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Decidability Results for Metric
and Layered Temporal Logics

ANGELO MONTANARI and ALBERTO POLICRITI

Abstract Westudy the decidability problem for metric and layered temporal
logics. The logics we consider are suitable to model time granularity in vari-
ous contexts, and they allow one to build granular temporal models by refer-
ring to the “natural scale” in any component of the model and by properly con-
straining the interactions between differently-grained components. A monadic
second-order language combining operators such as temporal contextualization
and projection, together with the usual displacement operator of metric tem-
poral logics, is considered, and the theory of finitely-layered metric temporal
structures is shown to be decidable.

1 Introduction Temporal logic has been used widely and successfully to model
and reason about temporal knowledge in several fields of computer science, including
software engineering, database, and artificial intelligence. Almost all of the proposed
logics of time assume aflat temporal model, constraining temporal information to be
specified at a single level of granularity. As noticed in van Benthem [19], being able
to provide and relate temporal representations at different “grain levels” of the same
reality is an important research theme for temporal logic and a major requirement for
many applications.

With regard tological specifications, there exists a large class of real-time sys-
tems whose components have dynamic behavior regulated by very different time con-
stants (granular systems). A good specification language must enable one to specify
and verify the components of a granular system and their interactions in a simple and
intuitively clear way, see e.g., Fiadeiro and Maibaum [8]. With regard totemporal
databases, when information is collected from different sources which are not under
the same control, differently-grained time-stamps are associated with different data.
To guarantee consistency either the data must be converted into a uniform represen-
tation that is independent of time-granularity, or temporal operations must be gener-
alized to cope with data associated with different temporal domains. In both cases,
a precise semantics for time granularity is needed; see e.g., Wang et al. [20]. With
regard toproblem solving, intelligent temporal reasoning systems should be able to
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switch among time granularities in order to provide either quick coarse-grain answers
or slower fine-grain ones, depending on the requirements for responsiveness and qual-
ity of the answer, see e.g., Euzenat [7]. Finally, shifts in the temporal perspective
occur very often innatural language communication, and thus the ability to support
and relate a variety of temporal models, at different grain sizes, is a relevant feature
for the task of natural language understanding. For all of these application domains
(and many others), the flatness of the temporal model underlying most logics of time
proposed in the literature is a major drawback.

In [4] and[13], Montanari et al. proposed a metric and layered temporal logic
(MLTL for short) for specifying granular real-time systems. Metric temporal logics,
e.g., Koymans [11], and Montanari and de Rijke [14], extend propositional logic with
aparameterized operator of relative temporal realization. MLTL can be viewed as the
combination of a number of differently-grained metric temporal logics. It replaces
the flat temporal domain of metric temporal logics with a temporal universe consist-
ing of a set of differently-grained temporal domains together with relations between
instants belonging to different domains. To qualify formulas with respect to the tem-
poral universe, MLTL is equipped with an operator ofcontextualization that identifies
the domains a given formula refers to. Within each temporal domain, it is then pos-
sible to talk about truth and falsehood of formulas at different time instants by means
of adisplacement operator. Finally, aprojection operator can be used to constrain the
relationships between formulas associated with differently-grained domains.

The combined use of these operators allows one to represent a granular system
by properly connecting a set of differently-grained formulas. In the simplest case,
this might be just a boolean combination of formulas referring to different tempo-
ral domains. In more complex cases, the projection operator is used to deal with
nested quantifications of differently-grained temporal displacements (e.g., to spec-
ify the condition: “there exist some days during which the plant remains inactive
for some hours”), or to specify the composition of differently-grained temporal dis-
placements (e.g., to specify the condition: “in twenty seconds, five minutes will have
passed from the occurrence of the fault”). Moreover, MLTL can be provided with
consistency rules that, given the truth value of a formula with respect to the domains
it explicitly refers to, constrain its truth value with respect to other domains (a detailed
discussion can be found in [4]).

This paper focuses on the decidability of the validity and satisfiability problems
for MLTL. In [ 1], Alur and Henzinger showed that, under suitable assumptions about
the temporal domain and the associated operations, the validity and satisfiability prob-
lems for real-time logics are decidable. These problems can be reduced, through cod-
ing into the theoryS1S, to the decidable problem of determining whether or not the
language recognized by a given Büchi automaton is empty (Thomas [18]).1 Our goal
is to generalize this result to temporal logics combining metric and layered features.

When faced with a combined logic, there are at least two possible approaches
to the problem of establishing its logical properties such as decidability, soundness,
and completeness. The first identifies what constraints the combination method must
satisfy to guarantee the transfer of logical properties from the component logics to the
combined one; examples can be found in Finger and Gabbay [9] and Montanari and
de Rijke [14]. Otherwise, instead of lifting logical properties from the components to
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the combined logic, one can try to obtain a reduction to one of components and solve
the problem for that one component. In this paper we follow the latter strategy by
embedding finitely-layered metric temporal structures into their finest metric compo-
nent, and then reducing the decidability of the theory of the simplest component to a
theory that is known to be decidable, namelyS1S; cf. Ershov et al. in [6] and Rabin
[17].

The paper is organized as follows. In Section2, we introduce the theory of
finitely-layered metric temporal structures. In Section3, weshow how to reduce the
decidability problem for this theory to the decidability problem forS1S. Conclusions
provide an assessment of the work and outline the current topics of research.

2 The theory of finitely-layered metric temporal structures Let L2
LM be the

second-order language for the theory of finitely-layered metric temporal structures
TLM. It includes individual variables�x, �y, . . . and uninterpreted unary predicate sym-
bols, the constant symbol�0, the unary function symbols�+11, . . . , �+n1 (local succes-
sors), the unary (interpreted) predicate symbols�T1, . . . , �Tn (contextualizations), the
binary relational symbols�≤1, . . . , �≤n (local orderings),↑ (upward projection) and
↓ (downward projection),�≡1,2, �≡1,3, . . . , �≡n,2, �≡n,3, . . . (local congruences), and
quantification of individual variables and (uninterpreted) unary predicate symbols.
The first-order fragment ofL2

LM is denoted byLLM. We restrict ourselves to formu-
las that contain no free individual variables. Setting up the structures in whichL2

LM
can be interpreted is our next task; it takes quite a bit of work.

Wedefine afinitely-layered metric temporal structure as a tuple

( �T , �T1, . . . , �Tn, �≤1, . . . , �≤n,↑,↓, �≡1,2, �≡1,3, . . . ,

�≡n,2, �≡n,3, . . . , �+11, . . . , �+n1, �0).

�T is the carrier set of the structure, and it is called thetemporal universe. Then com-
ponents�T1, ..., �Tn are sets of temporal vectors corresponding to the interpretation of
then unary predicates�T1, . . . , �Tn, respectively. The temporal universe�T is equal to⋃n

i=1
�Ti. The set of domains is totally ordered by inclusion:�T1 ⊃ �T2 ⊃ · · · ⊃ �Tn, and

thus �T = �T1. Let us call⊃ thegranularity relation. For each pair of domains�Ti, �T j,
we say that the granularity of�Ti is coarser (resp. finer) than the granularity of�T j if
and only if �Ti ⊃ �T j (resp.�T j ⊃ �Ti). Formally, a granularity relation on{ �T1, . . . , �Tn}
is a total ordering⊃ such that�Ti ⊃ �T j, for 1 ≤ i < n − 1 andi < j ≤ n. Each vector
�x such that�Ti is the finest domain to which it belongs is called atime instant of �Ti. A
fine membership relation∈′ is defined such that�x ∈′ �Ti if and only if �x ∈ �Ti ∧ �x 
∈ �Ti+1.
Sincen is finite, for each�x ∈ �T , there exists one and only one�Ti such that�x ∈′ �Ti.
Moreover, for each pair of consecutive domains�Ti, �Ti+1, with 1 ≤ i < n, we assume
that there exists a natural numbercf i,i+1, called theconversion factor between�Ti and
�Ti+1, that expresses the ratio between the granularities of time instants finely belong-
ing to the two domains (homogeneity assumption).

Furthermore,�≤1, . . . , �≤n are binary relations of local temporal ordering over
�T1, . . . , �Tn, respectively;↑ and↓ are binary relations of upward and downward pro-
jection over�T ; �≡i,2, �≡i,3, ... are binary relations of local time congruence over�Ti,
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for 1 ≤ i ≤ n; �+11, . . . , �+n1 are unary successor functions of temporal displacement
over �T1, . . . , �Tn, respectively; and�0 is the zero vector (see below).

