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Minimal Temporal Epistemic Logic

JOERI ENGELFRIET

Abstract  In the study of nonmonotonic reasoning the main emphasis has
been on static (declarative) aspects. Only recently has there been interest in the
dynamic aspects of reasoning processes, particularly in artificial intelligence.
We study the dynamicsof reasoning processesby using atemporal logic to spec-
ify them and to reason about their properties, just asis common in theoretical
computer science. Thislogic is composed of a base temporal epistemic logic
with apreferencerelation on models, and an associated nonmonotonic inference
relation, inthe style of Shoham, to account for the nonmonotonicity. \We present
an axiomatic proof system for the base logic and study decidability and com-
plexity for both the base logic and the nonmonotonic inference relation based
onit. Then we look at an interesting class of formulas, prove a representation
result for it, and provide alink with the rule of monotonicity.

1 Introduction In theoretical computer science, tempora logic has been widely
recognized asavaluabletool for specifying processes and reasoning about their prop-
erties. In the study of nonmonotonic reasoning the temporal view is not very com-
mon, partly because (nonmonotonic) logic is usually thought of asa purely static no-
tion. However, in nonmonotonic reasoning dynamic aspects of reasoning processes
can be interesting to study and often influence the static aspects, just as is common
in computer science, where we often have declarative semantics next to procedural
semantics of processes. There are also differences between the notion of processin
computer science and a reasoning process, for instance in the nature of a state: in a
computer it iscomposed of the values of the variables, whereasin areasoning process
it consists of the facts which are believed (or derived) at that time.

A number of examples in which atemporal logic is used to specify reasoning
processes can be found in Engelfriet and Treur [[E], where such specifications are in-
troduced for default logic (see Reiter [|:L_8_]), classical inference systems, and meta-
level architectures. Also, in Engelfriet and Treur [[7] it is shown that there exists a
large class of reasoning processes that can be specified in thistemporal logic. There-
fore it seems justified to study this temporal logic formalism in more detail, which
will be done in the present paper.

In Section 2 weintroduce thetemporal logic whichisthe basisof the framework,
and in Section 3 an extrarestriction is imposed upon thislogic. Section 4 describes



234 JOERI ENGELFRIET

the notions of minima models and minimal entailment which will be studied in the
rest of the paper. In Section 5 decidability of thisnotion is established, and Section 6
gives complexity resultsfor both the base logic and minimal entailment. In Section 7
we look at aspecial class of formulas and prove alink with the rule of monotonicity.
Section 8 gives conclusions and suggestions for further research.

2 Temporal epistemic logic When designing alogic capable of describing the be-
havior of reasoning processes over time, two important decisions have to be made:
which temporal ontology is suited best for the purpose, and what is a state in area
soning process? We view a reasoning process, performed by an agent for instance,
as a stepwise process. the agent starts out with someinitial facts (possibly none) and
attemptsto derive consequences by applying rules; anew state in which the agent has
more knowledge results. The agent will then try again to derive new factsresulting in
anext state, et cetera, possibly ad infinitum. Thissuggestsatemporal ontology which
isdiscrete and hasastarting point (the natural numbers seem most suited). In theoret-
ical computer science there has been much debate about whether time should belinear
or branching (towardsthe future) (see de Bakker, de Roever, and Rozenberg [B]). The
most important differences between these two approaches are that linear time logics
havein general alower complexity but also less expressivity than the corresponding
branching time logics. Although some resultsin [[6] on specifying proof systemsin
temporal logic seem to suggest that sometimes the higher expressivity of branching
time logic is needed, we will confine ourselves here to using linear time.

As suggested above, the important thing about the state of areasoning agent at
a particular moment is the knowledge he has derived. Kripke semantics can be used
to formalize such an information state. We will take propositional logic as the basic
language in which the agent can describe hisknowledge. A modal operator K will be
used to denote the agent’s knowledge. In principle the agent may perform (positive
and negative) introspection, which suggests an S5 logic to describe knowledge.

Definition 2.1 (Epistemic language) Let P bea(finite or countably infinite) set of
propositional atoms. The language Lss isthe smallest set closed under:

1 if pe Pthen pe Lgs;
2. ifp, Y e LesthenKe, o Ay, =g € Les.

Furthermore, we introduce the following abbreviations:

VY =—(—pA—Y),
o —=>Y=—pV,

My =-K=gp,
T=pVv-—p,
1 =-=T.

If every atom occurring in aformula ¢ isin the scope of aK operator, we call ¢ sub-
jective.

An example of asubjective formulais—K p A K(q— p), whereasK(pA Q) V sis
not subjective. In the rest of this paper we will be especially interested in subjective
formulas since they describe (only) the knowledge and ignorance of the agent. As
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we want to talk about the knowledge of the agent changing over time, the epistemic
language will be temporalized below.

In the usual S5 semantics a model is a triple (W, R, ) where W is a set of
worlds, Risan equivaence relation on W, and = is afunction that assigns a propo-
sitional valuation to each world in W. We may however (see e.g. Meyer and van der
Hoek [[16]), in the case of one agent, restrict ourselvesto normal S5-models, inwhich
therelation isuniversal (each world isaccessible from every other world) and worlds
are identified with propositional valuations.

Definition 2.2 (S5 semantics) A propositional valuation of signature P is afunc-
tion from P into {0, 1}, where O stands for false and 1 for true. The set of such valu-
ations will be denoted by Mod(P). A norma S5-model M is anonempty set of val-
uations. The truth of an S5-formula ¢ in such amodel, evaluated in aworld me M,
denoted (M, m) =5 ¢, isdefined inductively:

MmEsp < mp=1forpeP (D)
(MM Ess oAy < (M,m) Esspand (M, m) g5 ¢ 2
(M, m) Eg5 ¢ <<= itisnotthecasethat (M, m) g5 ¢ 3
M,m) Es Ky <= (M, m) k=5 ¢ forevery m' € M. 4

A pair (M, m) where M isanormal S5-model andm e M (thecurrent world) iscalled
an epistemic state, and the set of such pairsis denoted by ES(P), or simply ES.

Itiseasy to seethat the truth of a subjective S5-formulain amodel isindependent of
the world in which it is evaluated, so if we restrict ourselves to subjective formulas,
the world min which it is evaluated is often left out.

Remark 2.3 Notethat an S5-formulais subjectiveif and only if it is equivaent to
aformulaof the form K ¢ with ¢ € Lgs.

