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Decidability Results for Metric
and Layered Temporal Logics
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Abstract  We study the decidability problem for metric and layered temporal
logics. The logics we consider are suitable to model time granularity in vari-
ous contexts, and they allow one to build granular temporal models by refer-
ring to the “natural scale” in any component of the model and by properly con-
straining the interactions between differently-grained components. A monadic
second-order language combining operators such as temporal contextualization
and projection, together with the usual displacement operator of metric tem-
poral logics, is considered, and the theory of finitely-layered metric temporal
structures is shown to be decidable.

1 Introduction  Temporal logic has been used widely and successfully to model
and reason about temporal knowledge in several fields of computer science, including
software engineering, database, and artificial intelligence. Almost all of the proposed
logics of time assumeftat temporal model, constraining temporal information to be
specified at a single level of granularity. As noticed in van BentliE#h peing able

to provide and relate temporal representations at different “grain levels” of the same
reality is an important research theme for temporal logic and a major requirement for
many applications.

With regard tdogical specifications, there exists a large class of real-time sys-
tems whose components have dynamic behavior regulated by very different time con-
stants (granular systems). A good specification language must enable one to specify
and verify the components of a granular system and their interactions in a simple and
intuitively clear way, see e.g., Fiadeiro and Maiba(gh [With regard totemporal
databases, when information is collected from different sources which are not under
the same control, differently-grained time-stamps are associated with different data.
To guarantee consistency either the data must be converted into a uniform represen-
tation that is independent of time-granularity, or temporal operations must be gener-
alized to cope with data associated with different temporal domains. In both cases,
a precise semantics for time granularity is needed; see e.g., Wang [8jalWith
regard toproblem solving, intelligent temporal reasoning systems should be able to
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switch among time granularities in order to provide either quick coarse-grain answers
or slower fine-grain ones, depending on the requirements for responsiveness and qual-
ity of the answer, see e.g., Euzerl@} [Finally, shifts in the temporal perspective
occur very often imatural language communication, and thus the ability to support

and relate a variety of temporal models, at different grain sizes, is a relevant feature
for the task of natural language understanding. For all of these application domains
(and many others), the flatness of the temporal model underlying most logics of time
proposed in the literature is a major drawback.

In [E] and [13], Montanari et al. proposed a metric and layered temporal logic
(MLTL for short) for specifying granular real-time systems. Metric temporal logics,
e.g., KoymandI1], and Montanari and de Rijk&f], extend propositional logic with
aparameterized operator of relative temporal realization. MLTL can be viewed as the
combination of a number of differently-grained metric temporal logics. It replaces
the flat temporal domain of metric temporal logics with a temporal universe consist-
ing of a set of differently-grained temporal domains together with relations between
instants belonging to different domains. To qualify formulas with respect to the tem-
poral universe, MLTL is equipped with an operatocoifitextualization that identifies
the domains a given formula refers to. Within each temporal domain, it is then pos-
sible to talk about truth and falsehood of formulas at different time instants by means
of adisplacement operator. Finally, @rojection operator can be used to constrain the
relationships between formulas associated with differently-grained domains.

The combined use of these operators allows one to represent a granular system
by properly connecting a set of differently-grained formulas. In the simplest case,
this might be just a boolean combination of formulas referring to different tempo-
ral domains. In more complex cases, the projection operator is used to deal with
nested quantifications of differently-grained temporal displacements (e.g., to spec-
ify the condition: “there exist some days during which the plant remains inactive
for some hours”), or to specify the composition of differently-grained temporal dis-
placements (e.g., to specify the condition: “in twenty seconds, five minutes will have
passed from the occurrence of the fault”). Moreover, MLTL can be provided with
consistency rulesthat, given the truth value of a formula with respect to the domains
it explicitly refers to, constrain its truth value with respect to other domains (a detailed
discussion can be found iE]).

This paper focuses on the decidability of the validity and satisfiability problems
for MLTL. In [[I], Alur and Henzinger showed that, under suitable assumptions about
the temporal domain and the associated operations, the validity and satisfiability prob-
lems for real-time logics are decidable. These problems can be reduced, through cod-
ing into the theonys1S, to the decidable problem of determining whether or not the
language recognized by a givefighi automaton is empty (Thom&g).1 Our goal
is to generalize this result to temporal logics combining metric and layered features.

When faced with a combined logic, there are at least two possible approaches
to the problem of establishing its logical properties such as decidability, soundness,
and completeness. The first identifies what constraints the combination method must
satisfy to guarantee the transfer of logical properties from the component logics to the
combined one; examples can be found in Finger and Galgjanfl Montanari and
de Rijke [[4). Otherwise, instead of lifting logical properties from the components to
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the combined logic, one can try to obtain a reduction to one of components and solve
the problem for that one component. In this paper we follow the latter strategy by
embedding finitely-layered metric temporal structures into their finest metric compo-
nent, and then reducing the decidability of the theory of the simplest component to a
theory that is known to be decidable, nam&hg; cf. Ershov et al. inl§] and Rabin

7.

The paper is organized as follows. In Sect@nwe introduce the theory of
finitely-layered metric temporal structures. In Secf@mve show how to reduce the
decidability problem for this theory to the decidability problem$46. Conclusions
provide an assessment of the work and outline the current topics of research.

2 The theory of finitely-layered metric temporal structures Let LEM be the
second-order language for the theory of finitely-layered metric temporal structures
Tum. Itincludes individual variables, v, . . . and uninterpreted unary predicate sym-
bols, the constant symbo) the unary function symbol$:1, . .., +.1 (local succes-
sors), the unary (interpreted) predicate symtdls . ., i (contextualizations), the
binary relational symbols:y, ..., <, (local orderings),} (upward projection) and
| (downward projection)=; 2, =13, ..., =n2, =n.3, - . - (local congruences), and
quantification of individual variables and (uninterpreted) unary predicate symbols.
The first-order fragment QLEM is denoted by, . Werestrict ourselves to formu-
las that contain no free individual variables. Setting up the structures in wifigh
can be interpreted is our next task; it takes quite a bit of work.

We define &finitely-layered metric temporal structure as a tuple

T Tl Tn 2 2 2. .=
(T’T 9-"7Tna§19-"7§n’T7\1/521,27:1,37"'7

-

En,Z, En,3, L) +117 LRI +nl7 0)

T is the carrier set of the structure, and it is calledttmaporal universe. Then com-
ponents‘li1 ., T" are sets of temporal vectors corresponding to the interpretation of
then unary predlcate$1 , T, respectively. The temporal univergeis equal to
U, Ti. The set ofdomalns is totally ordered by inclusidit> T2>--- > T", and

thusT = T1. Letus call> thegranularity relation. For each pair of domaifié, T,
we say that the granularlty dT' is coarser (resp. finer) than the granularltdeﬁf
and only if T' > T (resp.T! ) . Formally, a granularity relation ol ..., TN
is a total ordering> such thafl > Ti,fori<i <n—1andi < j <n. Each vector
% such thafl is the finest domain to which it belongs is calletiree instant of T A
finemembership relatione’ is defined such thate’ Tiifand onlyifx e T' A X ¢ TI+1.
Sincen is finite, for eachx ‘17“, there exists one and only ofé such thatk €’ T'.
Moreover, for each pair of consecutive doma‘fﬁsf‘*l, with 1 <i < n, we assume
that there exists a natural numhg ; , 1, called theconversion factor betweeri and
Ti+1 that expresses the ratio between the granularities of time instants finely belong-
ing to the two domainshpmogeneity assumption).