To specify the components of finitely-layered metric temporal structures, we in-
troduce a representation for temporal vectors. For 1≤ i ≤ n, we represent the set
{�x | �x ∈′ �Ti} as the generalized cartesian productN × ∏i−1

k=1[0, cf k,k+1), where each
pair [0, cf k,l ) denotes an interval of natural numbers. The representation of the set{�x |
�x ∈ �Ti} is thus simply

⋃n
j=i N × ∏ j−1

k=1 ×[0, cf k,k+1). Furthermore, fork = 1, . . . , n,

afunction [·]k : �T �→ N∪{⊥} can be defined such that, for each�x(∈′ Ti), [�x]k is equal
to thek-th component of�x if k ≤ i, and to⊥ otherwise.

The above representation of temporal vectors can be interpreted as follows.
Time instants finely belonging to�T1 take value over (a temporal domain isomorphic
to) N. Let us call their valuesabsolute temporal positions. The representation of
an instant�x finely belonging to�Ti, with 1 < i ≤ n, consists of two different parts:
the specification of its (absolute) position [�x]1 with respect to�T1 \ �T2, where\ de-
notes set-theoretic difference, plus the specification ofi − 1 nested displacements
[ �x]2, . . . , [ �x]i with respect to�T2 \ �T3, . . . , �Ti \ �Ti+1, respectively.

Example 2.1 Consider a temporal universe consisting of hours, minutes, and sec-
onds. An hour is specified by its absolute value, e.g. hour 4011, a minute is specified
by the hour it belongs to plus a displacement with respect to the first minute of such
an hour, e.g., the sixteenth minute of hour 4011 is represented by the pair(4011,15),
a second is specified by the hour it belongs to plus a displacement with respect to the
first second of the minute it belongs to, which in its turn is specified in the same way
with respect to the hour, e.g., the third second of the sixteenth minute of hour 4011 is
represented by the triplet(4011,15,2).

Wenow define local orderings, congruences, successors, and upward and downward
projections. Fori = 1, . . . , n, the local ordering�≤i between any pair of vectors�x, �y ∈
�Ti is defined in terms of ordering of their components.

Definition 2.2 (Local ordering) For each domain�Ti, a local ordering �≤i (lexico-
graphical ordering) is defined such that, for each pair of vectors�x, �y ∈ �Ti,

�x �≤i �y iff ∀ j(1 ≤ j ≤ i → [ �x] j = [ �y] j) ∨
∨ ∃ j(1 ≤ j ≤ i ∧ ∀k(1 ≤ k < j → [ �x]k = [ �y]k) ∧ [ �x] j < [ �y] j).

A notion of local equality�=i of two instants�x, �y ∈ �Ti can be derived immediately.
The relations of upward projection↑ ⊆ �T × �T and downward projection↓ ⊆

�T × �T are defined in terms of the notions of prefix and extension, respectively.

Definition 2.3 (Prefix and extension) For all �x ∈′ �Ti, a (nonempty)prefix of �x is a
time instant�y ∈′ �T j, with 1 ≤ j ≤ i, such that [�x]k = [ �y]k, for k = 1, . . . , j. For all
�x ∈′ �Ti, anextension of �x is a time instant�y ∈′ �T j, with i ≤ j ≤ n, such that [�x]k = [ �y]k,
for k = 1, . . . , i.

Definition 2.4 (Upward and downward projections)For each pair of vectors�x, �y ∈
�T , ↑(�x, �y) holds if and only if�y is a prefix of�x, whereas↓(�x, �y) holds if and only if
�y is an extension of�x.
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Proposition 2.5 For any temporal domain �Ti and any pair of vectors �x, �y ∈′ �Ti, if
�x is not equal to �y, then there exists no vector �z such that ↓(�x, �z) and ↓(�y, �z).
Local congruence relations�≡i,2, �≡i,3, . . . between pairs of vectors�x, �y belonging to
the same domain�Ti are defined in terms of (standard) congruence relations between
their i-th componentsxi, yi.

Definition 2.6 (Local congruence) For each domain�Ti, each pair of vectors�x, �y ∈
�Ti, and each natural numberd, alocal congruence relation ≡i,d is defined as follows:

�x �≡i,d �y iff [ �x]i ≡d [ �y]i.

The apparently stronger notion of local congruence�≡′
i,d between�x, �y ∈′ �Ti that holds

whenever all the components are congruent modulo-d, can be defined as follows:

�x �≡′
i,d �y iff ∀ j(1 ≤ j ≤ i → �x �≡ j,d �y),

where∀ j(1 ≤ j ≤ i → �x �≡ j,d �y) is shorthand for�x �≡1,d �y ∧ · · · ∧ �x �≡i,d �y. Finally, for

each�Ti, aunary successor function�+i1 is defined.

Definition 2.7 (Local successor)Let �Ti be a temporal domain, and�x = 〈x1, . . . , x j〉,
with j ≥ i, be an element of�Ti. The application of�+i1 to �x is defined as follows:

�x �+i1 =
{ 〈x1, . . . , xi + 1, . . . , x j〉 if i = 1∨ xi + 1 < cf i−1,i,

〈x1, . . . , xi−1,0, . . . , x j〉 �+i−11 otherwise,

where 0 and+1 are the constant 0 and the successor function of natural numbers,
respectively. Notice that even if local successors are specified within a given domain,
they can actually propagate to different domains.

In order to define aninterpretation for the languageL2
LM, it is useful to introduce

an alternative (pseudo) vectorial representation according to which thei-th compo-
nent of a vector denotes an absolute position with respect to�Ti \ �Ti+1. Such a rep-
resentation can be automatically derived from the above given one. For each do-
main �Ti and each vector�x ∈′ �Ti, let us transform�x into a (pseudo)vector�y such that
[ �y]1 = [ �x]1, and, for eachj = 2, . . . , i, [ �y] j = (. . . (([ �x]1 · cf 1,2 + [ �x]2) · cf 2,3 +
[ �x]3) . . .) · cf j−1, j + [ �x] j = [ �y] j−1 + [ �x] j.

Example 2.8 Assume the temporal universe of Example2.1. The representation
of the third second of the sixteenth minute of hour 4011 becomes (4011, 240675,
14440502).

According to this alternative representation, for eachi = 1, . . . , n, the set{�x | �x ∈′ �Ti}
becomes a suitable subset of the productN × · · · × N (i times). This representation is
redundant, because each component [�y] j of a vector�y ∈′ �Ti, with 1 < j ≤ i, codifies
complete information about all the components of lower index. It is indeed easy to
prove that [�y] j−1 is equal to the (unique) natural number such that [�y] j−1 · cf i−1,i ≤
[ �y] j < ([ �y] j−1 + 1) · cf i−1,i. Moreover, once [�y] j−1 has been determined, it can be
used to determine [�y] j−2, and so on, until the first component is reached. Thus, the
finest component of a (pseudo)vector implicitly provides complete information about
all the other components. Even if it is less elegant than the original representation, we
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will use this (pseudo) vectorial representation to make the definition of the semantic
interpretation ofL2

LM-formulas simpler.
Let ϕ be a formula ofL2

LM, with free predicate symbolsp1, . . . ,pm. Unary and
binary relational symbols, and constants and function symbols, are mapped onto the
corresponding components of the temporal structure. Thus, an interpretationI for ϕ

is given bym · n setspI
1,1, ..., pI

m,n ⊆ N, where, for each setpI
k,i, k andi indicate

the indices of the predicatepk and of the set of time instants of�Ti, respectively. For
k = 1, . . . , m, pI

k,1, . . . , pI
k,n−1, pI

k,n we define the interpretationpI
k of pk with respect

to the sets�T1 \ �T2, . . . , �Tn−1 \ �Tn, �Tn by stipulating thatpk holds on a vector�x if and
only if for somei, pk holds for thei-th component of�x (i.e., [�x]i ∈ pI

k,i).

Example 2.9 Assume the temporal universe of the previous examples. Moreover,
let �x be the vector of Example2.8, pk be a predicate symbol ofL2

LM, andI be an
interpretation forL2

LM. According to the given definition,pk holds at�x if, for instance,
240675∈ pI

k,2.

2.1 Supporting basic MLTL functionalities Now that we have defined our lan-
guage for talking about layered and metric temporal structures, we show how it can
express the three key features of metric and layered temporal logics defined in Sec-
tion 1: contextualization, and granular and metric displacement, thus showing the
expressiveness of the languageL2

LM, and its usefulness as a framework for studying
metric and layered temporal logics. We will also introduce the notions of (global)
temporal ordering and congruence.