Axiomatizations for S5 are known from the literature (e.g. Hal pern and Moses [L3)).
Definition 2.4 (Axiom system for S5)  The axiom system of S5 consists of:
1. All instances of propositional tautologies

2. Klg—>1y)—> Ke—>Ky) (K)
3. Kp—>o (M)
4. Ko — KKy (Positive Introspection)
5. =Kg—> K=Ky (Negative Introspection)
and the following two rules:
1 w (Modus Ponens)
v
% o
2. — (Necessitation)
Ko

If thereisa proof for ¢ using this system, we will denote this by Fg5 ¢.

Itiswell known that this system is sound and complete with respect to the class
of normal S5-models.

In order to describe past and future we will introduce temporal operators P, H,
F, G, and [J, standing for “sometimesin the past,” “awaysin the past,” “sometimes
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inthe future,” “alwaysin thefuture,” and “always’ respectively. Note that we do not
want to talk about the agent’s knowledge of the future and past, but about the future
and past of the agent’s knowledge. Therefore temporal operators need never occur
within the scope of the epistemic K operator. Thisisreflected in the definition of the
temporal epistemic language.

Definition 2.5 (Tempora epistemic language) The language L1g, is the smallest
set closed under:

1. if(pe Lg5then(p€ LreL;
2. if a, B € L1eL then o A B, —a, Pa, Fo € Lt .

Again the abbreviationsfor v, —, T, and L are introduced, aswell as:

Gu = —F—a,
Ho = - P-q, and
Oo = Hoe A a A Ga.

If in the first clause we restrict ourselves to subjective S5-formulas, we get the
set of subjective TEL-formulas.

In the rest of this paper we will be interested in subjective TEL-formulas since
they describe how the knowledge of the agent changes over time. Based on the set of
natural numbers (starting at zero) as flow of time and the notion of epistemic state as
formalization of astate, the following semanticsisintroduced for temporal epistemic
logic (TEL).

Definition 2.6 (Semanticsof TEL) A TEL-model isafunction M : N — ES. The
truth of aformulag € L1g in M attimepointt € N, denoted (M, t) = ¢, isdefined
inductively asfollows:

MOEe = MO Ese ifpeLls @
M)Ay = Mt E=gpandMt) =y )
(M,t) |E—¢ <= itisnotthecasethat (M, 1) = ¢ 3)
(M,t) =Py <= 3seNsuchthats<tand(M,s) =g (%)
(M,t)=Fp <= 3seNsuchthatt <sand (M,s) = (5)

A formulag istrueinamodel M, denoted M = ¢, ifforalte N, (M, t) =¢. If ¢
istruein al modelswewrite = ¢ (¢ isvalid), and wewrite ¢ = ¢ (¢ isasemantical
consequence of v) if for all models M andt e N, (M, t) = v implies (M, 1) = o.
We will often write M for M (t).

For future use we give the following definition. (Here O' stands for a sequence of O
operators of length i, where O € {P, H, F, G, [J}. Furthermore 0% stands for a.)

Definition 2.7 Fori € N defineat; := P'T A HIT1 1.

Itiseasy to seethat (M, j) = atj if andonly if i = .

Wewould liketo find an axiom system for TEL. Theideaisto use the axioms of
an S5-system together with axioms for tense logic over the natural numbers. Instead
of proving soundness and compl etenessfor the resulting system from scratch, we will
use results from Finger and Gabbay [B] where a general method for temporalizing a
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given logic system is presented. In their notation, TEL would be T(S5). We cannot
directly apply their results since they use the temporal operators Since and Until, but
adaptation to our situation iseasy. Our class of flows of time contains only the set of
natural numbers. First wewill give an axiomatic system for propositional tense logic
over the natural numbers (from Goldblatt [IQ]}), which is sound and complete with
respect to N.

Definition 2.8 (Tense logic over the natural numbers)  The axiom system for tense
logic over N consists of:

1. All instances of propositional tautologies
2. Glp— ¥)— (Gp - Gy)
3. H(p— ¢¥)— (Hp— Hy)
4, ¢ — HFg (Cp)
5 ¢ — GPg (Cp)
6. Hyp —> HHgp (4p)
7. Gy — GGy (4¢)
8. F(T) (Dr)
9. G(Gyp — ¢) — (FGp — Gp) (ZF)
10. H(Hp — ¢) — Hop (Wp)
and the following rules:
—> Y
1. LA (Modus Ponens)
Y
2. . e (Necessitation)
Gy Ho

Using the axiom systemsfor S5 and tense logic, Definition 2.6 of [B] allowsusto give
an axiomatization for TEL.

Definition 2.9 (Axiomatization for TEL) The axiom system of TEL consists of:

1. The axioms 1-10 of Definition[2.8]
2. Theinferencerules 1 and 2 of Definition 28]
3. Forevery formulaw € Les, if Fgs o then rg o (Preserve).

Using Theorem 2.2 of [[8], soundness of S5 and soundness of the axiom system for
tense logic over N, we immediately have the following theorem.

Theorem 2.10 (Soundnessof TEL) The axiom system TEL is sound.

Theorem 2.3 of [[8] statesthat if the system to be temporalized is complete and the ax-
iomatization of thelogic with Since and Until is complete over aclass of linear flows
of time, thenthe“merged” axiomeatization iscompletefor thetemporalized logic. Our
class of flows of time (consisting only of the natural numbers) isa subclass of thelin-
ear flows of time. A slight adaptation of their proof yields the same result for tempo-
ralizing over the temporal operators used in TEL. Therefore we have the following.

Theorem 2.11 (Completenessof TEL) The axiom system TEL is complete.



238 JOERI ENGELFRIET

Again borrowing from [8], Theorem 3.1, and using the fact that both S5 ([[16]) and
tense logic over the natural numbers (Sistlaand Clarke [[I9]) are decidable, we have
the following theorem.

Theorem 2.12 (Decidability of TEL) Thelogic TEL isdecidable.

In the next section we will impose an extrarestriction on our models.

3 Conservativity We want to use subjective tempora formulas for describing the
behavior of areasoning agent. The reasoning will be assumed to be conservative,
that is, the agent’s knowledge will increase as he is reasoning. Although the actual
implementation of the reasoning behavior may involve backtracking or the addition
of extra assumptions which may later be retracted, we are interested only in the in-
crease of knowledge over time: adding assumptions and later retracting them is as-
sumed to be donein one step. This presupposes a world which does not change. We
will restrict ourselves to conservative behavior here, though we agree that it may be
worthwhile to investigate nonconservative behavior as well.

In the following we are interested only in subjective formulas, so we delete the
world from the epistemic state. Thusin the following, we consider ESto be the set of
al normal S5-models, i.e., the powerset of Mod(P) without the empty set. We will
study conseguence relations between formulas, and it will turn out that these notions
are independent of the propositional signature. Therefore the propositional signature
can and will be assumed to be finite.