Furthermoreél, ..., <p are binary relations of local temporal ordering over
T .., TN, respectwelyT and¢ are binary relations of upward and downward pro-
jectlon over‘T =i, =i .3, ... are binary relations of local time congruence oWer
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forl<i<n; F11,..., Fnlare unary successor functions of temporal displacement
overTl, ..., T", respectively; an@ isthe zero vector (see below).

To specify the components of finitely-layered metric temporal structures, we in-
troduce a representation for temporal vectors. Feril< n, we represent the set
{(X| X' T'} as the generalized cartesian prodNck Hk_l[o cfk k1), Where each
pair [0, ¢f} ) denotes aninterval ofnatural numbers. The representation of the|set

% e T'}is thus S|mpI)UJ i N x ]_[k 1 %[0, ¢f k+1)- Furthermore, fok=1,...,n,

afunction []y : T > NU {LL} can be defined such that, for eadle’ T'), [X]x is equal
to thek-th component oK if k < i, and to_L otherwise.

The above representation of temporal vectors can be interpreted as follows.
Time instants finely belonging fo! take value over (atemporal domain isomorphic
to) N. Let us call their valuesbsolute temporal positions. The representation of
an instantx finely belonging toT!, with 1 < i < n, consists of two different parts:
the specification of its (absolute) positiox]{ with respect tor \ T2, where\ de-
notes set-theoretic difference, plus the specification-efl nested displacements
[X]2, ..., [X]; with respect toT 2\ T3, ..., T'\ T'*1, respectively.

Example2.1 Consider a temporal universe consisting of hours, minutes, and sec-

onds. An hour is specified by its absolute value, e.g. hour 4011, a minute is specified
by the hour it belongs to plus a displacement with respect to the first minute of such
an hour, e.g., the sixteenth minute of hour 4011 is represented by th@@ail 15),

a cond is specified by the hour it belongs to plus a displacement with respect to the
first second of the minute it belongs to, which in its turn is specified in the same way

with respect to the hour, e.g., the third second of the sixteenth minute of hour 4011 is
represented by the tripl¢4011, 15, 2).

We now define local orderings, congruences, successors, and upward and downward
projections. For=1, ..., n, the local orderings; between any pair of vectors y e
T' is defined in terms of ordering of their components.

Definition 2.2 (Local ordering) For each domaif', alocal ordering <; (lexico-
graphical ordering) is defined such that, for each pair of veatoys: T',

X<y iff Vi< j<i—[X];=[Y]j)V
VIjA<j<iavk@A<k< j— [Xk=[Yl AKX < [V])-

A notion of local equality=; of two instantsx, y € Ti can be derived immediately.
The relations of upward projectiop C T x T and downward projectiof) <
T x T are defined in terms of the notions of prefix and extension, respectively.
Definition 2.3 (Prefix and extension) For allX €’ T, a(nonempty)prefix of X is a
time mstantye TI, with 1 < j <1, such thatK];< = [ylk, fork=1,..., j. Forall

xe' T, anextensuonofmsatlmemstanye T, withi < j <n,suchthatK]x =[]k,
fork=1,...,

Definition 2.4 (Upward and downward projections)For each pair of vector§ y €
T, 1 (X, y) holds if and only ify is a prefix ofX, whereas| (X, ¥) holds if and only if
y is an extension oX.
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Proposition 2.5  For any temporal domain T and any pair of vectors X, y €’ T', if
X isnot equal to Y, then there exists no vector Z such that | (X, Z) and | (Y, Z).

Local congruence relations; », = 3, . . . between pairs of vector§ y belonging to
the same domaif’ are defined in terms of (standard) congruence relations between
theiri-th components;, v;.

Definition 2.6 (Local congruence) For each domaiit’, each pair of vectorg, y €
T', and each natural numbeyalocal congruencerelation =; 4 is defined as follows:

X=iay iff [X]i =a [V]i-

The apparently stronger notion of local congruesg¢g betweerx, y €’ T' that holds
whenever all the components are congruent modulan be defined as follows:

X={g ¥ iff Yil<j<i—>X=49),

whereVj(1 < j <i — X=j 4Y) is shorthand foR=1 gy A - - - A X=i Y. Finally, for
each'T'i, aunary successor functiqui 1 isdefined.

Definition 2.7 (Local successor)Let'T'i be atemporal domain, akd= (xq, ..., Xj),
with j > 1, be an element off'. The application off-1 to X is defined as follows:

K3l — (Xg, .., X +1,...,%)) if i=1vx+1<cfiq,

T - %i01,0, .., %)) Fisal  otherwise,
where 0 andt+1 are the constant 0 and the successor function of natural numbers,
respectively. Notice that even if local successors are specified within a given domain,
they can actually propagate to different domains.

In order to define amnterpretation for the languageL?,,, it is useful to introduce

an alternative (pseudo) vectorial representation according to whidhttheompo-

nent of a vector denotes an absolute position with respe:t':it to‘f’i“. Such a rep-
resentation can be automatically derived from the above given one. For each do-
mainT' and each vectak €’ T', let us transfornk into a (pseudo)vectdy such that

[V]1 = [X]1, and, for eachj = 2,...,i, [VIj = (... ([X]1 - ¢f12 + [X]2) - ¢f 23+
[XI3)...) - of j_oj + [X]j = [V]j-1 + [X]}.

Example2.8 Assume the temporal universe of Examlél The representation

of the third second of the sixteenth minute of hour 4011 becomes (4011, 240675,
14440502).

According to this alternative representation, for eaehl, . .., n,the sefX | X €’ fi}
becomes a suitable subset of the prodiist - - - x N (i times). This representation is
redundant, because each componé]']tc[)f avectory €’ Ti ,with 1 < j <, codifies
complete information about all the components of lower index. It is indeed easy to
prove that ] ;_1 is equal to the (unique) natural number such t§at]; - cf;_1; <

[Vlj < (I¥]j=1+ 1) - ¢f;_1;- Moreover, once{]_1 has been determined, it can be
used to determinq?]j_z, and so on, until the first component is reached. Thus, the
finest component of a (pseudo)vector implicitly provides complete information about
all the other components. Even ifitis less elegant than the original representation, we
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will use this (pseudo) vectorial representation to make the definition of the semantic
interpretation of£?,-formulas simpler.

Let ¢ be a formula of£?2,,, with free predicate symbols;, .. ., p,. Unary and
binary relational symbols, and constants and function symbols, are mapped onto the
corresponding components of the temporal structure. Thus, an interpretdtion
is given bym- n setsp{,l, ..oy Phn € N, where, for each seplﬁ’i, k andi indicate

the indices of the predicate: and of the set of time instants f, respectively. For
k=1,...,mp ..., Pfn_1 Pi,we define the interpretatiopy of p, with respect

tothe setd 1\ T2,..., T"1\ T", T" by stipulating thapy holds on a vectoX if and
only if for somei, p, holds for thei-th component ok (i.e., [X]; € plﬁ,i)'

Example2.9 Assume the temporal universe of the previous examples. Moreover,
let X be the vector of Examp[&.g px be a predicate symbol czf,EM, and I be an
interpretation forLEM. According to the given definitiop; holds aiXif, for instance,
240675¢ pl{’z.

