem of PC; hence g §s0—(L v O—T). Thus
sO0~(L vO-T) # 1, 80 kg —~(L v O-T) by definition of ds; thus ¢ —O—T.
Define a mapping n by:

npi = pi
nl=1
n(A - B) =nA - B
nOA=1 ifA=0'L1 forsomei >0
=T otherwise.

Itis easy to show by induction on the length of proofs that if g A then Fpc nA. Thus
since kg —=0O-T, kg n—=0=T; but =T # O L (L is primitive), so nO0-T = T,
s0 n—~O-T = —T; thus g =T, which is impossible. Thus S does not provide the
Maclntosh rule. Since the argument from 6.3 to 6.4 used only RN, S does not provide
the rule of margins either.

The next proposition shows that 6.4 would be false if the qualification about RN
were omitted.

Proposition 6.6 The closure of {(—O L : i > 0} under RM does not provide the
MacIntosh rule.

Proof: Let the system be S. Put vOA = 1 for all A, and let v commute with the
other operators. It is easy to show by induction on the length of proofs in S that if
ks A then Fpc vA. Thus we cannot have ¢ -0O0-1 — 1;buttg 1 — OL.

Examples like those in 6.5 and 6.6 can be given to show the need for the qual-
ifications to the propositions below. There is room for further investigation in this
area. For example, the system S in the proof of 6.5 does not provide the rule RE,
since not g 0.1 = O-T. Is there a set of O-introduction rules including RN and
RE under which the closure of {—=F L : i > 0} does not provide both the rule of
margins and the Maclntosh rule? In any case, some results are still obtainable when
RM is weakened to RE.
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Proposition 6.7 If S is the closure of (=¥ L : i > 0} under some O-introduction
rules including RE then S admits the rule p = Op I+ p, —p.

Proof: Suppose that S admits RE and -5 A = OA. By RE, kg O'A = O+ A for
alli,soforalli s A=FAand s —A VFA,s0obs —Aorks Aby6.2.

Proposition 6.8 If S is the closure of (=0 L : i > 0} under some O-introduction
rules including RE and RN then S admits the rule p =Op I+ Op = p.

Proof: From 6.7 as 6.4 was proved from 6.3.

Proposition 6.9  The closure of {(~0.L} under some O-introduction rules including
RE is the closure of {—' L : i > 0} under those rules.

Proof: 1t suffices to show that if § admits RE and s —=O.1 and s = L then
s =01, Butif g =O0'L then g L = O 1L, soby RE g OL = O+ 1, so
s -0+ L if g —OL.

Proposition 6.10 If L is the closure of the D schema DA — (A under some O-
introduction rules including RM, then there is a set of O-introduction rules including
those rules under which L is the closure of {—CF L : i > 0}.

Proof: Tt suffices to show that {=00L : i > 0} is a consequence of D by RM
and that D is a consequence of {—~O’ L : i > 0} by RM and the O-introduction
rule IF (Ap A O—-p) — OL. The latter is trivial. For the former, suppose that S
admits RM and contains D. Since -5 L — -1, k¢ O1L — O-.L1 by RM; but
FsOL — —0O-L1 by D, so g —O.L. The result follows by 6.9.

Proposition 6.9 allows {—0* L : i > 0} to be replaced by {—~O.L} in propositions
6.3, 6.4, 6.6, 6.7 and 6.8 (recall that any theory providing RM also provides RE).
Similarly, proposition 6.10 allows {—F L : i > 0} to be replaced by the D schema (i.e.
the set of its instances) in propositions 6.3, and 6.4; it also gives modified versions
of 6.1 and 6.2 in which S is the closure of the D schema under some O-introduction
rules including RM.

We now turn to the T schema. Mappings 85 ,, will be used that stand to the &s,
mappings as J§ stands to s (thus 5 , = J5):

85, mPi = Di
Ssml=1
85 m(A — B) =63 ,A —> 85, B
8500A=35,A if b5 A
=1 otherwise
85 mp10A = 85 11 A ADSS A
Proposition 6.11 Let S be axiomatized by all PC theorems and the T schema with

MP and a set of O-introduction rules including RE. If b-s Ao Vv \/ ;< 0/ O A; for
some j(1), ..., j(n) > #Ao, thent-s A; for somei (0 <i <n).

Proof: 'The strategy is a variant of that used for 6.1.

Claim (i): If s A then b5 85 ,A. Since 83 , = J5, the argument is as for 5.5 (where
RN was not used at the relevant points).
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Claim (ii): For all m, if -5 A then k-5 45, A. We show this by induction on the
length of proofs, assuming (i).

Basis. PC theorems are unproblematic. For the T axiom, 45 ,,,,(0A — A) =
(85 my1 A ANOSS , A) > 85 i A

Induction step. MP is unproblematic. It suffices to show that if a O-introduction
rule Y I+ (A; ., OG;) — OH is used in the axiomatization of S, o is a substitution,
and both -5 o' B and kg 35 mo B forall B € Y, then ks &5 m+1((/\,<k OoGi) —
Oo H),ie. Fs (\;< 5 m+10Gt B8 ,0G)) — (35, chrHADa 0 H). Thus
it suffices to prove kg (/\,<k 83, mi10Gi) = 8% m+1<7H and g (/\Kk 063 ,,0G:)
— 0O8% s,m0 H. The former can be proved by an argument like one in the proof of
4.12 (with 85 m+1 in place of Tv), the latter by one as in the proof of 6.1.

Claim (iii): For all m,if #A < mthentgs A = 8§,mA. Proof by induction on the
complexity of A. The only interesting case is the induction step for 0. Suppose that
#0OA < m + 1, s0 #A < m. By the induction hypothesis, -5 A = 85, A. By
RE, s OA = 065 ,,A. By T, ks OA — A; again by the induction hypothesm,
s A=65,,,,4,s0-s 0A > &5, A Thus s DA = (35, ;A A OS5, A), ie.
FsOA = 8S,m+1DA

Now suppose that s Ao V /<, D@ A; for some j(1), ..., j (1) > #A,.
Letm = #Ao. Thus b5 35 , (Ao V Vi<i<k 0/® A;) by (i) and (ii). Now Fg A =
8% Ao by (iii). Since j(i) > m, it is also easy to prove that -5 8} ,0/®4; —
Oms% (O0/Om=14;. Thus ks Ao Vv Vi O™8% 00/ O-m=14;, The rest is as
for 6 1 with T in place of (iv).

Proposition 6.12 If S is the closure of the T schema under some O-introduction
rules including RE then S admits the alternative rule of disjunction.

Proof: Immediate from 6.11.

Proposition 6.13 If S is the closure of the T schema under some O-introduction
rules including RE then S admits the rule of margins.

Proof: Suppose that - A — OA. By T, -5 OA — A, so 5 A = OA. The proof
then proceeds as for proposition 6.7, by appeal to 6.12 rather than to 6.2.

Proposition 6.14 IfS is the closure of T under some O-introduction rules including
RE and RN then S admits the MacIntosh rule.

Proof: As for 6.4, by appeal to 6.13 rather than to 6.3.

If one considers the set of all O-introduction rules, propositions 6.4 and 6.14 say
that KD and KT respectively provide the MacIntosh rule. These results were proved
syntactically, as requested by Chellas and Segerberg.
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