Definition 3.1 (Conservative models)

1. We define the degree-of-information ordering < on information states as fol-
lows:
for My, M, e ES, M1 < My < M, C M;

We write M; < My if M; < M, and M, #* M.
2. A TEL-model M iscaled conservativeif for all se N:

Ms < Ms+1

3. Validity and semantical consequence restricted to the class of conservative
models (TEL c-models) will be denoted by |=°.

The definition of the degree-of-information ordering is based on the observation that
the more valuations one considersto be possible, the less knowledge (or information)
onehas. Notethat for any conservative model M, time point s € N, and propositional
formulag: if (M, s) =Ke, thenfort > salso (M, t) = K ¢. Thismeansthat when-
ever apropositional formulais known, it will remain known in the future.

The notions = and = are not compact: the set {P'(T)|i € N} isnot satisfiable,
whereas each finite subset is (for both notions).

Proposition 3.2 (Axiomatization) Let C = {0(Ka — G(K«a))|« a propositional
formula}. For each TEL-model M the following are equivalent:

1. M isconservative
2. M=C
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3. (M, 1) =C for somet € N.

Furthermore, the axiom system TELC, consisting of TEL plus the axioms of C, is
sound and compl ete with respect to the class of TEL c-models.

Proof: Let M be conservativeand lett € N. Suppose (M, t) = Ko and takes > t
arbitrary. Thenfor al me My, m=a. Takem e M, then since M is conservative
we have Ms € M, some M; and m = «. Therefore (M, s) = Ka, and since
s was arbitrary we have (M, t) = G(Ka), s0 (M, t) = Ka — G(Ka). We have
(M,0) E0Ka = G(Ka)).

Suppose on the other hand that (M, t) = C for somet € N, but M is not con-
servative. Then thereexistss € N and me Mg, 1 withm ¢ M. Let o be the con-
junction of the literals that are truein m(i.e., om = /A\{p € PImE= p} A A{—PpIp €
P, m i~ p}; thisisapropositional formula since P was assumed finite in the remark
above DefinitionB.1). Thensincem ¢ M and for all m' £ m, m' = —¢m, we have
(M, s) = K(—gm), but asm e Mgy and m b= —gm, (M, s+ 1) = K(—gm), SO
(M, s) = G(K(=¢m)). Thus (M, t) = O(K(=¢m) — G(K(=¢m))), acontradic-
tion.

The above shows that the axioms of C are sound. Now suppose =° ¢, then we
havefor all TEL-models M: if M isconservativethen M = ¢. Sincethere are only
a finite number of nonequivalent propositional formulas over P, C can be taken to
be finite, and therefore we can take the conjunction of its elements. So if (M, s) |=
/\ C then M is conservative, so M = ¢, and therefore (M, s) = ¢. Thus we have
/\ C E ¢, and using the deduction lemma for TEL (which can be easily verified),
= /\ C — ¢, fromwhich by the completenessof TEL it followsthat -rg. A C — ¢.
Since TELC contains TEL and the axioms of C and has Modus Ponens as inference
rule, we conclude Frgc ¢. O

We aso havethat TELC is decidable.
Proposition 3.3 (Decidability of TELC) Thelogic TELC isdecidable.

Proof:  Checking whether 1g ¢ ¢ reduces to checking Hrg. A C — ¢, where C
isthe set of rules (Ko — G(Kw)) for al nonequivalent propositional formulas «
in the proposition letters of ¢. Thisis decidable by Theorem O

Using TELC as our base logic we will now consider minimal conservative models
and minimal entailment.

4 Minimal modelsand minimal entailment  To describe the behavior of areason-
ing agent over time, we assume we have afinite number of subjective TEL-formulas
(or just asingle one, the finite conjunction of these formulas). Weareinterested inthe
consequences of this description. It is for instance possible to describe the behavior
of an agent performing default reasoning by translating a default rule (« : 8)/y into
the TEL-rule Ko A G(=K—=8) — G(K y), as described in Engelfriet and Treur [[5].
This description forces conclusions to be added in certain circumstances. However,
we want the knowledge of the agent to be minimal: only those facts should be known
which are prescribed by the description to be known, and no other facts. So we make
the explicit assumption that “all the agent knows” iswhat is dictated by the descrip-
tion. Apart from thetemporal aspect, thisissimilar in spirit to the theory of epistemic
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states of Halpern and Moses [[12], introduced to formalize the notion of “knowing
only ¢.” For abroader discussion of minimalization of models, see for instance van
Benthem [21].

We will formalize this minimality by introducing a preference relation over
TEL c-models which favors models with as little propositional knowledge as possi-
ble. Formulas are assumed to be subjective.

Definition 4.1 (Minima models and entailment)
1. We extend the degree of information ordering to TEL c-models M, N

M<N << fordlseN: Ms< N

Wewrite M < N if M < N and M # N

2. A TELc-model M isaminimal conservative model of ¢, denoted M |=pin ¢,
if M = ¢ and for all conservative models A/, if N = ¢ and N\ < M then
N =M.

3. For TEL-formulas ¢, v, we say ¢ isaminimal conservative consequence of v
or ¢ minimally entails ¢, denoted v =5, ¢, if for al minimal conservative
models M of ¢, M = ¢ holds.

For a subjective formula ¢ (which describes the reasoning of an agent), its minimal
models represent the process of the agent’s reasoning in time. We can then use min-
imal consequence to infer properties of this reasoning process.

Note that the notion of minimal entailment strengthens the notion of conserva-
tive entailment in the sense that ¢ [=° v implies ¢ == . An easy example, even
without temporal operators, shows that it is a proper extension: although K p (¢
—Kqg, wedo haveK p =5 —KQ.

The minimal consequence relation defined here on TEL -formulas can be seen as
atemporalization of Ground S5 (or Minimal Sb) as studied in for example Donini,
Nardi, and Rosati [£], which in turn is a generalization of the entailment relation
of mentioned before. Semantically, Minimal S5 can be defined in a way sim-
ilar to minimal conservative consequence: anormal S5-model M isaminimal model
of an S5-formulaw if M =g5 Ko and for al S5-models N, if N =ss Keand N < M
(where < isthe degree-of -information ordering on S5-models of Definiti onlﬁ, then
N = M. For S5-formulasa, g, wedefinea =2 gif K gistrueinall minimal models

min
of «. Thefollowing is easy to prove.
Proposition 4.2 Let «, 8 be S5-formulas, then:

a =R B = Ka =S K.

So there is an almost trivial reduction of Minimal S5 to our minimal conservative
consequence. We will use this fact later on when we discuss complexity. If K« has
only one minimal model, then « is called honest, and when we restrict the premises
to honest formulas, we get the entailment relation of [12].