2.1 Supporting basic MLTL functionalities Now that we have defined our lan-
guage for talking about layered and metric temporal structures, we show how it can
express the three key features of metric and layered temporal logics defined in Sec-
tion 1. contextualization, and granular and metric displacement, thus showing the
expressiveness of the languag$,, and its usefulness as a framework for studying
metric and layered temporal logics. We will also introduce the notions of (global)
temporal ordering and congruence.

Contextualization restricts the range of possible values of a given vector variable
% by constraining (the value ofto belong to a given domaifi'. In L34, contextu-
alization is expressed by means of thenary predicates! (%), ..., T®(%). Contex-
tualization is formally defined as follows. For the sake of readability, we will use a
set notatiorx € T* (resp.x ¢ T*) instead ofT* (%) (resp.—T* (%)).

Definition 2.10 (Contextualization) For each vector variablé and each unary
predicateT*, with 1 < i < n, x € T* holds if and only if (the value of} belongs
to the domainr'.

The total ordering of temporal domains defined by granularity allows us to easily
prove that the formula:

Vi(iefi—>Vj(1§j§i—>§<eTj)),

is valid in all finitely-layered metric temporal structures (as usual, the consequent of

the outermost implication stands fat &€ T* A --- A X € T*"). Contextualization also

allows us to prove the following proposition.

Proposition 2.11  For each pair of vector variablesz, j,x =3 <> 3i(: € T* Aj €

T AX=;7)), wheretheright-hand sideformulastandsfor “ (x €’ T' Ay € TP AX =

IV VERETAYFE T Ax=7)" and“x €' T & (xe T Ax ¢ T

It follows that two vectordinely belonging to different domains are distinct.
Contextualization can occur in different types of formulas. As an example, it

is involved in formulas stating that there exists a time instant belonging to a given
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domainT! at which a formulap is true, and in formulas stating thatis true at each
instant of a given domaim' (restricted quantification). These formulas take the forms
Ix(x €' T A p(x)) andVx(x € T+ — ¢(X)), respectively.

Definition 2.12 (Granular ordering and equivalence)We define a partial ordering
> over7 based on the “grain-size” of vectoré > y if and only if X is coarser than
y) asfollows:

> Jiff 31, jE e T Aye T AL <),
where the right-hand side formula stands f@ &' T' A5 €/ T2) v (R €/ TL A § €
T3) V... v (% € T 1 A§ € T").” Moreover, an equivalence relatienoverZ, such
thatX ~ y if and only if X is as coarse as y, can be defined as follows:

X~ yiff Ji(xe TPAye T,

where the right-hand side formula stands fat €’ T' Ay €' TH v --- Vv (Z € T2 A
ye' ™).
Granular displacement is directly supported by upward and downward projections.

As in the case of contextualizations, we adopt a set notgtion (x) (resp.y ¢ 1(x))
instead oft (x, y) (resp.—1(x, y)).

Definition 2.13 (Granular displacement) For each pair of vector variablésy, y €
1 (x) holds if and only if (the value of} belongs to thepward projection of (the value
of) x, whereas; € | (x) holds if and only if (the value of} belongs to thelownward
projection of (the value of)x.

Granular displacements allow one to express conditions on the belonging of an instant
to the projection of another one. For instance, the constrainftimaist belong to the
downward projection ok is expressed by the atomic formutas | (x). Moreover,
existential and universal quantifications under projection can be used to state that
there existg belonging to the downward projection ¥6uch that a formula is true

aty, as well as to state thap is true at eacly belonging to the downward projection

of X (restricted quantification). These formulas take the foBfh§ € | (%) A (7))
andvy(y € | (x) — ¢(y)), respectively.

The relationst and | can be specialized to restrict upward and downward
projections to a specific domain. For each domiin the restriction of upward
(resp. downward) projection td! denoted byt € 7" x Ti (resp.4; < 7 x T)
is defined as follows (according to the set notation):

ye@®iff jet@ Aye T (resp.ye ;& iff yelEAye ).

Proposition 214 ForeachXe 7 and 1 <j=n, there exists at most one vector
y €' TI such that ¥ € 11(X). More preC|ser, if X' T and j <1, then there exists
one and only one vector y €’ T} such that § € 11 (X), whereas, if X €’ T' and i < j,
then there are no vectors y € T such that y € 11(X). Moreover, for each e T
andl< j<n,ifxe Tiand i < |, then there exist cf; j vectors y €’ Ti such that
y e lj(X), where ¢fj = 1and, for j > i, cfjj = cfijf1- ... cfj_q ) Whereasif
X&' T and j < i, then there exist no vectors y €’ T) such that y € | ;(%).
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The following example gives a natural explanation of the proposed structure for time
granularity in terms of specialized upward and downward projections.

Example2.15 Consider atemporal universe consisting of hours, minutes, and sec-
onds, and lek be the second represented by the tripfr11 15, 2) The prefix ofx

with respect toT1 T (X), is4011, its prefix with respect t'd52 T (X), is (4011 15),

the minimal extension of*(X) on T2, ¢2(T (X)), is (4011, 0), the minimal exten-

sion of12(X) on T3, | 3(12(X)), is (4011, 15, 0). It isimmediate to see that 15 and 2
can actually be interpreted as nested displacements.

Specializations of upward and downward projections also allow us to define a relation

of temporal orderlng < over the temporal universg based on the local orderings
2., ZhoverTY TN

Definition 2.16 (Temporal ordering and equivalence) A temporal ordering over
T is binary relation< such that, for each pair of vector variables,

X<Fiff 3, jRETATETI AR TVES;T)),

where the right-hand side formula is the usual shorthand. On the basjstotim-
mediate to define a binary reIaticYﬂof temporal equival ence such that, for each pair

ﬁﬁﬁﬁﬁ

Remark 2.17 The relation of temporal equivalence induces as many classes of
equivalent vectorsc{usters) as the vectors belonging to the coarsest domain are. In
particular, it puts in the same class a vector and all its extensions. As a consequence, it
may happen that vectors that are locally ordered become members of the same class,
thatis, vectors that are temporally distinguishable with respect to the temporal domain
they finely belong to become temporally indistinguishable with respect to coarser do-
mains.

Just like local ordering relations, local congruence relations can be lifted to the tem-
poral universer .

Definition 2.18 (Temporal congruence) For each natural numbet, a temporal
congruence overT is binary relation=4 such that, for each pair of vector variables
X,V,

X2 7iff 31, JE € TPAFE T AERZ 4T VESaT)).
Finally, let us consider the operationroétric displacement. It can be defined interms
of then local functionst:1, ..., +,1 as follows.

Definition 2.19 (Metric displacement) A temporal successor functiopl is de-
fined over? such that, for eack, whose value belongs @,

y:;c—T—l iff Eli(;(EITiAiféii:f"i 1),

where the formula on the right-hand side is the usual shorthand.
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It is clear that, as long as we are interested in supporting the basic functionalities of
MLTL, a proper fragment oﬂEM is sufficient, including (uninterpreted) unary predi-
cate symbols, the constant symbethe unary function symbel1 (metric displace-
ment), the unary predicate symbafs, . . ., = (contextualizations), the binary rela-
tional symbols< (temporal ordering)t and/ (granular displacements¥,, =, . ..
(temporal congruences), and quantification over individual variables and (uninter-
preted) unary predicate symbols.