Contextualization restricts the range of possible values of a given vector variable
�x by constraining (the value of)�x to belong to a given domain�Ti. In L2

LM, contextu-
alization is expressed by means of then unary predicates�T1(�x), . . . ,Tn(�x). Contex-
tualization is formally defined as follows. For the sake of readability, we will use a
set notation�x ∈ �Ti (resp.�x 
∈ �Ti) instead of�Ti(�x) (resp.¬�Ti(�x)).

Definition 2.10 (Contextualization) For each vector variable�x and each unary
predicate�Ti, with 1 ≤ i ≤ n, �x ∈ �Ti holds if and only if (the value of)�x belongs
to the domain�Ti.

The total ordering of temporal domains defined by granularity allows us to easily
prove that the formula:

∀�x(�x ∈ �Ti → ∀j(1 ≤ j ≤ i → �x ∈ �Tj)),

is valid in all finitely-layered metric temporal structures (as usual, the consequent of
the outermost implication stands for “�x ∈ �T1 ∧ · · · ∧ �x ∈ �Ti”). Contextualization also
allows us to prove the following proposition.

Proposition 2.11 For each pair of vector variables �x, �y, �x= �y↔ ∃i(�x ∈′ �Ti ∧ �y ∈′
�Ti ∧ �x �=i�y)), where the right-hand side formula stands for “(�x ∈′ �T1 ∧ �y ∈′ �T1 ∧ �x=1

�y) ∨ · · · ∨ (�x ∈′ �Tn ∧ �y ∈′ �Tn ∧ �x =n �y)” and “�x ∈′ �Ti ↔ (�x ∈ �Ti ∧ �x 
∈ Ti+1).”

It follows that two vectorsfinely belonging to different domains are distinct.
Contextualization can occur in different types of formulas. As an example, it

is involved in formulas stating that there exists a time instant belonging to a given
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domain�Ti at which a formulaϕ is true, and in formulas stating thatϕ is true at each
instant of a given domain�Ti (restricted quantification). These formulas take the forms
∃�x(�x ∈′ �Ti ∧ ϕ(�x)) and∀�x(�x ∈′ �Ti → ϕ(�x)), respectively.

Definition 2.12 (Granular ordering and equivalence)We define a partial ordering
� overT based on the “grain-size” of vectors (�x � �y if and only if �x is coarser than
�y) as follows:

�x � �y iff ∃i,j(�x ∈′ �Ti ∧ �y ∈′ �Tj ∧ i < j),

where the right-hand side formula stands for “(�x ∈′ �T1 ∧ �y ∈′ �T2) ∨ (�x ∈′ �T1 ∧ �y ∈′
�T3)∨ · · ·∨ (�x ∈′ �Tn−1 ∧ �y ∈′ �Tn).” Moreover, an equivalence relation∼ overT , such
that �x ∼ �y if and only if �x is as coarse as �y, can be defined as follows:

�x ∼ �y iff ∃i(�x ∈′ �Ti ∧ �y ∈′ �Ti),
where the right-hand side formula stands for “(�x ∈′ �T1 ∧ �y ∈′ �T1) ∨ · · · ∨ (�x ∈′ �Tn ∧
�y ∈′ �Tn).”
Granular displacement is directly supported by upward and downward projections.
As in the case of contextualizations, we adopt a set notation�y ∈ ↑(�x) (resp.�y 
∈ ↑(�x))
instead of↑(�x, �y) (resp.¬↑(�x, �y)).

Definition 2.13 (Granular displacement) For each pair of vector variables�x, �y, �y ∈
↑(�x) holds if and only if (the value of)�y belongs to theupward projection of (the value
of) �x, whereas�y ∈ ↓(�x) holds if and only if (the value of)�y belongs to thedownward
projection of (the value of)�x.

Granular displacements allow one to express conditions on the belonging of an instant
to the projection of another one. For instance, the constraint that�y must belong to the
downward projection of�x is expressed by the atomic formula�y ∈ ↓(�x). Moreover,
existential and universal quantifications under projection can be used to state that
there exists�y belonging to the downward projection of�x such that a formulaϕ is true
at �y, as well as to state thatϕ is true at each�y belonging to the downward projection
of �x (restricted quantification). These formulas take the forms∃�y(�y ∈ ↓(�x) ∧ ϕ(�y))

and∀�y(�y ∈ ↓(�x) → ϕ(�y)), respectively.
The relations↑ and ↓ can be specialized to restrict upward and downward

projections to a specific domain. For each domain�T j, the restriction of upward
(resp. downward) projection to�T j denoted by↑ j ⊆ �T × �T j (resp.↓ j ⊆ �T × �T j)
is defined as follows (according to the set notation):

�y ∈ ↑j(�x) iff �y ∈ ↑(�x) ∧ �y ∈′ �Tj (resp. �y ∈ ↓j(�x) iff �y ∈ ↓(�x) ∧ �y ∈′ �Tj).

Proposition 2.14 For each �x ∈ �T and 1 ≤ j ≤ n, there exists at most one vector
�y ∈′ �T j such that �y ∈ ↑ j(�x). More precisely, if �x ∈′ �Ti and j ≤ i, then there exists
one and only one vector �y ∈′ �T j such that �y ∈ ↑ j(�x), whereas, if �x ∈′ �Ti and i < j,

then there are no vectors �y ∈′ �T j such that �y ∈ ↑ j(�x). Moreover, for each �x ∈ �T
and 1 ≤ j ≤ n, if �x ∈′ �Ti and i ≤ j, then there exist cf i, j vectors �y ∈′ �T j such that
�y ∈ ↓ j(�x), where cf i,i = 1 and, for j > i, cf i, j = cf i,i+1 · . . . · cf j−1, j, whereas if

�x ∈′ �Ti and j < i, then there exist no vectors �y ∈′ �T j such that �y ∈ ↓ j(�x).
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The following example gives a natural explanation of the proposed structure for time
granularity in terms of specialized upward and downward projections.

Example 2.15 Consider a temporal universe consisting of hours, minutes, and sec-
onds, and let�x be the second represented by the triplet(4011,15,2). The prefix of�x
with respect to�T1, ↑1(�x), is4011, its prefix with respect to�T2, ↑2(�x), is (4011,15),
the minimal extension of↑1(�x) on �T2, ↓2(↑1(�x)), is (4011,0), the minimal exten-
sion of↑2(�x) on �T3, ↓3(↑2(�x)), is (4011,15,0). It is immediate to see that 15 and 2
can actually be interpreted as nested displacements.

Specializations of upward and downward projections also allow us to define a relation
of temporal ordering �≤ over the temporal universe�T based on the local orderings
�≤1, . . . , �≤n over �T1, . . . , �Tn.

Definition 2.16 (Temporal ordering and equivalence) A temporal ordering over
�T is binary relation�≤ such that, for each pair of vector variables�x, �y,

�x �≤ �y iff ∃i,j(�x ∈′ �Ti ∧ �y ∈′ �Tj ∧ (�x �≤i �y∨ �x �≤j �y)),

where the right-hand side formula is the usual shorthand. On the basis of�≤, it is im-
mediate to define a binary relation�� of temporal equivalence such that, for each pair
of vector variables�x, �y, �x �� �y holds if and only if�x �≤ �y∧ �y �≤ �x holds.

Remark 2.17 The relation of temporal equivalence induces as many classes of
equivalent vectors (clusters) as the vectors belonging to the coarsest domain are. In
particular, it puts in the same class a vector and all its extensions. As a consequence, it
may happen that vectors that are locally ordered become members of the same class,
that is, vectors that are temporally distinguishable with respect to the temporal domain
they finely belong to become temporally indistinguishable with respect to coarser do-
mains.

Just like local ordering relations, local congruence relations can be lifted to the tem-
poral universe�T .

Definition 2.18 (Temporal congruence) For each natural numberd, a temporal

congruence over �T is binary relation�≡d such that, for each pair of vector variables
�x, �y,

�x �≡d �y iff ∃i,j(�x ∈′ �Ti ∧ �y ∈′ �Tj ∧ (�x �≡i,d �y∨ �x �≡j,d �y)).

Finally, let us consider the operation ofmetric displacement. It can be defined in terms
of then local functions�+11, . . . , �+n1 as follows.

Definition 2.19 (Metric displacement) A temporal successor function�+1 is de-
fined over�T such that, for each�x, whose value belongs to�T ,

�y = �x �+ 1 iff ∃i(�x ∈′ �Ti ∧ �y �=i �x �+i 1),

where the formula on the right-hand side is the usual shorthand.
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It is clear that, as long as we are interested in supporting the basic functionalities of
MLTL, a proper fragment ofL2

LM is sufficient, including (uninterpreted) unary predi-
cate symbols, the constant symbol�0, the unary function symbol�+1 (metric displace-
ment), the unary predicate symbols�T1, . . . , �Tn (contextualizations), the binary rela-
tional symbols�≤ (temporal ordering),↑ and↓ (granular displacements),�≡2, �≡3, . . .