Sinceweareworking with afixed propositional signature P, the abovedefinition
of minimal entailment seems to depend on P, but thisis not actually the case.

Proposition 4.3  Thenotion ;. isindependent of the propositional signature.
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Proof: For a propositional signature P we write Lp to denote the temporal epis-
temic language based on P and P-=F,  to denote the associated notion of minimal
conservative conseguence. It is sufficient to show that for two signatures P, Q with
P € Q we have that for all formulas ¢, ¥ in Lp : ¢ P-=5;, ¢ if and only if ¢ Q-

C

.3

mlnLet P, Q betwo propositional signatureswith P € Q. For apropositiona valu-

ation m of signature Q, m|p denotes the restriction of mto atoms of P. Consider the

following constructions:
e For aTEL-model M based on Q, we defineitsrestrictionto P, M |p by:

(M|p)s={m|p: me Ms}.
e For aTEL-model M based on P, we defineits extension to Q, M| by:
(M|9)s = {me Mod(Q) : mlp € Ms}.

By inductionon ¢ € Lp itiseasy to seethat truth of ¢ at apointintimeis preserved
under these constructions.

Now suppose that M is a conservative TEL-model based on Q and M =pin ¢
(with the notion of =i based on Q). Then M|p Emin ¢ (With the notion of =pin
based on P): for suppose \ isaconservative TEL-model based on P with A\l < M|p
and N\ k= ¢, then (1) N[|Q < M and N|° = .

Conversely, suppose that M is a conservative TEL-model based on P and
M =min @. Then M| =nmin ¢: for suppose N is a conservative TEL-model based
on Qwith Al < MR and A = ¢, then (1) N|p < M and N|p = ¢.

Itisnow easy to seethat ¢ P-I=/, v if and only if ¢ Q-F=F, | V. O
Asan exampleof the use of these notions, it has been shownin [|5] that minimal entail-
ment can capture skeptical consequence in default logic (see [18]). A default theory
consists of a set of propositional formulas, called the axioms and denoted by W, and
aset D of defaults of theform (« : B)/y, where «, 8, and y are propositional formu-
las. Such a default has the intended meaning: if you believe « and g is consistent
with your beliefs, then you should also believe y. The theory of Reiter ([18]) then
prescribes how, using the default rules, you can extend W to a set of formulas, called
an extension.

Definition 4.4 (Reiter extension) Let (W, D) be a default theory. A set of propo-
sitional sentences E is a Reiter extension of (W, D) if and only if:

E = UEi with
i=0

Eqg = Cn(W) andfori >0:
Eiri = Cn(EiU{yl(a:B)/yeD,aeEand—p¢E}),

where Cn(A) denotes the set of al propositional consequences of A.

Note that in the definition, the sets E; depend on E, making the definition noncon-
structive. In general for a default theory there may be multiple extensions. If afor-
mula g isin al of these extensions, we call ¢ a skeptical consequence of the default
theory.
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Example 4.5 (Default logic)  Let afinite default theory A = (W, D) be given and
let v = A{Ka A G(=K=8) > G(Ky)|(«: B)/y € D} A AlKala € W}. Then ¢
isaskeptical consequence of A if and only if ¥ =S, F(K ) (see[B]).

min
We are interested in the complexity of minimal entailment; we will first concentrate
on the decidability.

5 Decidability of minimal entailment  The first question to be asked when inves-
tigating the complexity of anotion iswhether it is decidable. The notion of minimal
entailment will turn out to be decidable, but in order to prove that we will first need
some lemmas.

Observation 5.1 A conservative TEL-model M consists of a sequence of normal
S5-models. Thesemodels consist of afinite number of propositional valuations, since
P is assumed to be finite. Furthermore the sequence is (not necessarily strictly) de-
creasing. Therefore there must exist atime point s € N suchthat foralt > s: My =
M. If 59 isthe smallest point for which thisistrue, we say that M stabilizes at .

Since all TELC-models stabilize, it is possible to store them in finite space.

Theideain the proof of decidability isthat for each formulay thereisanumber
Ny such that a minimal mode! of ¥ must stabilize before ny,. Then thereisonly a
finite number of models to be checked, and since they stabilize, it is always possible
to check whether atemporal formulaholdsinthem. To obtain the upper bound n,, one
reasonsthat if there existsalong enough sequence of identical statesinamaodel before
it stabilizes, then it is possible to insert an extra (identical) state into this sequence
without disturbing the truth of . Since this enlarged model is smaller (with respect
to <) thantheoriginal, the original model could not have been aminimal model of .
The length of such a sequence depends on the depth of nesting of temporal operators
in ¥. We will now formalize these ideas.

Definition 5.2 (Depth)  The depth of nesting of temporal operators in a formula
@, depth(e), is defined inductively asfollows:

e depth(¢) =0,if p € Lgs

e depth(a A ) = max{depth(«), depth(B)}
e depth(—«) = depth(x)

e depth(Pa) = depth(Fa) = depth(a) + 1

The first lemma states that in a sequence of identical states, formulas with small
enough depth cannot discriminate between statesin the middl e of the sequence. Lem-
mas[5.3][5.4) and Fact[5.5lare also valid for nonsubjective formulas.

Lemmab5.3 |If M isaTEL-model such that for some N > 1, s> N:
Ms=Msij=Ms; foralll<i<N,
then for all ¢ with depth(¢) < Nand 1 < j < N — depth(¢):

M,s—DEes (M) Eps (M,s+)) Eg.
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Proof: By induction on ¢, where the only interesting cases are the temporal opera-
tors (the abbreviation “i.h.” stands for induction hypothesis).

Fa: Let1l < j < N—depth(Fa). Theimplicationsfrom right to left aretrivial,
sowewill proveonly (M, s— j) = Fa = (M, s+ j) = Fa. Suppose (M, s— ) =
Fa. Thereexistsne N, n> s— jwith (M, n) = a. Ifn> s+ jthen (M, s+ j) =
Fa,sosupposes— j < n< s+ j.

1 Ifn=s—kwithl<k< jthenl<k< j < N-—depth(Fe) < N — depth(«)
and by thei.h. we get (M, s) = .
2. If n=sthen (M, s) = .
3. Ifn=s+kwithl<k<jthenl<k<j<N-—depth(Fa) < N —depth(x),
so by thei.h. (M, s) = a.
Sowehave (M,s) eaeand1< j+1< N— (depth(Fa) — 1) = N — depth(x), S0
by thei.h. wehave (M, s+ (j+ 1)) = a,andso (M, s+ j) = Fa.
Pa: Analogousto Fa. O

We will often use thislemmawith j = 1 and N = depth(¢) + 1. The following ex-
ample shows that we really need that many identical states.

e «  KpKg

This picture represents the model in which nothing is known at time point O, p is
known from time point 1 onwards, and g is known from time point 5. We have
(M, 3) = G(Kq) but (M,3+ 1) = G(Kq) (we need an extra K p state between
4and5); also (M,2—1) = H(=K p) but (M, 2) = H(—=K p) (we need an extra
K p state between 0 and 1).

