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The Decidability of the ∀∗∃ Class
and the Axiom of Foundation

Dorella Bellè and Franco Parlamento

Abstract We show that the Axiom of Foundation, as well as the Antifoun-
dation Axiom AFA, plays a crucial role in determining the decidability of the
following problem. Given a first-order theory T over the language =, ∈, and a
sentence F of the form ∀x1, . . . , xn∃yF M with F M quantifier-free in the same
language, are there models of T in which F is true? Furthermore we show that
the Extensionality Axiom is quite irrelevant in that respect.

1 Introduction

Let L∈ be the first-order language with equality and a binary relation symbol ∈. We
investigate the following decision problem: given a theory T and a ∀∗∃ sentence in
L∈, namely, a sentence F of the form ∀x1, . . . , ∀xn∃y F M where F M is quantifier
free, determine whether there is a model of T in which F is true. We will restrict
our attention to theories in which ∈ retains at least some of its ordinary meaning of
membership relation. More precisely we will consider only theories which extend
the theory NW whose axioms in skolemized form over L∈ are the nullset axiom
(N)∀x(x 6∈ ∅) and the with axiom (W )∀x∀y∀z(x ∈ w(y, z) ↔ x ∈ y ∨ x = z).

Omodeo et al. [5] establishes the completeness with respect to ∃∗∀-sentences of
the theory NWLER whose axioms are, besides N and W , the axiom L for the removal
of an element from a set, which in skolemized form reads as ∀x∀y∀z(z ∈ x l y ↔

z ∈ x ∧ z 6= y); the Extensionality Axiom E , ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → x = y);
and the Regularity Axiom R, ∀x(x 6= ∅ → ∃y ∈ x∀z ∈ y(z 6∈ x)). Actually from
the proof in [5], it is easy to recognize that, thanks to the presence of axiom R, such
a completeness result also holds if axiom L is omitted. Thus NWER is complete with
respect to ∃∗∀ sentences, hence also with respect to ∀∗∃ sentences, and our decision
problem is solvable whenever T is an extension of NWER.
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On the other hand, Bellè and Parlamento [3] establishes the undecidability of
the satisfiability with respect to NW of sentences of the form ∀x F where F is a
conjunction of equalities with one inequality in the language with the constant ∅

and the binary function symbol w. In NWE such sentences are equivalent to ∀∗∃

sentences of L∈ obtained by eliminating the function symbols ∅ and w in favor of
their definitions provided by N and W ; however, as shown in [3], on the grounds
of results in Bellè and Parlamento [2], their satisfiability with respect to NWE is
decidable. Thus [5] and [3] leave it open whether the satisfiability of ∀∗∃ sentences
with respect to NW as well as NWE is a decidable property.

We will show that, while in both cases that problem remains undecidable, it is
turned into a decidable one as soon as axiom R or else the Antifoundation Axiom
called AFA in Aczel [1] is added.

2 NW + Regularity Axiom

Proposition 2.1 The problem of establishing whether a ∀∗∃-sentence is satisfiable
with respect to NWR is decidable.

Proof Every ∀∗∃-sentence F admits a normal form which can be obtained as fol-
lows. By a (finite) graph with equality we mean a structure ({1, . . . , n}, ∈G , =G),
where =G is an equivalence relation congruent with respect to the binary relation
∈G . Let Ĝ be the formula

∧

1≤i, j≤n

(yi ∈G
i, j y j ∧ yi =G

i, j y j)

where ∈G
i, j is ∈ if there is an edge from the node i to the node j in G, ∈G

i, j

is 6∈ otherwise; =G
i, j is = if i =G j , 6= otherwise.

Given a ∀∗∃ sentence F , we first transform it into the disjunctive normal form,

∀y1, . . . , yn
∨

j

(H j(y1, . . . , yn) ∧ ∃x E j (y1 . . . , yn, x)),

where

1. the H js and the E j s are conjunction of literals,
2. each of the E j s contains all the atoms of the form x 6= yi ,
3. the variable x occurs in all the atoms of the E j s and in no atoms of the Hi ,

and then into the following sentence F ′:
∧

i

∀y1, . . . , yn(Ĝi(y1, . . . , yn) →
∨

j :H j ⊆Gi

∃x E j (y1, . . . , yn, x))

where {Gi} is the collection of the n-node graphs with equality and H ⊆ G if every
literal in H occurs in G.