(temporal congruences), and quantification over individual variables and (uninter-
preted) unary predicate symbols.

In conclusion, we point out that the theory of finitely-layered metric temporal
structures does not impose any constraint on the relationships among the truth values
of free predicate symbols with respect to the different domains. As an example, it may
happen that a given predicatep is true with respect to some (all) instants of�Ti \ Ti+1

and false with respect to all instants ofT j \ T j+1, with 1 ≤ i < n, 1 < j < n, and
i < j. This situation is described by the following example.

Example 2.20 Consider a temporal universe consisting of three temporal domains
�T1, �T2, and �T3. Assumecf 1,2 = 6 andcf 2,3 = 3. The proposition: “at the current

instant an even number of atomic (�T3) instants have passed” always holds in�T1 \ �T2,
whereas it is true at every odd instant in�T2 \ �T3. A proposition that it is always true
in �T1 \ �T2 and always false in�T2 \ �T3 can now easily be built: “at the current and
next instant an even number of atomic instants have passed.”

However, projection relations can be used to codify specificconsistency rules that,
given the truth value of a formula with respect to a certain domain, allow us to con-
strain its truth value with respect to other domains. For lack of space we won’t give
the actual encoding here.

3 Decidability of finitely-layered metric temporal structures To prove the decid-
ability of the theory of finitely-layered metric temporal structuresTLM, wewill show
how to define a computable functionτ which translates each sentenceϕ of the lan-
guageL2

LM for TLM into a sentenceτ(ϕ) of L2 so thatτ(ϕ) is valid (satisfiable) inS1S
if and only if ϕ is valid (satisfiable) inTLM. The translation is actually performed in
two steps: we first embed finitely-layered metric temporal structures into (flat) metric
temporal structures; then, we reduce metric temporal structures toS1S structures.

The languageL2
M for the theory of (flat) metric temporal structuresTM is the

second-order language with uninterpreted unary predicate symbols, the constant sym-
bol0, the unary function symbol+1, the binary relational symbols≤ and≡2,≡3, . . .,
and quantification over individual variables and unary predicate symbols. As before,
LM denotes the first-order fragment ofL2

M. We interpretL2
M over the natural num-

bersN, with ≤ being interpreted as the usual linear order, and only consider formulas
without free individual variables. Letϕ be a formula ofL2

M with free predicate sym-
bolsp1, ...,pm. As in the case ofL2, an interpretationI for ϕ is given byn setspI

1,
..., pI

m ⊆ N. In such a case,N plays the role of the discrete temporal domain over
which the predicatesp1, ...,pn take value.

In Section3.1, we briefly summarize existing decidability results for real-time
logics. In Section3.2we translate each sentenceϕ of L2

LM into a sentenceτ1(ϕ) of
L2

M; then, in Section3.3we translate each sentenceψ of L2
M into a sentenceτ2(ψ) of

L2. The functionτ is obtained composingτ1 andτ2.
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3.1 Decidability results for real-time logics Real-time logics extend linear propo-
sitional temporal logic (PTL) with an explicit notion of time. PTL is provided with a
notion of state (of computation), and it is interpreted over infinite sequences of (com-
putation) states. It is widely used to specify and verify reactive and concurrent pro-
grams/systems, e.g. Manna and Pnueli [12]. Qualitative timing constraints express-
ing safety and liveness properties of programs/systems can indeed be easily coded in
PTL. As an example, a response property of the form “eachp-state is followed by a
q-state” is specified in PTL by the formula�(p → ♦q).

Let L2 be the second-order language with uninterpreted unary predicate sym-
bols, the binary relational symbol≤, and quantification over individual variables and
unary predicate symbols, andL denote the first-order fragment ofL2. The response
property can be expressed inL by the formula “∀i(p(i) → ∃ j(i ≤ j ∧ q( j))).” PTL
corresponds to a proper subset ofL , but it has the same expressive power ofL (see
Gabbay et al. [10]). L2 can be interpreted over the natural numbersN, with ≤ inter-
preted as the usual linear order. Letϕ be a formula ofL2 with free predicate symbols
p1, ..., pm, and without free individual variables. An interpretationI for ϕ is given
by m setspI

1, ..., pI
m ⊆ N. Alternatively,I can be described as an infinite sequence

of statesσ = σ0, σ1, . . ., with σi ⊆ {p1, . . . , pm} for i ≥ 0, such thatp j ∈ σi if and
only if i ∈ pI

j . The set of models ofϕ, i.e., the set of interpretations that satisfyϕ, is
denoted byM (ϕ). PTL-formulas can be translated intoL-formulas without chang-
ing their set of models.L2 is essentially the language underlying the second-order
theory of one successorS1S, because≤ is definable in terms of the successor and
hence inessential. B̈uchi connectedS1S with finite automata over infinite words [2],
and used this relationship to prove the decidability ofS1S [3].

PTL cannot be used to specify real-time systems, because it cannot express quan-
titative timing constraints, such as deadlines and timing delays. To overcome this
shortcoming PTL has been extended with explicit time references (Timed PTL [1]).
The resulting real-time logics have explicit notions of state and time, and are inter-
preted over infinite sequences oftimed states.

Real-time logics are characterized by three main ‘parameters’: the temporal
domain, the primitive operations defined over it, and the time function that maps
each state into its time. Different choices of the parameter values make the valid-
ity/satisfiability problems for real-time logics decidable or undecidable. Most real-
time logics proposed in the literature cannot be decided, thus failing in establish-
ing the proper balancing between expressiveness and decidability. Some of them re-
cover decidability sacrificing completeness. In [1], Alur and Henzinger showed that
the choice of takingN with linear order and congruence relations as the time the-
ory and constraining the time function to be (at least weakly) monotonic makes real-
time logics decidable. Formally, letL2

T be the temporal extension ofL2 (andLT be
its first-order fragment). Besides the state sort,L2

T has a time sort, over which the
constant 0, the successor function+1, the order relation≤, and the congruence rela-
tions≡2,≡3, . . . are defined. Moreover, a mappingf from states to times is given.
Each interpretationI for ϕ ∈ L2

T can be viewed as a pair(σ, ρ) (sequence of timed
states), whereσ is an infinite sequence of states andρ = f I . The set of models ofϕ
is denoted byMT (ϕ). L2

T -formulas can be used to express properties of sequences of
timed states. As an example, a bounded response time property of the form “eachp-
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state is followed by aq-state within 1 time unit” can be expressed by theLT -formula
“∀i(p(i) → ∃ j(i ≤ j ∧ q( j) ∧ f ( j) ≤ f (i) + 1))”, where f ( j) ≤ f (i) + 1 holds if
and only if either f ( j) = f (i) or f ( j) = f (i) + 1.

A formulaϕ ∈ L2
T is satisfiable (valid) if and only ifϕ is satisfied by at least one

(all) sequence of timed states. The second-order theory of timed state sequences is the
set of all validL2

T -formulas. Timed PTL is an elementary, yet expressively complete,
fragment of such a theory. Alur and Henzinger proved that this theory is decidable,
by showing the finite-state character of temporal information needed to determine the
truth value of aL2

T -formulaϕ with respect to a given interpretationI (information
contained inf I ) [1].

As an example, consider the formula expressing the bounded response time
property. A sequence of timed states for this formula specifies the truth values ofp
andq, and the value off , at each statei ≥ 0. For each statei, let us denote the time
difference f I (i) − f I (i − 1), with f I (−1) = 0, byd f I (i). Even if d f I takes value
over N, to determine the truth value of the considered formula with respect to the
given interpretationI , it suffices to know, for each statei, if d f I (i) is equal to 0, or it
is equal to 1, or it is greater than or equal to 2. This allows us to modeld f I by means of
three monadic predicates over the state sortTdiff 0,Tdiff 1, andTdiff ≥2 only (time-
difference predicates). A notion of extended state sequence for the given formula
can thus be defined as a state sequence in the propositionsp, q,Tdiff 0,Tdiff 1, and
Tdiff ≥2 such that (i) it agrees with the original timed state sequence onp andq,
and (ii) codifies constraints on the time distances between states in terms of time-
difference predicates. The same technique can be used to model time-congruence re-
lations in terms of a finite number of monadictime-congruence predicates Tcong i, j

over the state sort. As a general rule, it is possible to prove that, given a formula
ϕ ∈ L2

T and two interpretationsI andJ for ϕ with the same underlying extended state
sequence,I ∈ MT (ϕ) if and only if J ∈ MT (ϕ)2. This means that the extended state
sequence underlying a given interpretationI contains enough information to decide
whether or notϕ is true with respect toI . Therefore, each formulaϕ can be char-
acterized in terms of the setM ∗

T (ϕ) of the extended state sequences underlying its
interpretations rather than in terms of the setMT (ϕ).