The next lemma shows that if we have a sequence of identical states, amiddle
state can be duplicated or removed without changing the truth of formulas with suf-
ficiently small depth of operator-nesting.

Lemmab54 Let M beamode asin Lemmal=3] Define f : N — N asfollows:

n ifn<s
n—1 ifn>s.

f(n):{

and let A\’ be a model satisfying A; = M ;) for all i € N. Then for all formulas ¢
with depth(¢) < N we have:

N, DEep & M, f(i)) =¢foralieN.
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Proof: By induction on ¢, where the only nontrivial cases are the operators (for
which we will take H and G).

Ho: Suppose (A, i) = He. Takek < f(i). Thenthere existst < i such that
f(t) = kandthen (N, t) = ¢, so by thei.h. (M, k) = ¢. Thus (M, f(i)) = He.
Suppose (M, f(i)) = He.
o Ifi < s takek < ithen f(k) < (i), so (M, f(k)) = ¢ and by the i.h.
(N, K) = ¢. Wehave (N, i) = He.
o Ifi>s+1, takek < i;

— Ifk# sthen f(k) < f(i),s0 (M, f(k)) = ¢ and by thei.h. (A, k) = .

— Ifk=sthens—1 < f(i),s0 (M,s—1) = ¢. Asdepth(Hp) < N we
have 1 < 1 < N — depth(¢), and by LemmalE3lwe have (M, s) = ¢.
By thei.h. (N, s) = ¢, or (N, K) = ¢.

Sowe have (A, i) = Ho.
Gy: Analogous. O

The following picture sketches the situation with N = 2.

° ° ° ° o\ \ M
° ° ° ° ° ° N
I S_INI é I S-Ii_NI I

Another way of proving this lemma is to show that there exist bisimulations up to
N between these two models. The main use of the lemmal lies in the possibility of
enlarging or reducing sequences of identical statesinamodel without disturbing truth
of formulas with sufficiently small depth of nesting.

Fact 5.5 For themodels M, A\ of Lemmal5.4lthe following holds: if M isconser-
vative then A is conservative and vice versa, A < M, and if there existst > s+ N
such that My < My, 1 then N < M.

Proof: Takes e N, then A= M. Since f(s) < sand M is conservative we
have M ¢s) < Mss0 Ns < M. If thereexistst > s+ N such that My < M1 then
Nip1 = Miayr = My < M. U

Thisfact and the previous lemma allow us to conclude that for each formulathereis
atime point such that the minimal models of the formula must stabilize before this
point. From now on we will again restrict ourselves to subjective formulas.
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Lemmab.6 Suppose the propositional signature P consists of n atoms. If a con-
servative model M of signature P isa minimal model of a subjective formula ¢ then
it stabilizes on or before time point (2" — 1) - 2 - depth(p).

Proof:  First we will show that aminimal model 9 of ¢ cannot have more than 2 -
depth(g) successive identical states before it stabilizes. Suppose M =min ¢ and it
has at least 2 - depth(¢) + 1 successive identical states before it stabilizes. So there
exists s > depth(¢) such that Ms = Mg, = Mo for al 1 < i < depth(e), and
t > s+ depth(p) such that M < M, 1. Now consider the model 9\ as described
in LemmalB.4] Since M = ¢ we have A = ¢, and by Fact ESlwe have A\ < M.
Therefore M cannot be aminimal mode! of ¢.

As P has n atoms, there exist 2" different propositional models. Since a con-
servative model M consists of a decreasing sequence of (nonempty) sets of propo-
sitional models, there are at most 2" — 1 points s such that Ms < Mgyq. If M is
a minima model of ¢ then there can be at most 2 - depth(¢) successive identical
states before it stabilizes, and therefore M must stabilize on or before time point
(2" —1) - 2- depth(gp). O

Lemmab5.7 For aconservative model M, s € N and a formula ¢ it is decidable
whether (M, s) = o.

Proof: Suppose we have a conservative model M and s € N. By Observation[5.1]
M stabilizes at some point . It is easily seen from Lemmal5.3%that for a formula
pwehave (M,t) = ¢ < (M,u) = ¢foralt,u> sg+ depth(p). Then use
induction on ¢. O

Most importantly, it is decidable if amodel is aminima model of a subjective for-
mula.

Lemma5.8 For aconservativemodel A and a subjectiveformula ¢ itisdecidable

Proof: First, we need to check whether M = ¢, which is equivalent to checking
(M, 0) = O, which is decidable by Lemmal[5.7] Suppose P has n atoms. If M
stabilizes after time point (2" — 1) - 2 - depth(g) it is not a minimal model of ¢ by
Lemmal5.6] So suppose M = ¢ and M stabilizes on or before time point (2" — 1) -
2 - depth(g).

In order to check whether M =nin @ We haveto seeif there existsaconservative
model smaller than M which satisfies ¢. Of course in general there are an infinite
number of conservative models smaller than M, but we will show that we have only
to consider models which stabilize not later than time point (2" — 1) - (4 - depth(g) +
1). Inother words, wewill show that if there existsaconservative model smaller than
M satisfying ¢, there also exists such a model which stabilizes on or before point
(2" —1) - (4-depth(¢) + 1). The converse of this statement is of coursetrivial.

Suppose we have a conservative model A with Al < M and N = ¢, and let s
be the stabilizing point of A(. If s< (2" — 1) - (4 - depth(¢) + 1) then we are done,
S0 suppose not. Now consider the following procedure for constructing amodel A"
if there exists a sequence of more than 2 - depth(¢) + 1 successive identical states
in A\’ between time points 2"-1).2. depth(p) and s, then we delete points from
this sequence until it has length 2 - depth(¢) + 1. LemmalE4lensures that we can do
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this without disturbing the truth of ¢. It is also easy to see that the result is conser-
vative and still (strictly) smaller than M. Let A" be the model which results from
applying this procedure for every such sequence. Then N = g and N\ < M. Let
s be the stabilizing point of . Then in A\ there are at most 2" — 1 points t with
(2"—1)-2-depth(p) <t < sand N; < N, Between such pointsthereare at most
2. depth(g) + lidentical states and therefores < (2" — 1) - 2- depth(p) + (2" — 1) -
(2-depth(¢) +1) = (2" — 1) - (4- depth(p) + 1).