It is easy to check that F is equivalent to F ′; furthermore we may assume that the
satisfiability of F with respect to NWR is equivalent to the satisfiability with respect
to NWR of every conjunct in the above normal form. In fact, as we are going to show,
if a single conjunct of the form

F0 = ∀y1, . . . , ∀yn(Ĝ(y1, . . . , yn) →
∨

j

∃x E j (y1, . . . , yn, x)),
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is satisfiable with respect to NWR then it is satisfiable in the collection of the heredi-
tarily finite sets HF. Clearly F0 is equivalent to the formula obtained by identifying
the variables in the equivalence classes induced on {y1, . . . , yn} by =G . Therefore,
without loss of generality, we can assume the equivalence relation =G is the identity
relation on {1, . . . , n}.

It is immediate that if ∈G is cyclic, Ĝ is not satisfiable in HF. In this case F0 is
trivially true in HF. Otherwise, since every acyclic graph G can be embedded in HF,
there exist n distinct sets that satisfy Ĝ (Appendix A.1). Thus assuming s1, . . . , sn
are hereditarily finite sets such that Ĝ(s1, . . . , sn) holds, we have to find an s that
satisfies one of the E j s.

If there exists an E j (y1, . . . , yn, x) that does not contain complementary
literals and whose positive literals are all of the form yi ∈ xi , then s =

{si : yi ∈ x is a literal in E j } ∪ {d}, where d = {s1, . . . , sn} is added in or-
der to make s different from each of the si s, is a hereditarily finite set such that
E j (s1, . . . , sn, s) holds.

Otherwise a literal of the form x ∈ x or x ∈ yi occurs in each of the E j s. Since
there is no set in HF that satisfies x ∈ x , the witness for the existential variable, if
there exists one, must be among the predecessors of the si s. Let τ be a graph which
extends G and is minimal with respect to the following conditions:

1. τ is acyclic;
2. τ is extensional over G, that is, for i 6= j , i and j have different sets of

∈G-predecessors.

By results in Parlamento et al. [6], τ has at most 2n − 1 nodes; thus the set T of such
τ s is finite. If the collection of the E j s is such that for every τ in T there exists an E j
such that τ |H (∃x E j (y1, . . . , yn, x))[yi/ i ], we are guaranteed that at least one of
the disjuncts can be satisfied. For consider a minimal differentiating set {d1, . . . , dm}

for s1, . . . , sn , that is, a subset of the set of the predecessors of s1, . . . , sn minimal
with respect to the following property: if si 6= s j then there exists a dk , 1 ≤ k ≤ m
such that dk ∈ si if and only if dk 6∈ s j . Since {s1, . . . , sn, d1, . . . , dm} with the
membership relation is isomorphic to a τ in T , the required condition ensures the
existence of an E j such that E j [s1, . . . , sn, dk] for some 1 ≤ k ≤ m.

We have thus proved that F0 is satisfiable if one of the following holds:

1. ∈G is cyclic,
2. all the positive literals of one of the E j s are of the form yi ∈ x ,
3. for every τ in T there exists an E j such that τ |H ∃x E j(y1, . . . , yn, x)[yi/ i ].

In order to show that these conditions are also necessary assume F0 is satisfiable in
a model M of NWR. We prove that if (1) and (2) do not hold then (3) holds. Since
(1) does not hold, T is not empty. Let τ be a graph in T . Since τ is acyclic and
extensional over G, there is a map ∗ from τ onto HF which is an isomorphism on
τ ∗ and faithful on G, that is, all the members of the sets in the image of G are in the
image of τ (see Appendix A.1).

Let s1, . . . , sn, d1, . . . , dm with m ≤ n − 1 be the images of the nodes in τ . Since
HF is isomorphically embedded as an ∈-initial part in every model of NW and in
particular in M , we can consider s1, . . . , sn, d1, . . . , dm as elements in M . Since F0
and G[s1, . . . , sn] are true in M there must be a disjunct E j and an element s ∈ M
such that M |H E j [s1, . . . , sn, s]. Since (2) does not hold and s 6∈M s, due to the fact
that M |H R, s must be among the predecessors of s1, . . . , sn . Therefore, since ∗ is
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faithful on G, s = dk for some 1 ≤ k ≤ m. Finally, since ∗ is an isomorphism on
M|{s1,...,sn,d1,...,dm} we conclude that τ |H E j [1, . . . , n, k] for some 1 ≤ k ≤ m and
(3) holds.

Thus the effective construction of T and the verification of conditions (1), (2), and
(3) above, provide a correct and complete decision test for the satisfiability in HF of
a conjunct in F . By applying it to every such conjunct we obtain a decision test for
the satisfiability with respect to NWR of F . �

The following proposition follows as an immediate byproduct of the previous proof.