In conclusion, we point out that the theory of finitely-layered metric temporal
structures does not impose any constraint on the relationships among the truth values
of free predicate symbols with respect to the different domains. As an example, it may
happen that a given predicatés true with respect to some (all) instants'fdf\ Ti+l
and false with respect to all instants Bf \ T/, with1<i <n, 1< j <n, and
i < j. This situation is described by the following example.

Example2.20  Consider a temporal universe consisting of three temporal domains
T1, T2, andT3. Assumecf,, = 6 andcf, 3 = 3. The proposition: “at the current

instant an even number of atoml'E30 instants have passed” always hold§ i\ T2,
whereas it is true at every odd instanfﬁﬁ\ T3 A proposition that it is always true
in T1\ T2 and always false if2\ T2 can now easily be built: “at the current and
next instant an even number of atomic instants have passed.”

However, projection relations can be used to codify specditsistency rules that,
given the truth value of a formula with respect to a certain domain, allow us to con-
strain its truth value with respect to other domains. For lack of space we won't give
the actual encoding here.

3 Decidability of finitely-layered metric temporal structures  To prove the decid-
ability of the theory of finitely-layered metric temporal structufes, we will show

how to define a computable functianwhich translates each sentengef the lan-
guageLEM for T_w into a sentence(y) of L2 so thatr(¢) is valid (satisfiable) i51S

if and only if ¢ is valid (satisfiable) inf_ . The translation is actually performed in
two steps: we first embed finitely-layered metric temporal structures into (flat) metric
temporal structures; then, we reduce metric temporal structugkStetructures.

The Ianguageﬁ,%,I for the theory of (flat) metric temporal structurég is the
second-order language with uninterpreted unary predicate symbols, the constant sym-
bol 0, the unary function symbe} 1, the binary relational symbots and=,, =3, . . .,
and quantification over individual variables and unary predicate symbols. As before,
Ly denotes the first-order fragment 6f,. We interpret£Z, over the natural num-
bersN, with < being interpreted as the usual linear order, and only consider formulas
without free individual variables. Let be a formula ofZZ, with free predicate sym-
bolsps, ...,pn. As inthe case of£?, an interpretation! for ¢ is given byn setsp{,

.., P&, € N. In such a caséy plays the role of the discrete temporal domain over
which the predicatepy, ..., p, take value.

In Section3.1] we briefly summarize existing decidability results for real-time
logics. In Sectiof.2lwe translate each senteng@f £2,, into a sentence; (¢) of
L,%,l; then, in Sectio.3lwve translate each sentengef L,%,I into a sentence, () of
L?. The functionr is obtained composing; and,.
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3.1 Decidability resultsfor real-timelogics Real-time logics extend linear propo-
sitional temporal logic (PTL) with an explicit notion of time. PTL is provided with a
notion of state (of computation), and it is interpreted over infinite sequences of (com-
putation) states. It is widely used to specify and verify reactive and concurrent pro-
grams/systems, e.g. Manna and PndEl [ Qualitative timing constraints express-

ing safety and liveness properties of programs/systems can indeed be easily coded in
PTL. As an example, a response property of the form “gaslate is followed by a
g-state” is specified in PTL by the formuta(p — ¢q).

Let £2 be the second-order language with uninterpreted unary predicate sym-
bols, the binary relational symbel, and quantification over individual variables and
unary predicate symbols, anddenote the first-order fragment af. The response
property can be expressedinby the formula ¥i(p(i) — 3j(i < jAq()))).” PTL
corresponds to a proper subsetqfbut it has the same expressive powerofsee
Gabbay et al[IQ]). £? can be interpreted over the natural numBéysvith < inter-
preted as the usual linear order. kdbe a formula of£? with free predicate symbols
P1, ---, Pm, @nd without free individual variables. An interpretatidfor ¢ is given
by msetsp!, ..., pi, € N. Alternatively, I can be described as an infinite sequence
of statess = o9, 01, ..., With o; € {py, ..., pm} fori > 0, such thatp; € o; if and
only if i € pf. The set of models ap, i.e., the set of interpretations that satigfyis
denoted byM (¢). PTL-formulas can be translated intb-formulas without chang-
ing their set of models.L? is essentially the language underlying the second-order
theory of one success@lS, because< is definable in terms of the successor and
hence inessential. iBhi connecte®1S with finite automata over infinite wordg],
and used this relationship to prove the decidabilit@d® [B]l

PTL cannot be used to specify real-time systems, because it cannot express quan-
titative timing constraints, such as deadlines and timing delays. To overcome this
shortcoming PTL has been extended with explicit time references (Timed®B)IL [

The resulting real-time logics have explicit notions of state and time, and are inter-
preted over infinite sequencestohed states.

Real-time logics are characterized by three main ‘parameters’: the temporal
domain, the primitive operations defined over it, and the time function that maps
each state into its time. Different choices of the parameter values make the valid-
ity/satisfiability problems for real-time logics decidable or undecidable. Most real-
time logics proposed in the literature cannot be decided, thus failing in establish-
ing the proper balancing between expressiveness and decidability. Some of them re-
cover decidability sacrificing completeness. [} [Alur and Henzinger showed that
the choice of takingN with linear order and congruence relations as the time the-
ory and constraining the time function to be (at least weakly) monotonic makes real-
time logics decidable. Formally, Ieﬂ% be the temporal extension @f (and L1 be
its first-order fragment). Besides the state s@%,has a time sort, over which the
constant 0, the successor functigft, the order relatiore, and the congruence rela-
tions=,, =3, ... are defined. Moreover, a mappirfgirom states to times is given.
Each interpretatior for ¢ € £2 can be viewed as a pais, p) (sequence of timed
states), whereo is an infinite sequence of states gmek f. The set of models ap
is denoted byMs (). L3-formulas can be used to express properties of sequences of
timed states. As an example, a bounded response time property of the fornp*each
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state is followed by @-state within 1 time unit” can be expressed by fiieformula
“Vi(p(i) > 3ji < jAq(ph A f()) < fd)+21)", wheref(j) < f(@i)+ 1holds if
and only if eitherf (j) = f(i) or f(j) = f@i)+ 1.

Aformulag € L2 is satisfiable (valid) if and only if is satisfied by at least one
(all) sequence of timed states. The second-order theory of timed state sequences is the
set of all valid£2-formulas. Timed PTL is an elementary, yet expressively complete,
fragment of such a theory. Alur and Henzinger proved that this theory is decidable,
by showing the finite-state character of temporal information needed to determine the
truth value of aL%—formulaw with respect to a given interpretatiadn(information
contained inf /) [1].