The main outcome of Alur and Henzinger’s decidability results is the method
they outline. They have proved that metric temporal information (differences and
congruences over the time sort) can be modeled by means of a finite set of monadic
predicates over the state sort. Their proof relies on the finite-state character of (met-
ric) temporal information, which can be expressed as follows: each temporal prop-
erty that partitions an infinite set of states (instants) into a finite set of classes can be
finitely modeled and it is then decidable. In the following, we generalize Alur and
Henzinger’s decidability results to finitely-layered metric temporal structures prov-
ing that temporal contextualization and projection can be finitely modeled.

3.2 Flattening the finitely-layered structure Let us define the translation function
τ1 that maps each formulaϕ ∈ L2

LM into a formulaτ1(ϕ) ∈ L2
M. We preliminary re-

place the relations�≤, �≡2, �≡3, . . . (as well as∼,�,�,↑i,↓i) and the function�+1
by their definitions in terms of�T1, . . . , �Tn, �≤1, . . . , �≤n,↑,↓, �≡1,d1 , . . . , �≡n,dn , and
�+11, . . . , �+n1. Moreover, we assume without loss of generality that terms appearing
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in atomic formulas which are not equalities are variables (notice that this is correct in
view of Proposition2.11). We first define the behavior ofτ1 on terms; then, we spec-
ify its application to atomic formulas; finally, we show how to deal with quantifiers
and logical connectives.

Terms ofL2
LM are defined as follows: (i) the zero vector�0 is a term; (ii) each

vector variable�x is a term; (iii) if �t is a term, then�t �+i1 is a term; (iv) nothing else
is a term. The translation of terms is performed by means of the following rules:

τ1(�0) = 0; (r1)

τ1(�x) = x; (r2)

τ1(�t �+im) = τ1(�t) + m · cf i,n, (r3)

where�+im denotesm superpositions of�+i1.
Once the preliminary replacements have been performed, atomic formulas of

L2
LM can only take one of the following forms:

1. �t1 = �t2 (term equality);
2. �x ∈ �Ti (�x belongs to �Ti);
3. �y ∈ ↑(�x) (�y belongs to the upward projection of �x);
4. �y ∈ ↓(�x) (�y belongs to the downward projection of �x);
5. �x �≤i�y (�x ∈ �Ti does not follow �y ∈ �Ti);
6. �x ≡i,d �y (�x ∈ �Ti is congruent modulo b with �y ∈ �Ti);
7. pk(�x) (pk, with 1 ≤ k ≤ m, holds in �x).

In the translationτ1 of a sentenceϕ, each vector variable�x occurring inϕ will be re-
placed byn +1variablesx1, . . . ,xn,x, wherex1, . . . ,xn represent the starting points
of the time intervals ofN to whichxmay belong. Intuitively,x1, . . . ,xn represent the
projections of the (absolute positions of the) components of�x. Whatever the formula
ϕ is, x1, . . . ,xn,x must satisfy the following constraints:

(a) for i = 1, . . . , n − 1, xi ≡cf i,n 0;
(b) for i = 1, . . . , n − 1, xi ≤ xi+1 < xi + cf i,n;
(c) for i = 1, . . . , n, xi ≤ x → x < xi + cf i,n;
(d) x1 ≤ x,

wherecf i,n = cf i,i+1 · . . . · cf n−1,n is the conversion factor between�Ti and �Tn.
The first two conditions codify basic properties of temporal structures: (a) says

that the time instants of�Ti are encoded by intervals starting atk · cf i,n and ending at
(k + 1) · cf i,n, for k = 0,1, . . .; (b) guarantees that the intervals starting atx1, . . . , xn,

are ordered by inclusion according to granularity. Fori ≥ 1, (c) will enforce�x ∈ �Ti to
be equivalent toxi ≤ x. Accordingly, (d) expresses the fact that, for every�x, �x ∈ �T1.

For every vector variable�x, the formulaξ(x1, . . . ,xn,x) defined as:

n−1∧
i=1

(xi ≡cf i,n
0∧ xi ≤ xi+1 < xi + cf i,n) ∧

∧
n∧

i=1

(xi ≤ x → x < xi + cf i,n) ∧ x1 ≤ x,
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will be introduced by the translation in order to guarantee (a)–(d) to hold. Since
each individual variable�x occurring inϕ is quantified,ξ(x1, . . . ,xn,x) will be in-
troduced during the translation of∀�x or of ∃�x to constrain the relationships among
x1, . . . ,xn,x.

3.2.1 Term equality In view of Proposition2.11, atomic formulas of the form (1)
expressing term equality are translated as follows:

τ1(�t1 = �t2) = τ1(�t1) = τ1(�t2).

3.2.2 Contextualizations Atomic formulas of the form (2) constrain (the value of)
�x to belong to a specific domain�Ti of the temporal universe. The application ofτ1,
together with condition (c) inξ(x1, . . . ,xn,x), restricts the set of admissible values
for x to the interval [xi, xi + cf i,n).

Accordingly, the translation of�x ∈ �Ti, with 1 ≤ i ≤ n, isdefined as follows:

τ1(�x ∈ �Ti) = xi ≤ x.

It follows from (c) thatx j ≤ x, for j = 1, . . . , i − 1. Moreover, in view of the above
defined translation of contextualizations and of the compositionality ofτ1 with re-
spect to negations, the translation of thefine membership of�x to �Ti will result in xi ≤ x
andx < xi+1.

3.2.3 Upward and downward projections Atomic formulas of forms (3) and (4)
relate (the values of)�x and�y possibly belonging to different domains. Their transla-
tion is more complex, because neither the domain of�x nor the domain of�y are known
in advance, and therefore the translation must encompass all possible cases. First, (the
value of)�x can belong to any domain. Moreover, if (the value of)�x belongs to�Ti and
(the value of)�y belongs to its upward (resp. downward) projection, then (the value
of) �y can belong to any domain�T j coarser (resp. finer) than�Ti. The translations of
�y ∈ ↑(�x) and�y ∈ ↓(�x) are therefore defined as follows:

τ1(�y ∈ ↑(�x)) = ∃i,j(xi ≤ x < xi+1 ∧ yj ≤ y < yj+1 ∧ j ≤ i∧ xj = yj),

τ1(�y ∈ ↓(�x)) = ∃i,j(xi ≤ x < xi+1 ∧ yj ≤ y < yj+1 ∧ i ≤ j∧ xi = yi),

where both formulas are shorthands for finite disjunctions as usual.

3.2.4 Local orderings and congruences Atomic formulas of the form (5) con-
strain the ordering of (the values of)�x and �y finely belonging to the same temporal
domain�Ti. The ordering relation between�x and�y is translated into an ordering rela-
tion between the starting points of the corresponding intervals:

τ1(�x �≤i �y) = xi ≤ yi.

Atomic formulas of the form (6) constrain (the values of)�x, �y finely belonging to the
same temporal domain�Ti to belong to the same congruence class modulo-d with re-
spect to�Ti. The translation constrains the starting points of the corresponding inter-
vals to belong to the same congruence class modulo-(d · cf in) with respect toN:

τ1(�x ≡i,d �y) = xi ≡d·cf i,n yi.
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Remark 3.1 We assume that�+i1, �≤i, and �≡i,d are applied to variables of the
proper type. Notice, however, that we do not need to check the domains of the ar-
guments of�+i1, �≤i, or �≡i,d whenever they are generated by the expansion of�+1, �≤,

and �≡d, respectively. This fact guarantees that type constraints are satisfied.

3.2.5 Predicates Atomic formulas of the form (7) state the truth of a predicatepk
at �x. As we have already noticed, it may happen that, for example, there exist two
domains�Ti and�T j, with i < j, and a predicatepk such thatpk holds at a given�x ∈′ �Ti

andpk does not hold at any�y ∈′ �T j such that�y ∈′ ↓ j(�x). As aconsequence, for each
predicate symbolpk we need to introducen distinct predicate symbolspk,1, . . .pk,n
to model the truth ofpk with respect to the sets�T1 \ �T2, . . . , �Tn, respectively.3

Besides replacing the predicate symbolpk by then predicate symbolspk,1, ...
pk,n, the translation states that there exists an indexi such thatx is greater than or
equal toxi andpk,i holds atx:

τ1(pk(�x)) = ∃i(xi ≤ x∧ pk,i(x)),

where the translation is a shorthand for a finite disjunction.