Proposition 2.2

1. A ∀∗∃ sentence is satisfiable with respect to NWR if and only if it is true in
(HF, ∈).

2. A ∀∗∃ sentence is satisfiable with respect to NWR if and only if it is satisfiable
with respect to NWER so that the same decision test provided in the proof of
Proposition 2.1 applies to the theory NWER as well.

3. NWER is a conservative extension of NWR as far as ∃∗∀ sentences are con-
cerned.

Notation 2.3 The conservativeness result stated in the previous proposition does
not hold for ∀∗∃ sentences, since axiom E is (logically) equivalent to a ∀∀∃ sentence
and, as it is easy to see, there are nonextensional models of NWR.

3 NW + Antifoundation Axiom

Let us recall that the antifoundation axiom named AFA in [1] states that every graph
(G, R) has a unique decoration, namely, a function f whose domain is G and such
that ∀a ∈ G, f (a) = { f (b) : bRa}. The uniqueness of the decoration whose
existence is stated in AFA, entails a strong form of extensionality that can be analyzed
using the notion of bisimulation, which we define as follows. A binary relation R is
a bisimulation if

a Rb ⇒ ∀x ∈ a(x ∈ b ∨ ∃y ∈ b(x Ry)) ∧ ∀y ∈ b(y ∈ a ∨ ∃x ∈ a(x Ry)).

Furthermore we say that R is proper if it contains at least one pair (a, b) with a 6= b.
This is a slight variant of the definition of bisimulation given in [1]. Whereas the

two are equivalent in ZF-Regularity Axiom (ZF−), only the present one is appropri-
ate when working with weak theories like NW (see Appendix A.2).

We formulate the strong extensionality axiom SE as follows:

(SE) there are no proper weak bisimulations;

and AFA′ as the conjuntion of SE and

(AFA1) every graph has at least one decoration.

Note that in NW , SE entails E ; in fact if a and b are different and have the same
predecessors then {(a, b)}, which exists in NW , is a proper weak bisimulation.

Proposition 3.1 The problem of establishing whether a ∀∗∃ sentence is satisfiable
with respect to NW + AFA1 is decidable.

Proof The role played by HF in the proof of Proposition 2.1 is now played by the
structure V f of the hereditarily finite hypersets (Appendix A.3); in particular, we will
show that if a formula is satisfiable then it is satisfiable in V f . As in the proof of the
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corresponding result for NW + R we may restrict our attention to sentences of the
form

F0 = ∀y1, . . . , ∀yn(Ĝ(y1, . . . , yn) → (
∨

j

∃x E j(y1, . . . , yn, x)),

where G is a graph on n nodes, x occurs in every atom of the conjunctions of literals
E j and each of the E j s contains all the atoms x 6= y j .

Let T ′ be the finite collection of the graphs τ which extend G and are minimal
with respect to the property of being strongly extensional over G, that is, there is
no proper bisimulation R on G such that if (i, j) ∈ R then i and j have the same
predecessors in τ \ G.

We claim that F0 is satisfiable with respect to NW + AFA1 if and only if one of
the following conditions holds:

(2′) one of the E j does not contain atoms of the form x ∈ yi ;
(3′) for every τ in T ′ there exists an E j such that τ |H(∃x E j(y1, . . . , yn, x))[yi/ i ].

(⇐) Let s1, . . . , sn be distinct hereditarily finite hypersets such that
Ĝ[s1, . . . , sn] is true in V f . If (2′) holds we have that the following hyperset s
satisfies E j (s1, . . . , sn, x):

s =

{

{si : yi ∈ x occurs in E j } ∪ {d} if x ∈ xoccurs in E j ,

{si : yi ∈ x occurs in E j } ∪ {d} ∪ {s} otherwise,

where d is a hyperset different from s1, . . . , sn and from the members of any of
the si s. A d that satisfies that condition exists since there is an infinite number of
hypersets and every (finite) hyperset has only a finite number of predecessors.

In case (3′) holds we proceed as follows. Let {d1, . . . , dm} be a minimal dif-
ferentiating set for s1, . . . , sn , that is, a subset of the set of the predecessors of
s1, . . . , sn minimal with respect to the following property: if B is a proper bisim-
ulation on {s1, . . . , sn} and (si , s j ) ∈ B then there exists a dk , 1 ≤ k ≤ m
such that dk ∈ si if and only if dk 6∈ s j . It is straightforward to see that
({s1, . . . , sn, d1, . . . , dm}, ∈) is isomorphic to a τ in T . Hence, from the existence of
an E j such that τ |H (∃x E j (y1, . . . , yn, x))[yi/ i ] it follows that E j (s1, . . . , sn, dk)

is true in V f for some 1 ≤ k ≤ m.