As an example, consider the formula expressing the bounded response time
property. A sequence of timed states for this formula specifies the truth valyes of
andg, and the value off, a each state > 0. For each statg let us denote the time
differenceff(i) — f1(i — 1), with f/(—1) =0, bydf’(i). Evenifdf’ takes value
overN, to determine the truth value of the considered formula with respect to the
given interpretatior, it suffices to know, for each staitgf df /(i) is equal to 0, or it
is equalto 1, oritis greater than or equal to 2. This allows us to nitidddy means of
three monadic predicates over the state §akiff;, T'diff ;, and T'diff ., only (time-
difference predicates). A notion of extended state sequence for the given formula
can thus be defined as a state sequence in the proposationg'diff o, Tdiff 1, and
Tdiff -, such that (i) it agrees with the original timed state sequence andq,
and (ii) codifies constraints on the time distances between states in terms of time-
difference predicates. The same technique can be used to model time-congruence re-
lations in terms of a finite number of monadime-congruence predicates T'cong; j
over the state sort. As a general rule, it is possible to prove that, given a formula
@ € L2 and two interpretations and 7 for ¢ with the same underlying extended state
sequence] € M (¢) if and only if 7 € Mr(p)2. This means that the extended state
sequence underlying a given interpretatiboontains enough information to decide
whether or notp is true with respect td. Therefore, each formula can be char-
acterized in terms of the séif (¢) of the extended state sequences underlying its
interpretations rather than in terms of the 3ét(¢p).

The main outcome of Alur and Henzinger’s decidability results is the method
they outline. They have proved that metric temporal information (differences and
congruences over the time sort) can be modeled by means of a finite set of monadic
predicates over the state sort. Their proof relies on the finite-state character of (met-
ric) temporal information, which can be expressed as follows: each temporal prop-
erty that partitions an infinite set of states (instants) into a finite set of classes can be
finitely modeled and it is then decidable. In the following, we generalize Alur and
Henzinger’s decidability results to finitely-layered metric temporal structures prov-
ing that temporal contextualization and projection can be finitely modeled.

3.2 Flattening thefinitely-layered structure Let us define the translation function

71 that maps each formutae L3, into a formulary (¢) € LZ. We preliminary re-
place the relations, =,, =5, ... (as well as~, >, ~, 11, |;) and the functiont-1

by their definitions in terms oft, ..., T*, <, ..., <0 1, L. 2140 - . =0, and
F¥i1,...,¥n1. Moreover, we assume without loss of generality that terms appearing
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in atomic formulas which are not equalities are variables (notice that this is correct in
view of Propositiof2.17}. We first define the behavior af on terms; then, we spec-
ify its application to atomic formulas; finally, we show how to deal with quantifiers
and logical connectives.

Terms of L2, are defined as follows: (i) the zero vectbis a term; (ii) each
vector variable is a term:; (iii) if  is a term, thert+; 1 is a term; (iv) nothing else
is a term. The translation of terms is performed by means of the following rules:

7(0) = O (ry)
11(x) = x; (r2)
u(tfim) = n@E) +m-of;,, (r3)

where+;m denotesn superpositions of-; 1.
Once the preliminary replacements have been performed, atomic formulas of
L2, can only take one of the following forms:

1. t1 = t, (term equality);

% € Tt (X belongsto T');

y € 1(x) (Y belongs to the upward projection of X);

y € | (x) (Y belongs to the downward projection of X);
%<y (X e T' does not follow § € T');

% =347 (Xe T iscongruent modulo b with § € T');
7. px(%) (px, With 1 < k < m, holdsin X).

o gk wN

In the translatiorr; of a sentence, each vector variabl& occurring ing will be re-

placed byn+ lvariables;, ..., x,, x, wherexq, ..., x, represent the starting points
of the time intervals oN to whichx may belong. Intuitivelyxy, ..., x, represent the
projections of the (absolute positions of the) components ¥hatever the formula
@is, x4, ..., Xy, x Must satisfy the following constraints:

(@ fori=1,....n—1,%; =44, 0;

(b) fori=1,....,n—1,%x; <x41 <x3+¢fin

(c)fori=1,....nx; <x—>x <%+ cfy;

(d) x;1 <x,
wherecf; n = cfiii1- - - ¢fn_1n iS the conversion factor betwedhandT".

The first two conditions codify basic properties of temporal structures: (a) says
that the time instants of' are encoded by intervals startingkatcf; , and ending at
(k+1) - cfin fork=0,1,...; (b) guarantees that the intervals startingzat . ., xp,

are ordered by inclusion according to granularity. Ferl, (c) will enforcex € Tito
be equivalent ta; < x. Accordingly, (d) expresses the fact that, for evérg e T2,
For every vector variablg, the formulaé (x4, .. ., x4, x) defined as:

n—1
N\ =cr,, OAX < Xig1 < X + ¢fin) A
i—1
n
/\/\(xi <X— X< X +cfin) AXp <X,
i—1
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will be introduced by the translation in order to guarantee (a)—(d) to hold. Since
each individual variabl& occurring ing is quantified &(x4, ..., x,, x) will be in-
troduced during the translation gk or of 3x to constrain the relationships among
X1, ..., Xn, X.

3.2.1 Termequality In view of Propositiof2. 1] atomic formulas of the form (1)
expressing term equality are translated as follows:

T1(t1 = t2) = 11(t1) = 11(t2).

3.2.2 Contextualizations Atomic formulas of the form (2) constrain (the value of)
% to belong to a specific domaili of the temporal universe. The applicationtef
together with condition (c) i§(x1, ..., xq, x), restricts the set of admissible values
for x to the interval ki, X + cfj n)-

Accordingly, the translation dt € T*, with 1 < i < n, isdefined as follows:

(X € 'f'i) = x; <x.

It follows from (c) thatx; < x, for j =1, ...,i — 1. Moreover, in view of the above
defined translation of contextualizations and of the compositionality; @fith re-
spectto negations, the translation oftine membership of to T* will resultin x; < x
andx < Xj1.

3.2.3 Upward and downward projections  Atomic formulas of forms (3) and (4)

relate (the values of§ andy possibly belonging to different domains. Their transla-

tion is more complex, because neither the domairodr the domain of are known

in advance, and therefore the translation must encompass all possible cases. First, (the
value of)x can belong to any domain. Moreover, if (the valuezoBelongs tol' and

(the value of)y belongs to its upward (resp. downward) prolectlon then (the value
of) y can belong to any domaifil coarser (resp. finer) thal. The translations of

y € 1(x) andy € | (x) are therefore defined as follows:

1y et®) = 3, j&x <X <Xip1 AY; <Y <Yj+1 AJ<iAxR;=7y;),

(yel®) = 3, j&x <X <Xip1 AY; <Y<Y+ AL < JAR =y3),
where both formulas are shorthands for finite disjunctions as usual.
3.2.4 Local orderings and congruences Atomic formulas of the form (5) con-
strain the ordering of (the values af)andy finely belonging to the same temporal
domainT'. The ordering relation betweénandy is translated into an ordering rela-
tion between the starting points of the corresponding intervals:

nE<:y) = x5 <vyi

Atomic formulas of the form (6) constrain (the valuesofy finely belonging to the
same temporal domaifi to belong to the same congruence class moduléth re-
spect toT'. The translation constrains the starting points of the corresponding inter-
vals to belong to the same congruence class modiilay;,,) with respect taN:

(X =i4¥) = X =acf,, Vi-
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Remark 3.1 We assume thatfi1, <, and =; 4 are applied to variables of the
proper type. Notice, however, that we do not need to check the domains of the ar-
guments off-1, <, or=; y whenever they are generated by the expansicklof,
and=yg, respectively. This fact guarantees that type constraints are satisfied.