3.2.6 Quantifiers and logical connectives Togeneralize the translation function to
anyL2

LM sentence, we must define its behavior on quantifiers and logical connectives.
Each quantification of individual variables∀�x (resp.∃�x) issplit inton quantifications
∀x1, . . . ,∀xn (resp.∃x1, . . . ,∃xn). Moreover, a nested existential quantification of
the variablex is added. Finally, the formulaξ(x1, . . . ,xn,x) is inserted to restrict the
set of admissible values forx1, . . . ,xn,x.

The translation of quantified formulas is thus defined as follows:

τ1(∀�xϕ) = ∀x1, . . . ,∀xn∃x((ξ(x1, . . . ,xn,x) → τ1(ϕ)),

τ1(∃�xϕ) = ∃x1, . . . ,∃xn∃x(ξ(x1, . . . ,xn,x) ∧ τ1(ϕ)).

Remark 3.2 The translation of quantifications over individual variables provides
us with the set of all variables that can possibly occur in the translation of the for-
mula in their scope. Which ones of these variables will actually come into play in the
translation of the quantified formula depends on the contextualizations contained in
the formula (if any).

Each quantification of predicate variables∃pk (resp.∀pk) issplit inton quantifi-
cations∃pk,1, . . . ,∃pk,n (resp.∀pk,1, . . . ,∀pk,n). The corresponding translation of
quantified formulas (existential case) is defined as follows:

τ1(∃pkϕ) = ∃pk,1, . . . ,∃pk,nτ1(ϕ).

Finally, the translation distributes over the logical connectives.

The definition we have adopted for the validity of a given predicatepk on a given
vector�x hides an existential quantifier ranging over the components of�x (pk(�x) holds
if and only if for somej, pk holds on thej-th component of�x). It is useful to compare
the translations ofpk(�x) and¬pk(�x) to see howτ1 deals with the different strength of



274 ANGELO MONTANARI and ALBERTO POLICRITI

positive and negative assertions. In the first case, the resulting formula says that there
existsi such thatpk,i holds atx andxi ≤ x; in the second case, the resulting formula
says that, for alli, eitherx < xi or pk,i does not hold atx (or both). Therefore, the
only way to say that there existsi such that¬pk,i holds atx andxi ≤ x is replacing
¬pk(�x) by nonpk(�x) in the formula¬pk(�x), wherenonpk is a new predicate such
that, for all�x, nonpk holds at�x if and only if pk does not hold at�x.

Let us now prove thatτ1 preserves the satisfiability (validity) of sentences of
L2

LM. By induction on formulas we prove a more general preservation result for
generic formulas, instead of just sentences. We need a semantic counterpart of the
translation functionτ1, mapping interpretationsI for L2

LM into interpretationsJ =
τ1(I ) for L2

M.

Definition 3.3 Let I be an interpretation forL2
LM. The interpretationτ1(I ) for L2

M
is defined as follows. For all free predicate symbolspk in L2

LM,

pτ1(I )
k,i = {x | �x/cf i,n� ∈ pI

k,i}

wherepτ1(I )
k,i is the interpretation of the predicatepk,i ∈ L2

M, andpI
k,i is the restriction

of the interpretation of the predicatepk ∈ L2
LM to the domain�Ti \ �Ti+1.

In the following we prove that the onlyL2
M-interpretations we need to consider in or-

der to check satisfiability/validity are those of the formτ1(I ), for some interpretation
I for L2

LM.
First of all, we show that for any sentenceϕ ∈ L2

LM and any interpretationI for
ϕ, I satisfiesϕ if and only if τ1(I ) satisfiesτ1(ϕ) ∈ L2

M.

Lemma 3.4 Let I be an interpretation for the formula ϕ ∈ L2
LM, with free individ-

ual variables �x1, . . . , �xl. It holds that:

I |= ϕ(�x1, . . . , �xl) iff τ1(I ) |=
l∧

h=1

ξ(xh1, . . . ,x
h
n,x

h) ∧ τ1(ϕ(�x1, . . . , �xl)).

Proof: The proof is by induction onϕ. The case of atomic formulas of the form (1)
is straightforward. Ifϕ is an atomic formula of form (2–7), it is sufficient to observe
that for any satisfying assignment

I (�x) = �t1 = (t11, . . . , t1i ) , I (�y) = �t2 = (t21, . . . , t2j ),

for ϕ with respect toI , the assignment

τ1(I )(x1) = t11 · cf 1,n,

...

τ1(I )(xi) = τ1(I )(x) = t1i · cf i,n

τ1(I )(xi+1) = . . . = τ1(I )(xn) = τ1(I )(xi) + cf i,n,

τ1(I )(y1) = t21 · cf 1,n

...

τ1(I )(yj) = τ1(I )(y) = t2j · cf j,n

τ1(I )(yj+1) = . . . = τ1(I )(yn) = τ1(I )(yj) + cf j,n,
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satisfiesξ(x1, . . . ,xn,x) ∧ ξ(y1, . . . ,yn,y)∧τ1(ϕ) with respect toτ1(I ).
As examples, consider the cases in whichϕ is an atom of the form eitherpk(�x)

or �y ∈ ↑(�x). In the first case,I |= pk(�x) is equivalent to say that there exists a vector
�t = (t1, . . . , ti, . . . , th) such thatti ∈ pI

k,i; therefore, by definition ofτ1(I ),

pτ1(I )
k,i (ti · cf i,n)

holds, and hence the formulaξ(x1, . . . ,xn,x) ∧ ∃i(xi ≤ x∧ pk,i(x)) is satisfied
with respect toτ1(I ) by the above defined assignment. Let us now consider the case

of ϕ = �y ∈ ↑(�x). FromI |= �y ∈ ↑(�x), it follows that there exist�t1 ∈′ Ti and �t2 ∈′ T j

such thatj ≤ i and the assignmentI (�x) = �t1 , I (�y) = �t2 satisfiesϕ. In these hypothe-
ses,t2j = �t1i /cf j,i�. To see that the translated formula

ξ(x1, . . . ,xn,x) ∧ ξ(y1, . . . ,yn,y) ∧
∃i,j(xi ≤ x∧ x < xi+1 ∧ yj ≤ y∧ y < yi+1 ∧ j ≤ i∧ xj = yj),

is satisfied by the above defined assignment, recall thatτ1(I )(x) = τ1(I )(xi) = t1i ·
cf i,n andτ1(I )(y) = τ1(I )(yj) = t2j · cf j,n. It is straightforward to prove that the
formula is satisfied. In particular, notice that

t1j · cf j,n = �t1i · cf i,n/cf j,n� · cf j,n = �t1i /cf j,i� · cf j,n = t2j · cf j,n.

Conversely, given a satisfying assignment

τ1(I )(x1) = a1

...

τ1(I )(xn) = an

τ1(I )(x) = a

τ1(I )(y1) = b1

...

τ1(I )(yn) = bn

τ1(I )(y) = b

for ξ(x1, . . . ,xn,x) ∧ ξ(y1, . . . ,yn,y)∧τ1(ϕ) with respect toτ1(I ), asatisfying as-
signment forϕ with respect toI can be obtained as follows. Leti and j be such that

ai ≤ a < ai+1 andb j ≤ b < b j+1; the vectors�t1 and �t2 defined as

�t1 = (a1/cf 1,n, . . . , ai/cf i,n) , �t2 = (b1/cf 1,n, . . . , b j/cf j,n),

satisfyϕ with respect toI .
For existential quantification over individual variables notice that

I |= ∃�x1ϕ(�x1, . . . , �xl)
is equivalent toI |= ϕ(�x1, . . . , �xl), and the thesis follows directly from the inductive
hypothesis and the definition ofτ1.
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For existential quantification on predicate variables we must show that

I |= ∃pkψ(�x1, . . . , �xl) iff

τ1(I ) |=
l∧

h=1

ξ(xh1, . . . ,x
h
n,x

h) ∧ τ1(∃pkψ(�x1, . . . , �xl)). (∗)

If the left-hand side of(∗) holds, thenI pk |= ψ(�x1, . . . , �xl) for someI pk exten-
sion ofI to the predicate symbolpk. Hence, by inductive hypothesis, we have

τ1(I pk ) |=
l∧

h=1

ξ(xh1, . . . ,x
h
n,x

h) ∧ τ1(ψ(�x1, . . . , �xl)),

from which it is easy to see that the right-hand side of(∗) holds.
Conversely, if the right-hand side of(∗) holds, then there exists an extension

of the interpretationτ1(I ) to the predicatespk,1, . . . ,pk,n, that we can denote by
τ1(I )pk , such thatτ1(I )pk |= ∧l

h=1 ξ(xh1, . . . ,x
h
n,x

h) ∧ τ1(ψ(�x1, . . . , �xl)). In this
case, we can conclude that

τ1
(
I pk )

) |=
l∧

h=1

ξ(xh1, . . . ,x
h
n,x

h) ∧ τ1(ψ(�x1, . . . , �xl)),

whereI pk is the extension ofI to the predicate symbolpk (to see this, one can use
Lemmas 3.6 and 3.8 below and observe thatε (π (τ1(I )pk )) = τ1(I pk )). Now, by
inductive hypothesis,I pk |= ψ(�x1, . . . , �xl), and henceI |= ∃pkψ(�x1, . . . , �xl).