(⇒) Assume F0 is satisfiable in a model M of NW + AFA1. We prove that if
(2′) does not hold then (3′) holds. Let τ be a graph in T ′ (T ′ is nonempty). Since τ

is strongly extensional over G there is a map ∗ from τ onto V f which is an isomor-
phism on τ ∗ and it is faithful on G (see Appendix A.4). Let s1, . . . , sn, d1, . . . , dm
be the images of the nodes in τ . Since V f is isomorphically embedded as an
∈-initial part in every model of NW + AFA1 and in particular in M , we can
consider s1, . . . , sn, d1, . . . , dm as elements in M . Since F0 and G[s1, . . . , sn]

are true in M there must be a disjunct E j and an element s ∈ M such that
M |H E j [s1, . . . , sn, s]. Since (2′) does not hold and ∗ is faithful on G, s must
be among d1, . . . , dm . Finally, since ∗ is an isomorphism on M|{s1,...,sn,d1,...,dk } we
conclude that τ |H E j [1, . . . , n, k] and (3′) holds. �

The following proposition is an immediate byproduct of the previous proof.

Proposition 3.2

1. A ∀∗∃ sentence is satisfiable with respect to NW + AFA1 if and only if it is
true in (V f , ∈F ).
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2. A ∀∗∃ sentence is satisfiable with respect to NW + AFA1 if and only if it is
satisfiable with respect to NW + AFA′, thus the same decision test provided
in the proof of Proposition 3.1 applies to the theory NWE + AFA′.

3. NW+AFA′ is a conservative extension of NW+AFA1 as far as ∃∗∀ sentences
are concerned.

4 Undecidability of NW, NW + E, and NW + SE

Proposition 4.1 The problem of establishing whether a ∀∃ ∧ ∀∗ sentence is satisfi-
able with respect to NW, NW + E, or NW + SE is undecidable.

Proof The unsolvability of the ∀∃ ∧ ∀∗ class with respect to the theory NW and its
extensions with constraints on equality is obtained by reducing to it the satisfability
problem for the wider class ∀∃∀∗(0, 1) in the pure logic without equality known to
be undecidable (Lewis [4]).

To every ∀∃∀∗ formula F whose matrix F M contains only a binary predicate
symbol P, we can effectively associate a ∀∃ ∧ ∀∗ formula G, whose matrix contains
a binary predicate symbol ∈, such that F is satisfiable if and only if G is satisfiable
with respect to any one of NW, NW + E , and NW + SE. Actually we will prove that
if F is satisfiable then G is satisfiable in a model of NW + SE—that is the strongest
of our theories—and, on the other hand, that the satisfiability of F follows from the
satisfiability of G in the pure logic.

The basic idea is to associate to a given Herbrand model HF , for the skolem form
of F , over a constant c and a monadic function symbol f , a structure for {=, ∈}

which satisfies a formula in ∀∃ ∧ ∀∗, obtained from F by substituting atomic for-
mulas of F with atomic formulas, and then to show that such a structure can be
characterized through the satisfiability of a ∀∃ formula in ∈ and expanded into a
model of NW + SE.

To each element in the domain of HF we make correspond a 7-tuple of elements
of the domain of the structure to be built.

Let A be a countable set {ai} and

R0 = {(ai, ai ) : i ∈ N \ {0}} ∪ {(ai , ai+1) : i ∈ N}∪

{(a7n+1, a7n+7) : i ∈ N} ∪ {(a7n+7, a7n+1) : i ∈ N}.

This structure permits us to distinguish sequences that arise from a single element in
HF from the others, using the following schema and interpreting the membership ∈

as R0:

E(y1, . . . , y7) =
∧

1≤i≤7

yi ∈ yi
∧

1≤i≤6

(yi ∈ yi+1 ∧ yi+1 6∈ yi) ∧ y1 ∈ y7 ∧ y7 ∈ y1.

To the binary relation induced on HF by the application of the function symbol f ,
we make correspond the relation defined by the following schema:

S(y1, . . . , y14) = E(y1, . . . , y7) ∧ E(y8, . . . , y14) ∧ y7 ∈ y8 ∧ y8 6∈ y7.

We then define
R = R0 ∪ {(a7m+1, a7n+4) : HF |H P( f m(c), f n(c))}∪

{(a7n+4, a7m+1) : HF |H P( f m(c), f n(c))},

as we intend to let

P ′(y1, . . . , y7, z1, . . . , z7) =def y1 ∈ z4



Decidability of the ∀∗∃ Class 47

be the correlate of P(y, z). Despite the definition of P ′, the presence in R of both
the pairs (a7m+1, a7n+4) and (a7m+4, a7n+1) is necessary because the addiction of
the pair (a7m+1, a7n+4) alone might give rise to a 7-tuple of elements in the domain
which satisfy the schema E(y1, . . . , y7) without being the correspondent of any ele-
ment in HF .