It is easy to see that, given the finite signature, there are only a finite num-
ber of conservative models which stabilize not later than time point (2" — 1) - (4-
depth(¢) + 1). For each such model A’ we can check whether A\l < M (only the
first (2" — 1) - (4- depth(¢) + 1) time points have to be considered), and we can check
whether \[ = ¢ (again decidable). If wefind suichamodel then M (- pin @, Otherwise
M Emin - 0

Now we are ready to prove decidability of minimal entailment.

Theorem 5.9 (Decidability of minimal entailment)  For two subjective formulas
@, ¥ it is decidable whether ¢ == .

Proof: We can take the signature P to consist of the atoms occurring in ¢ and .
Supposethere are n such atoms. Then Lemmalb.Gktatesthat we have only to consider
models which stabilize not later than time point (2" — 1) - 2 - depth(¢), and since the
signature is finite, there are only finitely many such models. For each such model
M it is decidable by Lemmale.8lwhether M Emin . Now we have only to check
for each of these (finitely many) minimal models M of ¢ whether M |= , whichis
decidable by LemmaE.7] O

Of course the procedure given in the proof will be very inefficient.

Having established that both TEL ¢ and minimal entailment are decidable, inthe
next section wewill look at the complexity of these notions, and in particular whether
the minimalization process has a structural impact on complexity.

6 Complexity Wewill first give abrief overview of the relevant concepts of com-
plexity theory needed in the rest of this chapter. Thisis meant as areminder for the
reader, not as an introduction to thisfield (see Johnson [14] for agood introduction).
Especially the Polynomial Hierarchy (PH) will concern us here. The Polynomial Hi-
erarchy isahierarchy of classes of problems of increasing complexity. The two best
known complexity classesin PH are P and NP. The basic notion in defining complex-
ity classesisthe Turing Machine (TM). The class P consists of al problems solvable
by a deterministic TM running in time polynomial in the length of the input. Prob-
lems solvable by a nondeterministic TM running in polynomial time form the class
NP. For any complexity class C, the class co-C consists of the problems whose com-
plement isin C. In order to define the other classes in PH, we need the notion of
an oracle TM, which is a TM that has access to an oracle for a particular decision
problem: all instances of that problem can be solved in one time step by consulting
the oracle. Formally, if C is a complexity class then the class NP consists of those
problems solvable by a nondeterministic TM with access to an oracle for a problem
in C, running in time polynomial in the input size. Now set:

T =15=P, andfork>0:
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P
ZEH = NP*< and HIE)H = co-EKPH

Note that ©F = NP and 1} = co-NP. For a problem p, if for any problem in class
C thereisapolynomial transformation of that problemto p, then piscalled C-hard.
If pisinC andisC-hard, itiscalled C-complete. If a C-hard problem can be (poly-
nomially) transformed to p, p isalso C-hard.

In order to study itscomplexity we will first look at satisfiability of TEL C. With-
out loss of generality we restrict ourselves to satisfiability of subjective formulasin
time point O.

Definition 6.1 (TELC(0)-SAT) A subjectiveformula g isin TEL C(0)-SAT if there
existsa TELC-model M suchthat (M, 0) = ¢.

Remark 6.2 Itiseasytoseethat TEL C(0)-SAT ispolynomially reducible (and vice
versa) to satisfiability (in any time point): ¢ issatisfiableif and only if ¢ v Fgisin
TELC(0)-SAT, and ¢ isin TELC(0)-SAT if and only if Cl(atg — ¢) is satisfiable.

Definition 6.3 (Sizeof aTELC-model) For aTELc-model M we call its stabiliz-
ing point the size of M, denoted size(M).

Definition 6.4 (Subformula)  Let Subf(¢) denotethe subformulasof ¢, where max-
imal S5-subformulas of ¢ are not further decomposed, and let Subf S5(¢) denote the
set of subformulas of ¢ which arein Lgs.

We give an example to clarify this definition: Subf(G(Kp A K@)) = {G(Kp A
Kqg), Kp A Kg} and SubfS5(G(Kp A Kg)) = {Kp A Kg,Kp,Kqg, p.g}. So
Subf (¢) U Subf S5(¢) isthe set of all subformulas of ¢.

First we will prove a small-model theorem for TELC. Let length(¢) denote the
length of the formula ¢ asastring.

Lemma 6.5 (Small model theorem)  If a subjective formula ¢ isin TELC(0)-SAT
thenthereexistsa TEL c-model M suchthat (M, 0) = ¢, Size(M) <4- (length(¢))?,
and for all i € N the S5-model M contains not more than 2 - length(¢) valuations.

Proof:  Suppose for some TEL c-model A\ we have (A, 0) k= ¢ and let s, be the
stabilizing point of /. Let Ly denote the propositional language based on P.
Now let A = {y, ~¥|y¥ € Lo, ¥ € Subf S5(¢)} and fori € N:

B(i) = {Kyly € A, Ni E Ky U{=Kyly e AN =Ky}

Based on these sets we will definea TEL c-model A\

For each =K vy € B(sy) choose avaluation m € Mod(P) such that m = v and
m = « for each Ka € B(sy) (such avaluation exists since (N, Sy) = Ky and
(N, Sa) = Ko for each Ka € B(sy)). Let M be the set of these valuations. We
have M = B(sy). If there are no formulas =K+ € B(sy) then choose any valua-
tion mwith m = « for each Ko € B(sy) (which again exists). Set 9\[] = M for al
j> Soy- It easy to verify that A\ = B(j) forall j > sy.

Now usinginductiononsy > j > 0, let B())\B(j +1) = {=Kr1, ..., =Ky}
(because A isconservativetherewill benoformulasK v inthisset). Fork=1,...,n
choose a valuation my with my = vy and m = « for each Ko € B(j) (again such



248 JOERI ENGELFRIET

valuations exist). Let Nj = N[j,q U {my, ..., my}. It isagain easy to verify that
i = B().
The resulting model A" has the following properties:

1. A isaTELC-model.

2. \j = B(j) foral jeN.

3. Thenumber of valuations of 9\[/1- issmaller than the number of elementsin A(<
2 -length(e)).

4. (N,0) = ¢: Takeyr € Subf(¢) N Lgs (Which must be subjective). Thenusing
anormal form described in it is easy to see that v is equivaent to afor-
mulay’ =681V .- vémwithfori=1,....m: § =Keyi A--- AKgggiyi A
—1Klﬁ1’i AR AN Kl//g(i)’i, with Piks 1//jk e AL S0 USiI’lg (2) we have:

N EKpx <= NiE=Kgx and
N E-Kyx <= NikE-Kyj,

Ny = NiEy andthus[ =y <= N = ¢. Aneasy induc-
tion gives: foral i e N, foral v € Subf(p) : (N, D EV < (N, ) Ev
and therefore (A, 0) = ¢.