If ϕ(�x1, . . . , �xl) is of the form¬ψ(�x1, . . . , �xl), from the inductive hypothesis,
it follows thatI |= ϕ if and only if

τ1(I ) 
|=
l∧

h=1

ξ(xh1, . . . ,x
h
n,x

h) ∧ τ1(ψ(x1, . . . ,xl)),

namely,τ1(I ) |= ∨l
h=1 ¬ξ(xh1, . . . ,x

h
n,x

h) ∨ τ1(¬ψ(x1, . . . ,xl)). However, as
τ1(I ) |= ∧l

h=1 ξ(xh1, . . . ,x
h
n,x

h), we have that the above is equivalent toτ1(I ) |=∧l
h=1 ξ(xh1, . . . ,x

h
n,x

h) ∧ τ1(¬ψ(x1, . . . ,xl)).
Finally, the case of conjunctions of formulas follows easily from the inductive

hypothesis and the fact thatτ1 distributes over conjunctions. This concludes the
proof.4 �
On the ground of the previous result, we have thatτ1 preserves satisfiability. In order
to prove that also validity is preserved, we show that for any sentenceϕ ∈ L2

LM and
any interpretationJ for τ1(ϕ), there exist an interpretationJ ′ for τ1(ϕ) and an inter-
pretationI for ϕ such thatJ |= τ1(ϕ) iff J ′ |= τ1(ϕ) andJ ′ = τ1(I ). Wewill prove
that, for any formulaϕ ∈ L2

LM, with free individual variables�x1, . . . , �xl,

J |=
l∧

h=1

ξ(xh1, . . . ,x
h
n,x

h) ∧ τ1(ϕ(�x1, . . . , �xl)) iff

J ′ |=
l∧

h=1

ξ(xh1, . . . ,x
h
n,x

h) ∧ τ1(ϕ(�x1, . . . , �xl)).
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For any given interpretationJ , we build the corresponding interpretationJ ′ in
two steps. In the first step, we map the interpretationJ into an interpretationπ(J )

(projection on the starting point) defined as follows.

Definition 3.5 Let J be an interpretation forL2
M satisfying the formula

ψ =
l∧

h=1

ξ(xh1, . . . ,x
h
n,x

h) ∧ τ1(ϕ(�x1, . . . , �xl)).

This implies that, for 1≤ h ≤ l, there existsi such that either 1≤ i < n, J (xhi) ≤ J (xh)
andJ (xhi+1) > J (xh), or i = n andJ (xh) = J (xhi). The interpretationπ(J ) for ψ

assigns to the free individual variables ofψ the same values asJ , andfor j = 1, . . . i
andk = 1, . . . , m, π(J )(xhj) ∈ pπ(J )

k, j if and only if J (xh) ∈ pJ
k, j.

For all the other elementsx of the domain (includingJ (x1), . . . J (xl)), x ∈ pπ(J )
k,i

if and only if x ∈ pJ
k,i, for k = 1, . . . , m andi = 1, . . . , n.

Lemma 3.6 For each formula
∧l

h=1 ξ(xh1, . . . ,x
h
n,x

h) ∧ τ1(ϕ(�x1, . . . , �xl)) and
each interpretation J ,

J |=
l∧

h=1

ξ(xh1, . . . ,x
h
n,x

h) ∧ τ1(ϕ(�x1, . . . , �xl)) iff

π(J ) |=
l∧

h=1

ξ(xh1, . . . ,x
h
n,x

h) ∧ τ1(ϕ(�x1, . . . , �xl)).

The proof is straightforward and is left to the reader.
To obtain the desired interpretation, eachπ-interpretationJ is then mapped into

an interpretationε(J ) (expansion over the whole interval) defined as follows.

Definition 3.7 Let J be an interpretation forL2
M satisfying the formula

ψ =
l∧

h=1

ξ(xh1, . . . ,x
h
n,x

h) ∧ τ1(ϕ(�x1, . . . , �xl)).

The interpretationε(J ) for ψ assigns to the free individual variables ofψ the same
values asJ and fork = 1, . . . , m andi = 1, . . . , n,

pε(J )
k,i = {x | �x/cf i,n� · cf i,n ∈ pJ

k,i}. (1)

ε(J ) is the interpretation that, for everyx ∈ [q · cf i,n, (q + 1) · cf i,n), sets the truth
value of pk,i on x equal to the truth value ofpk,i on q · cf i,n.

The following lemma holds.

Lemma 3.8 For each formula
∧l

h=1 ξ(xh1, . . . ,x
h
n,x

h) ∧ τ1(ϕ(�x1, . . . , �xl)) and
each interpretation J for it,

π(J ) |=
l∧

h=1

ξ(xh1, . . . ,x
h
n,x

h) ∧ τ1(ϕ(�x1, . . . , �xl)) iff

ε(π(J )) |=
l∧

h=1

ξ(xh1, . . . ,x
h
n,x

h) ∧ τ1(ϕ(�x1, . . . , �xl)).
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Moreover, there exists an interpretation I for ϕ(�x1, . . . , �xl ) ∈ L2
LM such that τ1(I ) =

ε(π(J )).

Proof: The formulas we are interested in only constrain the truth values of predi-
cates atx1, . . . , xl. On the other hand, from the definition ofε we have that, for every
pk,i, the truth-value ofε(π(J )) andπ(J ) at x1, . . . , xl is the same, sinceπ(J ) as-
signs the same truth values atx1, . . . , xl and�x1/cf i,n� · cf i,n, . . . , �xl/cf i,n� · cf i,n,

respectively. Therefore, the thesis follows from the definitions ofπ andε.
Furthermore, letI an interpretation forϕ(�x1, . . . , �xl) ∈ L2

LM such that:

pI
k,i = {x | x · cf i,n ∈ pε(π(J ))

k,i }.

It follows thatτ1(I ) = ε(π(J )). �
Notice that everyε-interpretation is aτ1(I ) interpretation, for some interpretationI
for L2

LM.
Now, our main preservation result follows from the previous lemmas.

Theorem 3.9 For every sentence ϕ of L2
LM, with free predicate symbols p1, . . . , pm,

there exists a sentence ψ(= τ1(ϕ)) of L M, with free predicate symbols p1,1, . . . , pm,n,
such that ϕ is valid (satisfiable) in TLM if and only if ψ is valid (satisfiable) in TM.
Furthermore, if ϕ ∈ LLM, then ψ ∈ LM.

Proof: On the one hand, from Lemma3.4, it follows that, for any sentenceϕ ∈ L2
LM,

if ϕ is satisfiable, thenτ1(ϕ) ∈ L2
M is satisfiable, and, conversely, ifτ1(ϕ) is valid, then

ϕ is valid. On the other hand, Lemmas3.6and3.8prove that ifϕ is valid, thenτ1(ϕ)

is valid, and, conversely, ifτ1(ϕ) is satisfiable, thenϕ is satisfiable. �

3.3 Coding metric information The second step of the translation is the mapping
of L2

M formulas intoL2 ones. It is performed by a functionτ2 that reduces each for-
mulaψ ∈ L2

M to a formulaτ2(ψ) ∈ L2 devoid of occurrences of the successor func-
tion and of congruence predicates. Moreover,τ2 does not change the set of free in-
dividual variables ofϕ, so that if ϕ does not contain any free individual variable, no
free individual variables occur inτ2(ϕ).

Before entering into the details of the definition ofτ2, we point out that at this
stage we could simply use the same technique employed in [1] to mapL2

M formulas
into L2 formulas. Even if the theory of metric temporal structuresTM does not sup-
port an explicit notion of state distinct from time5, it can be easily reformulated in
terms of a particular two-sorted second-order theory of timed state sequences whose
time function is the identity function. Nevertheless, we will introduce and briefly dis-
cussτ2, mainly because it turns out to be a (rather elegant and) essentiallycomposi-
tional translation for our setting.