Assuming that F has the form ∀x1∃x2∀xk+2 F M(x1, . . . , xk+2), it is easy to check
that the structure (A, R) satisfies the following universal sentence:

G1 = ∀x1, x2(E(x1) ∧ E(x2) ∧ S(x1, x2)) →

F M {Pxi x j/P ′(x i , x j ) : 1 ≤ i, j ≤ k + 2}

where x i denote the 7-tuple of variables x7i+1, . . . , x7i+7.
Furthermore (A, R) is a strongly extensional structure since, as can be proved

by induction on n, an cannot be bisimulated with any other element of A (Appen-
dix A.5). (A, R) can be expanded into a model of NW + SE as follows: close
(A, R) under the addition of singletons (i.e., the operation w (for with) defined as
w(a, b) = a ∪ {b}) starting with R, thought of as the membership relation on A, and
then take the strongly extensional quotient of the structure obtained in this way, that
is, the quotient with respect to the maximal bisimulation [1]. Let M = (DM , R) be
the resulting structure. Clearly M |H NW + SE and furthermore R restricted to the
elements in DM corresponding to those in A is (isomorphic to) R. It is easy to check
that outside such elements R forms no cycles. Note that, having defined the elements
of A as self-loops, we are able to distinguish the elements corresponding to those in
A from the other sets.

It follows that M |H G1 and we can conclude that the satisfiability of F implies
the satisfiability of G1 in a model of NW + SE.

However, the satisfiability of G1 does not entail the satisfiability of F since, given
a model M of NW + SE + G1, the structure (A, R0) needed to reconstruct a model
for F may be lacking in M . Yet, as we will see, in order to guarantee its existence as
a substructure of any model of NW it suffices to require that such a model satisfies
the following ∀∃ sentence:

G0 = ∀y∃x(x ∈ x ∧ (y ∈ y → (y ∈ x ∧ x 6∈ y)))∧

∀y1, . . . , ∀y13((
∧

1≤i≤12(yi ∈ yi ∧ yi ∈ yi+1 ∧ yi+1 6∈ yi))

→ 51≤i≤7(yi ∈ yi+6 ∧ yi+6 ∈ yi)).

where 5 denotes the exclusive or. Note that G0 is clearly satisfied in (A, R0) and
also in the model M built above, since no cycle is present in M outside A. This
ensures that if we let the ∀∃ ∧ ∀∗ sentence G associated with F be G = G0 ∧ G1, G
is satisfiable with respect to NW + SE whenever F is satisfiable.

To show that the converse also holds, assume G is satisfiable, let HG be a Her-
brand model over a constant cg and a monadic function symbol g of the functional
form of G0. Then there exists 0 ≤ i ≤ 6 such that HG|{g j (c): j≥i} is (isomorphic to)
(A, R′) where R0 ⊆ R′.

We define a Herbrand model HF of F by letting

P( f m(c), f n(c)) iff HG |H gi+7m+1(c) ∈ gi+7n+4(c) = P ′(g
m
, g

n
),

where with g
j

we denote the sequence (gi+7 j+1(c), . . . gi+7 j+7(c)).
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Let F M (x1/ f n1(c), . . . , xk+2/ f nk+2 (c)) where n2 = n1 + 1 be an instance of F .
We have that HG |H G1(x1/g

n1
, . . . , xk+2/g

nk+2
) and

HG |H (E(x1) ∧ E(x2) ∧ S(x1, x2))[x1/g
n1

, . . . , xk+2/g
nk+2

];

hence HG |H F M{Pxi x j/P ′(g
ni

, g
n j

) : 1 ≤ i, j ≤ k + 2}.

Because of our definition of HF we have that HF |H F M{Pxi x j/P f ni (c) f n j (c)},
that is, HF |H F M(x1/ f n1(c), . . . , xk+2/ f nk+2(c)), that is, the instance considered.
We have proved that HF satisfies every instance of the functional form of F and thus
we can conclude that HF is a model of F . �

The decidability of the satisfiability of ∀∗∃∃ with respect to the theories NWR,
NWER, NW + AFA1, and their extensions is still open. For the time being, we
remark that, contrary to the case of ∀∗∃ sentences, to establish the decidability of
NWER with respect to ∀∗∃∃ one cannot rely on its completeness. In fact it follows
from Parlamento and Policriti [7, 8] that there are ∀∀∃∃ sentences which are unde-
cidable in NWER since they hold in HF but not in models which satisfy the Infinity
Axiom.