3.2.5 Predicates Atomic formulas of the form (7) state the truth of a predicate
atx. As we have already noticed, it may happen that, for example, there exist two
domainsT' andT}, withi < j, and a predicatey such thapy holds at a give €’ T'
andpy does not hold at any €’ Tl such thaty €’ Vi (X). As aconsequence, for each
predicate symbab, we need to introduce distinct predicate symbols 1, . . . px.n
to model the truth of, with respect to the sefs! \ T2, ..., T", respectively

Besides replacing the predicate sympgplby then predicate symbolgy i, ...
Pk.n, the translation states that there exists an indsxch thatk is greater than or
equal tox; andpy ; holds atx:

T1(px (X)) = Fi(xs <X Apri(x)),
where the translation is a shorthand for a finite disjunction.

3.2.6 Quantifiersandlogical connectives Togeneralize the translation function to
anyLEM sentence, we must define its behavior on quantifiers and logical connectives.
Each quantification of individual variabl& (resp.3x) is split inton quantifications

Vxi,...,Vx, (resp.3xy, ..., 3x,). Moreover, a nested existential quantification of
the variablex is added. Finally, the formul(x, ..., x,, x) is inserted to restrict the
set of admissible values fau, ..., x,, x.

The translation of quantified formulas is thus defined as follows:

Tl(v';%(p) = Vle "'avxnax((g(xlv '-'7Xnax) - Tl(w))»
1(3xe) = Iz, .., I IxE R, - X, X) A T1(R).

Remark 3.2 The translation of quantifications over individual variables provides
us with the set of all variables that can possibly occur in the translation of the for-
mula in their scope. Which ones of these variables will actually come into play in the
translation of the quantified formula depends on the contextualizations contained in
the formula (if any).

Each quantification of predicate variabls. (resp.Vpy) issplit into n quantifi-
cations3px. 1, - .., Ipk.n (r€SP.Vpx.1, ..., Ypx.n). The corresponding translation of
guantified formulas (existential case) is defined as follows:

71(Ipx®) = Ipk.1, .., IPkaTi(@).

Finally, the translation distributes over the logical connectives.

The definition we have adopted for the validity of a given predipaten a given
vectorx hides an existential quantifier ranging over the componentgmf(x) holds
if and only if for somej, px holds on thej-th component of). Itis useful to compare
the translations oy (x) and—py (x) to see howt; deals with the different strength of
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positive and negative assertions. In the first case, the resulting formula says that there
existsi such thapy ; holds atx andx; < x; inthe second case, the resulting formula
says that, for all, eitherx < x; or px ; does not hold at (or both). Therefore, the

only way to say that there existsuch that-py ; holds atx andx; < x is replacing

—px (X) by nonpy (%) in the formula—py (%), wherenonpy, is a new predicate such

that, for allx, nonpy holds atx if and only if p, does not hold at.

Let us now prove that; preserves the satisfiability (validity) of sentences of
L?,,. By induction on formulas we prove a more general preservation result for
generic formulas, instead of just sentences. We need a semantic counterpart of the
translation functionr;, mapping interpretationg for £2,, into interpretations/ =
t(I) for L2,

Definition 3.3  Let I be an interpretation fat?,,. The interpretation (1) for £,
is defined as follows. For all free predicate symhalsn £2,,,

P = (x| X/ cfin) € Pi)

wherepy(" is the interpretation of the predicatg; € L3, andp/; is the restriction
of the interpretation of the predicage € L2, to the domairT' \ T'+1.

In the following we prove that the onlg? -interpretations we need to consider in or-
der to check satisfiability/validity are those of the fotii/), for some interpretation
I for L2),.
First of all, we show that for any sentenges £2,, and any interpretatiof for
@, I satisfiesp if and only if 71 (1) satisfiesri(¢) € L,%,l.

Lemma34 Let I beaninterpretation for theformulag € £2,,, with freeindivid-
ual variables X%, ..., X'. It holds that:

1
TEeE, ... ¥ iff n)E /\g(xlg,...,xg,xh)mlap(il,...,il)).

h=1

Proof: The proofis by induction op. The case of atomic formulas of the form (1)
is straightforward. lfp is an atomic formula of form (2—-7), it is sufficient to observe
that for any satisfying assignment

I(H=tt=tl...th, IH=L=E....10),
for ¢ with respect tal, the assignment

u(D(x1) = t-cfin,

u(D(x:) = u()E) =t cfi,
u(D(xip1) = ...=1()(x) = 1a(D)(x1) + ¢fin,
u(D(y1) = B-cfin

u(D(yy) = tuy) =15 cfjn
(D (yi+1) = ... =1(D)(yn) =2 (D(y;) + ¢fjns
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satisfiest (x4, ..., Xn, X) AE(Y1, ..., Yo, Y)ATL(@) With respect tory (1).

As examples, consider the cases in whjdls an atom of the form eithe, (x)
ory € 1(x). Inthe first case/] = px (%) is equivalent to say that there exists a vector
t=(t1,....t,...,t,) such that; € plﬁ’i; therefore, by definition ofy (1),

Pt ofi )
holds, and hence the formubax;, ..., xy, x) AJi(x; <x Apki(x)) IS satisfied
with respect tar1 (1) by the above defined assignment. Let us now consider the case
of g =5 € 1(X). FromI = § € 1(), it follows that there exigf €’ T' andt? ¢’ T!

suchthatj <i andthe assignmeiitx) =t1, I(y) = t2 satisfiesp. Inthese hypothe-
sest? = t!/cf ;1. To see that the translated formula

S(X19"'7XH7X)/\S(y17"'aynvy)/\
31, J(Xi SXAX <X AV SYAY <Virt AJ<1AZX;=yj5),

is satisfied by the above defined assignment, recalkthid) (x) = 71(1)(x3) = til .
cfinandzi()(y) = ru(D)(y;) = tJ2 - cf jn- Itisstraightforward to prove that the
formula is satisfied. In particular, notice that

tofjn= It cfin/cfinl - cf jn=/cf ] cf jn=1cfin

Conversely, given a satisfying assignment

Ti(D(x1) = &
11(I)(xa) = an
n(HEx) = a

(D(y1) = b

11(D)(yn) = by
@y = b

for &(xq, ..., %0, %) AE(Y1, ..., ¥u, Y)AT1(@) With respect tar; (1), asatisfying as-
signment fory with respect tal can be obtained as follows. Lieand j be such that

g <a< a4 andbj <b < bjiq; the vectorstﬁ1 andtﬁ2 defined as

th= @i/cfins - @i/cfin) 2= (b1/cfn, - bj/cfjn)s

satisfye with respect tal.
For existential quantification over individual variables notice that

IEIeE, ... xh)

is equivalent tdl = ¢(x!, ..., '), and the thesis follows directly from the inductive
hypothesis and the definition of.
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For existential quantification on predicate variables we must show that

I=3peyr(xh, ..., xh) iff

1
(D)= N\EGL o ) AT Gy E L ED). (%)
h=1
If the left-hand side ofx) holds, then/ P« = y(x!, ..., k') for somel P« exten-

sion of I to the predicate symbel.. Hence, by inductive hypothesis, we have

1
n(IP) = /\ EEE, X ) A (WE, .. EY),
h=1
from which it is easy to see that the right-hand sidésofholds.