5. The number of i for which A\[; < A(j, islessthan 2- length(p): real changes
occur at most once for each =Ky with ¢ € A and A contains at most 2 -
length(¢) elements.

Now construct themodel M asfollows: for each sequence of morethan 2 - depth(¢)+
1 identical statesin A, before its stabilizing point, delete states from this sequence
until it has length 2 - depth(g) + 1. Let M be the resulting model. Now Lemmal5.4]
ensures that (M, 0) = ¢. Furthermore 2 - depth(p) + 1 < 2 - length(¢) so that
size(M) < (2-length(¢))2. O

With this lemma we can show that TEL C(0)-SAT isin NP, using methods similar to
thosein, e.g., [19] and Ladner [I5].

Theorem 6.6 TELC(0)-SAT isin NP.

Proof: For a subjective formula ¢ we present the following nondeterministic al-
gorithm to verify if ¢ isin TELC(0)-SAT. A nondeterministic Turing Machine (M)
guesses 4 - (length(¢))? Kripke models M with each not more than 2 - length(¢)
valuations, such that M; > Mi.1. M will be this model, remaining constant af-
ter time point 4 - (length(¢))2. Then it verifiesif (M, 0) = ¢ as follows: for each
i €{0,...,4- (length(¢))? + length(¢)}, M maintains a set label (i) which isinitial-
ized to the empty set and at the end will contain the subformulas of ¢ true at time point
i. Now for each ¢ € Subf(¢) we do the following (starting with the S5-subformulas,
and treating v only if al of its subformulas have aready been treated): for each
i €{0,...,4- (length(¢))? + length(¢p)} update label (i) as follows:

1. Add ¥ € Lgs to label(i) if and only if M = v (this can be checked in time
polynomial in the number of statesin 9/;, using alabeling algorithm similar to
the one described here, see, e.g., [[13)).

2. Add = tolabel(i) if and only if v ¢ label(i).

3. Add A B tolabel(i) if and only if « € label(i) and B € label(i).
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4. Add Fa to label(i) if and only if « € label(j) for some j > i (If i = 4-
(length(¢))? + length(p) then add Fa to label(i) if and only if « € label(i)).
5. Add P« tolabel(i) if and only if « € label(j) for some j < i.

Now we have (M, 0) = ¢ if and only if ¢ € label(0) at the end of this procedure. It
is easy to verify that this algorithm works properly in time polynomial in length(y).
Lemmal6.5lensures that thereis a guess for which M haltsin an accepting state if and
only if ¢ isin TELC(0)-SAT. O

This gives us the following corollary.
Corollary 6.7 TELC satisfiablity is NP-complete.

Proof: The reduction given in Remark BE2kensures that TEL C satisfiablity isin NP,
and clearly apropositional formula ¢ is satisfiable if and only if M ¢ isTEL C satisfi-
able. As satisfiability of propositional formulasis NP-complete, TEL C satisfiability
is also NP-complete. O

Wewould liketo show that the minimalization of modelsmakesthe consequencerela
tion more complex, and we can do this using the reduction of Minimal S5 to minimal
conservative consequence, as described in Proposition[4.2]

Proposition 6.8 Minimal conservative consequence is 1‘[5’ -hard.

Proof: The reduction of Proposition@is clearly polynomial, and Minimal S5is
15-complete ([4]). O

So minimal consequence is harder than TEL Cc-consequence (whichis Hf -complete,
or co-NP-complete), provided the polynomial hierarchy does not collapse (see [[14]).

In [[Z] asublanguage of the subjective part of L1g, isproposed as aspecification
language for (conservative) reasoning processes, and it is shown that this language
is suited for this task. We will now look at the complexity of minimal entailment
restricted to thislanguage. Let Hop be an abbreviation for (atg — ¢).

Definition 6.9 Thelanguage L’ isthe smallest set such that:

1. fae LothenKa € L.

2. Ifa, B, vy, ¥,and ¢ € Lothen Ho(Ka) A Hy(=KB) AKy A G(=K(=¢)) —
GKy) e L.

B Ifp,ve Ll thenpnye L.

Forgp e £ andy = F(Ka) witha € Lowedefineg =’ ;mwif andonly if ¢ }:?ﬂin .

Thebasis of the languageisformed by theformulasin “ruleformat” of item (2) of the
definition. It prescribes the inference of aconclusion (¢) if some conditions are met.
These conditions may refer to the facts which are (un)known at the start of the rea-
soning process (the part with the Hp-operators), to facts currently known (y), and it
may contain a“global consistency check” () in analogy with thetranslated rulesfor
default logic. If G(—=K(—)) istrue at some point in time, then =y, is never known
in the future, which meansthat » remains consistent with what the agent knows. The
formulas of item (1) just prescribe facts which should be known from the start (initial
knowledge). Conjunctions are allowed to make a single formula of rules and initial
facts. The formula F(K«) expresses that o will be known sometime in the future
(and can be regarded as a conclusion of the reasoning process).
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Since we can reduce default logic to this fragment (see Example 5] and de-
fault logic is I15-complete (Gottlob [[IT], Stillman [20], see also Papadimitriou and
Sideri [17), =’ €. . is T15-hard. However, it is no harder than that.

min

Proposition 6.10 ' &, isTI15-complete.

Proof: We will describe a nondeterministic Turing Machine M with access to an
NP-oracle for determining whether not ¢ =’ & (similar to the proofsin 2al, [i4
or [11J). A minimal model of ¢ can have no identical states before it stabilizes. For
each conjunct Ho(Ka) A Ho(=K B) AKy A G(—=K(=8)) — G(Ke€) ing, M guesses
atimepointi > 1 but not more than n, where n is the number of these conjuncts plus
one, from which time onwards e will be assumed to hold (or it guesses that € will
never hold). Denotefori € {0, ..., n}, the set of formulas assumed to hold at i plus
the formulas « for which thereisa conjunct K« in ¢, by A(i). Then M uses the NP-

oracle to perform the following:

1. Let f(¢) bethepoint fromwhicheisassumedtohold(andso f(e) e {1, ..., n,
oo}). Now it checksforali e {1,...,n}if {(Ke|f(e) <ijU{=Ke|f(e) > i}
is S5-satisfiable (using the oracle; note that S5-satisfiability isin NP). If not, it
halts in argjecting state (the guess does not induce a TEL C-model).