Appendix A

For the reader’s convenience we have included in this appendix some of the omitted
details.

A.1 Every acyclic (finite) graph can be embedded in HF Let G = ({1, . . . , n}, R)

be an acyclic graph.
Since R is well founded on G, we can define by induction on R a map ∗ by letting

i∗ = { j∗ : R0 j i} ∪ {n + i}.

Note that the sets i∗ are distinct from the natural numbers considered since the i ∗s
have at most n predecessors while the predecessors of the natural numbers greater
than n + 1 are at least n + 1. It is then immediate to verify that ∗ is a map from G
onto (HF, ∈) which is an isomorphism on G∗.

When we consider an extension τ = ({1, . . . , n+m}, R′) of G obtained by adding
some R′-predecessors of the nodes in G, in general we will require that ∗ in (HF, ∈)

satisfies a stronger property that constrains the predecessor of the sets corresponding
to the nodes in G: for all s ∈ i ∗, 1 ≤ i ≤ n exists j ∈ τ such that s = j ∗. We will
say that a map of this kind is faithful on G.

τ can be embedded in HF through a map ∗ which is an isomorphism on τ ∗ and
faithful on G if and only if τ is acyclic and extensional on G.

If this is the case, we can define by induction on R′ a map ∗ : τ → HF by letting

i∗ =

{

{e∗ : R′ j i} for 1 ≤ i ≤ n
{e∗ : R′ j i} ∪ {{i, n + m}} for n + 1 ≤ i ≤ m.

That ∗ is faithful on G follows immediately from the definition.
Since rank({i, n + m}) = n + m, it is immediate that rank(i ∗) > n + m for

n + 1 ≤ i ≤ n + m.
Furthermore, if in the R′-transitive closure of j there is no element in τ \ G, then

rank( j∗) ≤ n − 1 < n + m; if, on the other hand, the R′-transitive closure of j
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contains some element in {n + 1, . . . , n + m} then rank( j ∗) > n + m. Thus, for
every i ∈ τ , rank(i∗) 6= n + m and so i∗ 6= {i, n + m} for all n + 1 ≤ i ≤ n + m.

From this it follows very easily that ∗ is a 1-1 map and in turn that it is an isomor-
phism on τ ∗ since

for all i, j ∈ τ, i R′ j iff i∗ ∈ j∗. (1)

Observe that in the extreme case in which τ = G, namely, if we consider an acyclic
and extensional graph G, ∗ is simply a Mostowski collapsing.

A.2 The antifoundation axiom AFA′ The Axiom of Regularity together with the
Axiom of Extensionality readily entails the nonexistence of bisimulations relating
different sets. In particular no such bisimulations can exist on HF. On the other
hand, in ZF-Axiom of Regularity, the Axiom of Extensionality immediately follows
from the nonexistence of proper bisimulations. However, that is not the case in NW
as is shown by the following model.

Let M be the closure under w of HF ∪ {υ1, υ2} where υ1, υ2 are distinct objects
not belonging to HF; let ∈′ be the expansion of ∈ over M obtained by letting e ∈′ υ1
and e ∈′ υ2 for all e ∈ HF ∪ {υ1, υ2} and let ∈M be the least expansion of ∈′ such
that for all a, b, c in M , b ∈M awb and if c ∈M a then c ∈M awb.

Furthermore, let ∅
M be ∅ ∈ HF and

wM(a, b) =

{

a ∪ {b} if a, b ∈ HF,

awb otherwise.

M=(M, ∈M , ∅
M , wM ) is a model of NW.

υ1 and υ2, as well as all those elements of M which are obtained by starting
with υ1 or υ2 and applying wM , have all the elements in HF among their ∈M-
predecessors. Furthermore they are the only elements of M which have infinitely
many ∈M-predecessors. Since υ1 and υ2 have the same ∈M-predecessors and they
are distinct, the Axiom of Extensionality fails in M. Nevertheless,

M |H ∀ab ¬∃R (R is a bisimulation ∧ (a, b) ∈ R ∧ a 6= b).

For, suppose a, b, R ∈ M are such that M |H ∀ab ¬∃R (R is a bisimulation ∧

(a, b) ∈ R ∧ a 6= b). If a, b ∈ HF then from R we could easily obtain a bisim-
ulation on (HF, ∈) relating a and b but, as we noticed, no such bisimulation on HF
can exist. On the other hand, if a ∈ M \ HF then either υ1 or υ2, say υ1, is in
the ∈M-transitive closure of a. To every ∈M-predecessor of υ1 must correspond an
M-ordered pair (x, y)M such that (x, y)M ∈M R, and to different ∈M-predecessors
of υ1 correspond different M-ordered pairs ∈M-related to R. Since υ1 has infinitely
many ∈M-predecessors, every element in HF is ∈M-related to R; in particular, there
are elements ∈M-related to R which are not M-ordered pairs, so the assumption that
M |H R is a bisimulation is contradicted.