Conversely, if the right-hand side ¢%) holds, then there exists an extension
of the interpretatiorry (/) to the predicategx i, - .., px.n, that we can denote by
t1(I)P, such thatry (I)P< = Af_, EGE, ... 2B, x®) At (WY, ..., &Y)). Inthis
case, we can conclude that

1
(1) &G L ) AT E L EY),
h=1

where I'P« is the extension of to the predicate symbglk, (to see this, one can use
Lemmas 3.6 and 3.8 below and observe that (z1(1)P<)) = 71(IP)). Now, by
inductive hypothesis P« = y(x!, ..., x'), and hencd |= Ip ¥ (xt, ..., xh).

If p(x!,...,xY) is of the form—y(x!, ..., x1), from the inductive hypothesis,
it follows that I = ¢ if and only if

1
() e xx) A n@Eh . x),

h=1
namely,71(I) = \/i_; ~&(xE, ..., x2, %) Vv 1(=y(x!, ..., xY)). However, as
u(l) = N\, £(x5, ..., xE, xP), we have that the above is equivalentdg(1) =
Ao EGE, xR 30 A T (—y(xt, .., xh).

Finally, the case of conjunctions of formulas follows easily from the inductive
hypothesis and the fact thai distributes over conjunctions. This concludes the
proof? O

On the ground of the previous result, we have thagireserves satisfiability. In order
to prove that also validity is preserved, we show that for any sentﬁmzcﬁEM and
any interpretatiory for 1 (¢), there exist an interpretatiofi for z1(¢) and an inter-
pretationI for ¢ such that/ = 71(p) iff 7 = t1(e) andy = t1(1). Wewill prove
that, for any formulap € £, with free individual variableg?, .. ., x*,

1
T N\EG o) ATlpE, ... 7)) iff
h=1

1
JE NEEL . ATi(pE . ED).
h=1
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For any given interpretatiofi, we build the corresponding interpretatighin
two steps. In the first step, we map the interpretatianto an interpretationr ()
(projection on the starting point) defined as follows.

Definition 3.5 Let 7 be an interpretation foL,%,I satisfying the formula

1
= N\EGE . B ATeE, .. ED).
h=1

Thisimplies that, for < h <, there existssuch that either ¥ i < n, 7(x}) < J(x")
and J(x},,) > J(x"), ori = nandJ(x*) = J(x}). The interpretationr(J) for ¢
assigns to the free individual variablesypthe same values g& andfor j =1, ...i
andk=1,....m w()(}) € p’k”(jj) if and only if 7(x*) € p{l

For all the other elemenisof the domain (including/(x1), . .. 9(x%)), x € p’lz(ij)
if and only if x € p{’i,fork: 1,...,mandi=1,...,n.

Lemma3.6 For each formula Aj_, £(x%, ..., x2, x®) A 1y (oL, ..., %)) and
each interpretation 7,

1
TE N\EEL . xm s ATi(pE' ... &) iff
h=1

1
(D E NEGEL ) AT(eE . EY).

h=1

The proof is straightforward and is left to the reader.
To obtain the desired interpretation, eacimterpretationg is then mapped into
an interpretation () (expansion over the whole interval) defined as follows.

Definition 3.7  Let 7 be an interpretation fatZ, satisfying the formula

1
p= NEE ) ATpE . F).
h=1

The interpretatiorz (7) for ¢ assigns to the free individual variablesypftthe same
valuesag/and fork=1,...,mandi=1,...,n,

P = (X1 X/cfin) - ¢fin € B} @

€(J) is the interpretation that, for evewye [q- cfj . (Q+ 1) - ¢f; ), Sets the truth
value of p; onx equal to the truth value gfy ; onq- cf; ..
The following lemma holds.

Lemma3.8 For each formula Ap_, &b, ..., x2 =) Aty (p(x!, ..., %)) and
each interpretation 7 for it,

1
(D E NEGE . ) AT(pE ... ¥D) iff
h=1

1
e E N\EGEE . ) ArlpE .. ¥D).
h=1
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Moreover, there exists an interpretation I for p(X!, ..., X) € L2, suchthat 71 (1) =
e(m(9)).
Proof: The formulas we are interested in only constrain the truth values of predi-
cates ak?, ..., x'. Onthe other hand, from the definition efve have that, for every
Pk.i, the truth-value ok(x (7)) andx(J) at xt, ..., X is the same, since(J) as-
signs the same truth values)dt . .., X' and[xt/cfi ol - cfin, - -s IX/cfinl - cfins
respectively. Therefore, the thesis follows from the definitions ahde.

Furthermore, lef an interpretation fop (!, ..., x) € L2, such that:

P = (X| X cfine P,

It follows thatz1 (1) = e((9)). O

Notice that everg-interpretation is a1 () interpretation, for some interpretatidn
for L2
Now, our main preservation result follows from the previous lemmas.

Theorem 3.9 For every sentence ¢ of £LZ,,, with free predicate symbols py, ..., pm,
thereexistsa sentence (= t1(¢)) of LM, with free predicatesymbols py 1, . . ., Pm.n,
such that ¢ isvalid (satisfiable) in Tp\ if and only if ¢ is valid (satisfiable) in Ty.
Furthermore, if ¢ € Ly v, then ¥ € Ly.

Proof:  On the one hand, from Lemri&ad]it follows that, for any sentencee L2,
if pis satisfiable, them (¢) € Lﬁ is satisfiable, and, converselyrif(¢) is valid, then
¢ is valid. On the other hand, Lemnfasland2.8prove that if is valid, thenry (¢)
is valid, and, conversely, if, (¢) is satisfiable, thep is satisfiable. O

3.3 Coding metricinformation  The second step of the translation is the mapping
of L2 formulas intoL2 ones. It is performed by a functian that reduces each for-
mulay € L,%,I to a formular, () € L£? devoid of occurrences of the successor func-
tion and of congruence predicates. Moreoverloes not change the set of free in-
dividual variables ofy, so that if ¢ does not contain any free individual variable, no
free individual variables occur it (¢).

Before entering into the details of the definition®f we point out that at this
stage we could simply use the same technique employ@ o [napL,%,, formulas
into £2 formulas. Even if the theory of metric temporal structufgsdoes not sup-
port an explicit notion of state distinct from timeit can be easily reformulated in
terms of a particular two-sorted second-order theory of timed state sequences whose
time function is the identity function. Nevertheless, we will introduce and briefly dis-
cussty, mainly because it turns out to be a (rather elegant and) essebaiposi-
tional translation for our setting.

Terms ofo,, are defined as follows: (i) the zero constaris a term; (ii) each
variablex is a term; (iii) if t is a term, thert + 1 is a term; (iv) nothing else is a term.
In the following, we will use+n as a shorthand fan superpositions of-1. As in
the case of’2,,-formulas, we assume without loss of generality that terms appearing
in atomic formulas of£2 which are not equalities are variables. Atomic formulas
are of the formg; = t,, x <y, x =4 y, andpx(t), wheret,, t, are termsx, y are
variables,< is the binary ordering relatiorz4 is a binary congruence relation, and
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Pk iS an uninterpreted unary predicate symbol. Compaggeformulas can be ob-
tained by means of logical connectives and quantifications over individual and predi-
cate variables. In particular, inequalities)(and strict inequalities<) can be defined
in terms of= and< in the usual way.