Terms ofL2
M are defined as follows: (i) the zero constant0 is a term; (ii) each

variablex is a term; (iii) ift is a term, thent+ 1 is a term; (iv) nothing else is a term.
In the following, we will use+n as a shorthand forn superpositions of+1. As in
the case ofL2

LM-formulas, we assume without loss of generality that terms appearing
in atomic formulas ofL2

M which are not equalities are variables. Atomic formulas
are of the formst1 = t2,x ≤ y,x ≡d y, andpk(t), wheret1,t2 are terms,x,y are
variables,≤ is the binary ordering relation,≡d is a binary congruence relation, and
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pk is an uninterpreted unary predicate symbol. CompoundL2
M-formulas can be ob-

tained by means of logical connectives and quantifications over individual and predi-
cate variables. In particular, inequalities (
=) and strict inequalities (<) can be defined
in terms of= and≤ in the usual way.

With regard to compoundL2
M-formulas,τ2 distributes over quantifiers, negation,

and conjunction. Therefore, we only need to defineτ2 on atomic formulas. We first
consider atomicL2

M-formulas of the formy = x+ n. We will show that they can be
reduced toL2-formulas involving first-order quantification overn + 1 time variables
and devoid of any occurrence of+1. Moreover, on the basis of the definition of the
successor function, it is straightforward to prove that formulas of the formx + n =
y+ m, with m, n > 0, can be reduced either to formulas of the formx = y+ m′ or to
formulas of the formx+ n′ = y, with m′, n′ ≥ 0 andx+ 0 to be read asx. Let us start
with the casen = 1. Letψ be theL2

M-formulay = x+ 1. The translation functionτ2

transforms it into an equivalent formula devoid of occurrences of+1:

τ2(y = x+ 1) = ∃x1(x < x1 ∧ y = x1 ∧ ∀x̄(x ≤ x̄ ≤ x1 → (x̄ = x∨ x̄ = x1))).

It is easy to generalize this transformation to anyL2
M-formulay = x+ n, with n > 1:

τ2(y = x+ n) = ∃x1, . . . ,xn(x < x1 < . . . < xn ∧ y = xn ∧
∧∀x̄(x ≤ x̄ ≤ xn → (x̄ = x∨ . . . ∨ x̄ = xn))).

The case of atomicL2
M-formulas of the formy = n, wheren stands for0+ n, isanal-

ogous, and thus omitted. Equalities of the formx = y as well as atomic formulas of
the formx ≤ y andpk(x) are left unchanged. Let us consider now atomic formulas
of the formx ≡d y. Each binary congruence relation≡d partitions the set of time
instants intod disjoint classes. For each class of time instants which are congruent
modulod with i, with 0 ≤ i ≤ d − 1, τ2 introduces a monadic predicate of the form
Tcongd,i. It is defined as follows:

τ2(x ≡d y) =
d−1∧
i=0

(Tcongd,i(x) ↔ Tcongd,i(y))

where
∧d−1

i=0 denotes the usual shorthand. Since for every congruence relation≡d

the corresponding predicatesTcongd,0, . . . ,Tcongd,d−1 areuninterpreted monadic
predicate symbols, the following conditions must be added:

(a) for each congruence relation≡d (in ψ), Tcongd,0 holds at time instant 0 (in
τ2(ψ));
(b) for each congruence relation≡d, and each time instantx, there exists one
and only one indexi, with 0 ≤ i ≤ d − 1, such thatTcongd,i holds atx;
(c) for each congruence relation≡d, each indexi, with 0 ≤ i ≤ d − 1, and each
time instantx, if Tcongd,i holds at time instantx, thenTcongd,i+1modd holds
at time instantx + 1.

Condition (a) links time-congruence predicates corresponding to different congru-
ence relations (it provides a sort of initial synchronization); (b) and (c) link time-
congruence predicates corresponding to the same congruence relation. Formally, for
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each congruence relation≡d in ψ, let χ(Tcongd,0, . . . ,Tcongd,d−1) be the formula:

Tcongd,0(0) ∧ ∀x(

d−1∨
i=0

(Tcongd,i(x) ∧
∧
j 
=i

¬Tcongd, j(x)) ∧

∧
d−1∧
i=0

(Tcongd,i(x) → Tcongd,i+1modd(x + 1)))

where the usual shorthands have been used.
The translation ofL2

M-formulasψ is thus defined by adding, for each distinct
congruence relation≡d occurring inψ, the corresponding conjunctχ(Tcongd,0, . . . ,
Tcongd,d−1). The resulting formula belongs toL2. Therefore, in order to prove that
the validity (satisfiability) problem forL2

M is decidable, we only need to show that a
sentenceψ is valid (satisfiable) inTM if and only if τ2(ψ) is valid (satisfiable) inS1S.

Theorem 3.10 For every formula ψ of L2
M, there exists a formula θ of L2, which

contains the additional time-congruence predicates Tcongd1,0, . . . , Tcongd1,d1−1, . . .,
Tcongdl,0, . . . , Tcongdl,dl−1, such that ψ is valid (satisfiable) in TM if and only if θ

is valid (satisfiable) in S1S. Furthermore, if ψ ∈ LM, then θ ∈ L .

Takeτ2(ψ) asθ. The proof is similar to the one given in [1], and thus omitted.
On the basis of Theorems3.9and3.10, wecan conclude that the following holds:

Theorem 3.11 For every formula ϕ of L2
LM, there exists a formula θ (i.e., τ2(τ1(ϕ)))

of L2 such that ϕ is valid (satisfiable) in TLM if and only if θ is valid (satisfiable) in
S1S. Furthermore, if ϕ ∈ LM, then θ ∈ L .

Hence, from the the decidability ofS1S, the decidability ofTLM follows:

Corollary 3.12 The theory of finitely-layered metric temporal structures is decid-
able.

Remark 3.13 The above result can be applied to obtain decidability results for se-
mantically defined metric and layered temporal logics. Indeed, we first identified a
relevant class of temporal structures, namely, the class of finitely-layered metric tem-
poral structures; then, we defined the corresponding theoryTLM and showed that such
atheory can be reduced toS1S. An axiomatic counterpart ofTLM can be obtained ex-
tending a simplified variant ofTPTL (real-time propositional temporal logic), where
state variables are replaced by time variables and© is interpreted as the successor
over time, with contextual and projection operators ofMLT L.

4 Conclusions and further work In this paper we have proved the decidability of
the theory of finitely-layered metric temporal structures through its reduction to the
decidable theoryS1S. Since the validity problem is non-elementary already for the
classical first-order theory of natural numbers with linear order and monadic pred-
icates, it is obviously non-elementary also for the considered theory. Nevertheless,
we expect that modal counterparts of the proposed theory corresponding to an ele-
mentary, yet expressively complete, fragment ofL2

LM can be identified. To this end,
we are currently analyzing suitable propositional fragments of MLTL. We are also
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considering the problem of executing logical specifications. In principle, decidability
proof methods outline an effective procedure to prove the satisfiability and/or validity
of a formula. However, as soon as certain assumptions about the nature of the tem-
poral domain and the available set of operations are relaxed, the satisfiability/validity
problem becomes (strongly) undecidable. In this respect, proof-theoretic approaches
seem to offer a valid alternative, e.g., D’Agostino et al. in [5]. Finally, in [16] we ex-
tended the decidability results given in this paper toω-layered metric temporal struc-
tures consisting of a denumerable set of (either arbitrarily coarse or arbitrarily fine)
temporal domains.
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NOTES

1. More precisely, the problem of checking the validity of a formulaF can be reduced to
the decidable problem of checking whether or not the language recognized by the Büchi
automaton corresponding to¬F is empty, whereas the problem of checking the satisfi-
ability of a formulaF can be reduced to the decidable problem of checking whether or
not the language recognized by the Büchi automaton corresponding toF is not empty.

2. The original proof is given in [1]. Corrections and remarks on this proof can be found
in Montanari and Policriti [15].

3. The addition of the consistency rule would make such a splitting ofpk unnecessary.

4. Notice that, if theL2
LM-formula ϕ is a sentence, the correspondingL2

M-formula is the
sentenceτ1(ϕ) (no free variables occur inϕ).

5. It is worth noting that a differentiation between the notions of state and time can be re-
covered using granularity. Upward projection can indeed map two time instants which
are distinct with respect to the domain they finely belong to into the same time instant
of a coarser domain. With respect to the coarser domain, the original time instants can
be viewed as an ordered pair of simultaneous states.
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