A.3 Hereditarily finite hypersets Let us recall from [1] that an accessible pointed
graph (apg) is a graph with a distinguished node called its point from which any
(other) node can be reached through a finite path.

Let V0 f be the class of all the finite apgs. For a, b ∈ V0 f , let a ∈0 f b hold if and
only if a is a subgraph of b generated by one of the predecessors in b of the point of
b. If for a, b ∈ V0 f we let a ∼V f 0 b mean that there is a bisimulation R on V0 f such
that (a, b) ∈ R, then ∼V f 0 is an equivalence relation.
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We let V f be the quotient of V0 f with respect to ∼V f 0 and ∈ f be the relation
induced over V f by ∈0 f . (V f , ∈ f ) is strongly extensional in the sense that no proper
bisimulation with respect to ∈ f exists on V f , and it is called the strongly extensional
quotient of V f . (V f , ∈ f ) is a model of NW—actually it is a model of ZF deprived
of the Foundation and the Infinity Axioms.

For every finite graph G = (G, R0) there is a unique system map from G onto V f ,
namely, a function πG : G → V f such that

a R0b ⇒ πG(a) ∈ f πG(b),

c ∈ f πG(b) ⇒ ∃a ∈ G a R0b ∧ c = πG(a).

πG is a strongly extensional quotient of G in the sense that πG induces on G an
equivalence relation which is the maximum bisimulation on G.

(V f , ∈ f ) is isomorphically embedded, as an ∈-initial part, into every model of
NW + AFA′.

If M = (M, ∈M , ∅
M , wM ) is a model of NW , for a ∈ M we let Ma denote the

∈M-transitive closure of a, that is,

Ma = {b ∈ M : there is a finite ∈M-chain a0 ∈M a1 ∈M , . . . , ∈M an,

such that a0 = b and an = a},

and let
h f (M) = {a ∈ M : Ma is finite}.

A simple adaptation of the results in [1] leads to the following.

Proposition A.1 If M |H NW+AFA′ then (h f (M), ∈M ) is isomorphic to (V f , ∈ f ).

Proof If a ∈ h f (M) then Ma ∈ V0 f and the map that assigns Ma to a ∈ M
is clearly a system map which, composed with the strongly extensional quotient
π f : V0 f → V f , yields a system map π : h f (M) → V f . h f (M) is strongly
extensional, hence π is injective, as it follows by Theorem 2.19 in [1].

If a ∈ V f then V f a is an apg and, since it is finite and M |H NW , there exists
in M the corresponding graph g. Furthermore since M |H AFA′ there exists in
M a decoration dM of g from which we obtain an M-decoration d of V f a. Then
π ◦ d : V f a → V f is a system map. As V f is strongly extensional π ◦ d must be
the identity map on V f a since the identity is a system map on V f a and there is only
one system map on V f a ([1], Theorem 2.19). In particular, a = π(da). Thus π is
surjective as well as injective; hence it is an isomorphism. �

A.4 Every (finite) graph can be embedded in V f Let G = ({1, . . . , n}, R) be a
graph and ∗ a map from G to V f that satisfies the equations

i∗ = { j∗ : R ji} ∪ {n + i}.

A map that satisfies this equation is the restriction to G of the decoration of the graph
obtained extending G by adding in a suitable way the pictures of the natural numbers
considered.

Note that the sets i∗ are distinct from the natural numbers n + 1, . . . , 2n since
the i∗s have at most n predecessors while the predecessors of the natural numbers
greater than n + 1 are at least n + 1. It is then immediate to verify that ∗ is a map
from G onto (V f , ∈) which is an isomorphism on G∗.
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As in the case of HF, when we consider an extension τ = ({1, . . . , n + m}, R ′)

of G obtained by adding some R′-predecessors of the nodes in G, in general we will
require that ∗ is faithful on G.

τ can be embedded in V f through a map ∗ which is iso on τ ∗ and faithful (ac-
cording to the definition given in Appendix A.1 on G if and only if τ is strongly
extensional on G.

Let H be the Herbrand universe over c0, . . . , cn+m, w where c0, . . . , cn+m are
constant symbols and ∈H is defined as follows.