With regard to Compoumzi,%,| -formulas,t; distributes over quantifiers, negation,
and conjunction. Therefore, we only need to defipen atomic formulas. We first
consider atomicCZ -formulas of the formy = x + n. We will show that they can be
reduced taL?-formulas involving first-order quantification over- 1 time variables
and devoid of any occurrence #fl. Moreover, on the basis of the definition of the
successor function, it is straightforward to prove that formulas of the fosm =
y +m, with m, n > 0, can be reduced either to formulas of the farm y +n’ or to
formulas of the fornx +n" =y, with m’, n’ > 0 andx + 0 to be read as. Let us start
with the casen = 1. Lety be the£Z-formulay = x + 1. The translation functiom,
transforms it into an equivalent formula devoid of occurrences bf

y=x4+1)=3x1F < A= AVEX <X<x;1 > (R=xVX=1x1))).
Itis easy to generalize this transformation to aifformulay = x +n, with n > 1:

Dy=x4+n) = Ix,..., xEX <X < ... <X AV=X, A

AVE(X<X<X, > R=xV...VX=2%))).

The case of atomi;z:,%,I -formulas of the forny = n, wheren stands fol0 +n, isanal-
ogous, and thus omitted. Equalities of the fatra: y as well as atomic formulas of

the formx < y andpy(x) are left unchanged. Let us consider now atomic formulas
of the formx =4 y. Each binary congruence relatieay partitions the set of time
instants intad disjoint classes. For each class of time instants which are congruent
modulod with i, with 0 <i < d — 1, 1, introduces a monadic predicate of the form
Tcongq ;. Itis defined as follows:

d—1

a(x=ay) = [\ (Teongy s (x) & Teongy s (y))
i=0

Where/\‘ii;é denotes the usual shorthand. Since for every congruence retation
the corresponding predicat@®ong, o, ..., Tcongy 44 areuninterpreted monadic
predicate symbols, the following conditions must be added:

(a) for each congruence relatiesy (in V), Tcongy o holds attime instant O (in
T2(Y));

(b) for each congruence relatiesy, and each time instamx, there exists one
and only one index, with 0 < i < d — 1, such thatl'cong, ; holds atx;

(c) for each congruence relatiery, each index, with 0 <i <d —1, and each
time instant, if Tcong, ; holds at time instart, then T'congy ; 1,044 NOldS
at time instanik + 1.

Condition (a) links time-congruence predicates corresponding to different congru-
ence relations (it provides a sort of initial synchronization); (b) and (c) link time-
congruence predicates corresponding to the same congruence relation. Formally, for
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each congruence relatiesy in v, let x(Tcongy o, - .., Tcongy 4—41) be the formula:
d-1
T'congy.0(0) A VX(\/ (Teongg,i(X) A /\ —Tcongq j(X)) A
i=0 j#i
d-1

A /\(Tcongd,i(x) — Tcongq it1modd (X + 1))
i=0

where the usual shorthands have been used.

The translation ofL,%,,-formuIasw is thus defined by adding, for each distinct
congruence relatios4 occurring iny, the corresponding conjung( Tcongg o, - - - ,
Tcongq 4—1)- The resulting formula belongs t6?. Therefore, in order to prove that
the validity (satisfiability) problem foZ, is decidable, we only need to show that a
sentencey is valid (satisfiable) iy if and only if 7o () is valid (satisfiable) irf51S.

Theorem 3.10  For every formula v of L2, there exists a formula 6 of £2, which
containstheadditional time-congruence predicatesTcongg, o, ..., Tcongg, d,—1, - - -,
Tcongg, o0, ..., Tcongg, 4,—1, SUch that v isvalid (satisfiable) in Ty if and only if 6
isvalid (satisfiable) in S1S. Furthermore, if ¢ € Ly, then6 € L.

Taker, () asé. The proof is similar to the one given ifiJj and thus omitted.
On the basis of Theorerfisdand3. 10]we can conclude that the following holds:

Theorem 3.11 For everyformula ¢ of LEM,thereexistsaformulae(i.e., 72(11()))
of £? such that ¢ is valid (satisfiable) in Ty if and only if @ is valid (satisfiable) in
S1S. Furthermore, if ¢ € Ly, then6 € L.

Hence, from the the decidability &LS, the decidability ofT, s follows:

Corollary 3.12  Thetheory of finitely-layered metric temporal structuresis decid-
able.

Remark 3.13 The above result can be applied to obtain decidability results for se-
mantically defined metric and layered temporal logics. Indeed, we first identified a
relevant class of temporal structures, namely, the class of finitely-layered metric tem-
poral structures; then, we defined the corresponding thegiyand showed that such
atheory can be reduced 81S. An axiomatic counterpart of_y can be obtained ex-
tending a simplified variant ofPTL (real-time propositional temporal logic), where
state variables are replaced by time variables@nis interpreted as the successor
over time, with contextual and projection operatordvolf T L.

4 Conclusionsand further work In this paper we have proved the decidability of

the theory of finitely-layered metric temporal structures through its reduction to the
decidable theonlS. Since the validity problem is non-elementary already for the
classical first-order theory of natural numbers with linear order and monadic pred-
icates, it is obviously non-elementary also for the considered theory. Nevertheless,
we expect that modal counterparts of the proposed theory corresponding to an ele-
mentary, yet expressively complete, fragmentgf, can be identified. To this end,

we are currently analyzing suitable propositional fragments of MLTL. We are also
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considering the problem of executing logical specifications. In principle, decidability
proof methods outline an effective procedure to prove the satisfiability and/or validity
of a formula. However, as soon as certain assumptions about the nature of the tem-
poral domain and the available set of operations are relaxed, the satisfiability/validity
problem becomes (strongly) undecidable. In this respect, proof-theoretic approaches
seem to offer a valid alternative, e.g., D’Agostino et al[5h Finally, in we ex-
tended the decidability results given in this papepttayered metric temporal struc-
tures consisting of a denumerable set of (either arbitrarily coarse or arbitrarily fine)
temporal domains.
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NOTES

1. More precisely, the problem of checking the validity of a form@laan be reduced to
the decidable problem of checking whether or not the language recognized biydhie B
automaton corresponding t07 is empty, whereas the problem of checking the satisfi-
ability of a formula # can be reduced to the decidable problem of checking whether or
not the language recognized by thadBi automaton corresponding fbis not empty.

2. The original proof is given id]]. Corrections and remarks on this proof can be found
in Montanari and Policritil{5].

3. The addition of the consistency rule would make such a splitting einnecessary.

4. Notice that, if the£?,-formula ¢ is a sentence, the correspondifig-formula is the
sentence;(¢) (no free variables occur ip).

5. Itis worth noting that a differentiation between the notions of state and time can be re-
covered using granularity. Upward projection can indeed map two time instants which
are distinct with respect to the domain they finely belong to into the same time instant
of a coarser domain. With respect to the coarser domain, the original time instants can
be viewed as an ordered pair of simultaneous states.
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