Let

∈′ = {(ci , c j ) : 1 ≤ i, j ≤ n + m(i, j) ∈ R} ∪

{( j, ci) : n + 1 ≤ i ≤ n + m, 2n + 1 + i ≤ j ≤ 3n + 2 + i}

and ∈H be the closure over H of ∈′ with respect to the axiom W , namely, the least
binary relation over H such that

1. ∈′⊆∈H ,
2. b ∈H awb,
3. if c ∈H a then c ∈H awb.

It is straightforward to check that the map i → ci is an isomorphism from τ to
(H, ∈H )|{c0,...,cn+m}.

Let π be the strongly extensional quotient of (H, ∈H ) in (V f , ∈ f ), namely, the
unique system map from (H, ∈H ) onto (V f , ∈ f ). Since π is a system map, for every
ci , 1 ≤ i ≤ n+m|π(ci)| ≤ |{c j : i R′ j}|. Furthermore, since there is no bisimulation
relating two distinct natural numbers, for i, j ∈ N if i 6= j then π(i) 6= π( j) and
|π(i)| = i . It follows that

(∗) π is 1 − 1 on {cn+1, . . . , cn+m} and

(∗∗) π(c j ) 6= π(ch) for n + 1 ≤ j ≤ n + m and 1 ≤ h ≤ n.

From (∗) and (∗∗) it follows that if π(ch) = π(c`), 1 ≤ h, ` ≤ n then h and ` have
the same R′-predecessors in {n + 1, . . . , n + m}. Since ∈H is strongly extensional
over c1, . . . , cn it follows that ch = c` and then that h and ` are the same element of
τ .

We have thus proved that π is 1-1 over {c0, . . . , cn+m}. It is then immediate to
verify that ∗ : τ → π({c1, . . . , cn + m}), i → π(ci) is an isomorphism faithful on
G.

Observe that in the extreme case in which τ = G, namely, if we consider a
strongly extensional graph G, ∗ is simply a strongly extensional quotient.

A.5 Strong extensionality of (A, R)

Lemma A.2 Let A be a countable set {ai} and

R0 = {(ai , ai) : i ∈ N \ {0}} ∪

{(ai , ai+1) : i ∈ N} ∪

{(a7n+1, a7n+7) : i ∈ N} ∪

{(a7n+7, a7n+1) : i ∈ N}.
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For any subset M of N2, the structure (A, R), where

R = R0 ∪ {(a7m+1, a7n+4) : (m, n) ∈ M} ∪

{(a7n+4, a7m+1) : (m, n) ∈ M},

is strongly extensional.

Proof By induction on n we show that, for all n, an cannot be bisimulated with any
other element of A, that is, given an a ∈ A distinct from an there does not exist any
bisimulation B on (A, R) such that (a, an) ∈ B. a0 cannot be bisimulated with any
other element of A since they all have some R0 predecessor while a0 has none.

Assuming an cannot be bisimulated with any other element of A let us show that
this is the case for an+1 as well. Since an Ran+1 and an cannot be bisimulated with
any other element of A, an+1 could possibly be bisimulated only with elements of A
having an as an R-predecessor.

If n + 1 = 7k + 1 for some k, the only elements, besides an+1, having an as an
R-predecessor are an and a7(k−1)+1 none of which can be bisimulated with an+1 by
induction hypothesis.

If n + 1 = 7k + 3, n + 1 = 7k + 4, n + 1 = 7k + 6, or n + 1 = 7k + 7 for some
k the only element, besides an+1, having an as an R-predecessor is an itself and the
induction hypothesis rules out the possibility that an+1 could be bisimulated with an.

If n+1 = 7k +2, the only elements, besides an+1, having an as an R-predecessor
are an, an+7, and possibly an element of the form a7h+4 for some h. an+1 cannot
be bisimulated with an+7 since an+6 is an R-predecessor of an+7 which cannot be
bisimulated with any of the R-predecessors of an+1, neither with an+1 since an is not
an R-predecessor of an+6 nor with an by induction hypothesis. The same argument
shows that an+1 cannot be bisimulated with a7h+4 either.

If n+1 = 7k +2, the only elements, besides an+1, having an as an R-predecessor
are an and possibly an element of the form a7h+1 for some h. The last possibility is
ruled out since a7(h−1)+7 is an R-predecessor of a7h+1 which cannot be bisimulated
with any of the R-predecessors of an+1, neither with an+1 since an is not an R-
predecessor of a7(h−1)+7 nor with an by induction hypothesis. �

Remark A.3 Were we concerned only with the construction of an extensional but
not necessarily strongly extensional model, the use of 5-tuple instead of 7-tuple in the
proof of Proposition 4.1 would be equally appropriate. Furthermore, if the require-
ment of the extensionality were to be dropped, even the use of 4-tuple of elements
would be sufficient.
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