2. For each conjunct Ho(Ka) A Ho(=K B) A Ky A G(=K(=68)) — G(Ke¢) and
for each time point i € {0, ..., n} it computes whether A(0) = «, whether
A(0) = B, whether A(i) &= y and whether fornoi < j < n, A(j) = 6, using
the NP-oracle. If thisistrue for no time point then it checks whether ¢ is as-
sumed never to hold; otherwiseit takes thefirst such point and checks whether
€ is assumed to hold from the next time point on. If these conditions are vi-
olated then M haltsin a rejecting state (the guess does not induce a minimal
model of ¢).

3. Itchecksif A(n) &= x (when v = F(K x)). If thisisthe case then in this min-
imal model of ¢, ¥ holds, so M halts in a rejecting state (the guess does not
induce aminimal model of ¢ inwhich  fails). Otherwiseit haltsin an accept-
ing state (the guess induces a minimal model of ¢ in which v does not hold).

This nondeterministic algorithm is polynomial in ¢ (using an NP-oracle for propo-
sitional consequence and S5-satisfiability) so the converse of =’ €, isin 5 which
impliesthat = ¢, isin 15 Together with I15-hardness this givesthe desired result.

O
Apart from default logic, skeptical consequence relations of many other well-known
nonmonatonic logics such as McDermott and Doyle' s honmonotonic logic, autoepis-
temic logic, and nonmonotoniclogic N are IT 5’ -complete ([19]), which meansthat we
can reduce these relations to minimal consequence (or even =’ . ), using a polyno-
mial reduction. Further research is needed to find these reductions.

Wewould also like to have an upper bound on the complexity of minimal conse-
quence. In order to get this, we need to sharpen some previous lemmas. Lemmal.6]
gave an upper bound on the size of minimal models of ¢, but it is not polynomial in
the length of ¢. We aready know that the length of a sequence of identical statesina
minimal model is polynomially bounded, so we will try to find a polynomia bound
on the number of transitions between nonidentical statesinaminimal model. Thekey
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isthat in aminimal model of ¢, after such atransition occurs, the agent will know (at
least) one of the subformulas of ¢ he did not know before. In fact, aminimal model
of ¢ isuniquely determined by the subformulas of ¢ which are true at any moment in
time. We will now make this formal.

Definition 6.11  For a subjective formula ¢, define A(p) = {V, =¥y € Lo N
Subf S5(¢)}. A TELC-model M of ¢ isbased on ¢ (abbreviated bo(g)) if there exist
sets A(i) for eachi € N with A(0) € A(1) € --- € A(p) and M; = Mod(A(i)) =
{me Mod(P)Im = A()}.

Lemma6.12 If M =min ¢ then M isbo(p) and size(M) < 4- (length(p))?.

Proof: Suppose M is not based on ¢. Define A(i) = {a, —aja € A(p) and M |=
Ko} and let A; = Mod(A(i)). Clearly A(0) € A1) C --- € Ag), 0 A isa
TELC-model and A\l < M. Furthermorefor al o € Lo N Subf S5(¢) we have M =
Ka < N;=EKaand M; EMa < N = Ma, so using the same argument
asin the proof of Lemmale.5lwe have A\ = . This contradicts the assumption that
M =min ¢, SO M is based on ¢. But then the number of changesin M (the points
i € N where M < M,1) cannot be larger than the number of elements of A(y)
and in between such updates there cannot be sequences of identical stateslonger than
2 depth(g) + 1 so size(M) < 4- (length(p))?. O

Notice that amodel A based on ¢ can equivalently be described by giving for each
formulain A(g) thetime point at whichitisknownin A/, or “infinity” if thisis never
the case. We have asimilar result for modelswhich refute that M isaminimal model
of ¢.

Lemma6.13 If M = ¢ but M Fnin ¢, then there exists a TEL c-model A\ such
that Al < M, N = ¢, and N\ is based on ¢ with size(\)) < size(M) + 4 -
(length(p))?.

Proof: Suppose M = ¢ but M Fmin ¢ thenthereisaTEL c-model M’ with M’ <
M and M’ |= ¢. In the same way as in the proof of Lemmal12)we can make a
model M which is a model of ¢ based on ¢ and M" < M’. Now from any se-
quence of identical statesin M" after size(M') but before size(M"") with length more
than 2 - depth(p) + 1 we can delete states until it has length 2 - depth(¢) + 1. Let N\
be the resulting model (this construction is the same as the one used in the proof of
LemmaB.8). Sowehave N < M, N k= ¢, and A\ is based on ¢. Furthermore,
N haslessthan 2 - length(¢) updates, and sequences between size(M) and size(\)
have length no greater than 2 - depth(p) + 1, so size(N) < size(M') + 2 length(p) -
2. length(¢) = size(M) + 4 - (length(p))?. O

Lemma6.14 Deciding for a formula ¢ and a model M based on ¢ whether
M Emin ¢ iSin 15,

Proof: We assume the model A encoded as described in the remark after Lem-
mal6.12] thereisafunction f : A(¢) — NU {oo} suchthat f () givesthetime point
from which o is known. We will show that deciding whether M (i @ isin 25’ by
describing a nondeterministic Turing Machine M with access to an NP-oracle. Let
size(M) = max( f[A(p)]\{oo}) (if f[A(p)] = {oo}, then let size(M) = 0). First
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we check whether size(M) < 4 - (length(¢))?; if not we halt in an accepting state.
Otherwise we use a labeling algorithm as described earlier to check if M = ¢. The
range of time pointswe have to check isfrom O to size(M) + length(¢). The subfor-
mulasin Subf(¢) N Lgs aretreated as follows: for such aformula o and time point i
it ischecked (using the NP-oracle) if {Ke| f(¢) <i}U{=Ke¢|f(¢) > i} g5 a. If S0,
a is added to label(i), otherwise not. If M - ¢, M hdtsin an accepting state (cer-
tainly M pmin ¢). Otherwise M guesses a TEL c-model A\ by guessing a function
0: A(p) - N U {oo} such that:

1. f(e) = g(e);
2. either g(e) < size(M) + 4- (length())? or g(e) = oo;
3. for at least one e € A(p) wehave g(e) > f(e).

Then it checksfori € {0, ..., size(M) + 4- (length(¢))?} whether {K e|g(e) < i} U
{—=Ke|g(e) > i} is Sb-consistent, using the oracle. If not, we halt in argjecting state
(g does not describe a TEL c-model). Otherwise we know that g induces a TEL C-
model A’ with A/ < M (if such aguessisnot possiblethenwe halt in arejecting state
because M =nmin ). Next we usethe labeling algorithm to check whether N[ |= ¢; if
not we halt in arejecting state, otherwise in an accepting state: A isasmaller model
of ¢. Itisclear that the algorithm works in polynomial time (using the NP-oracle).
Lemmal6.13]ensures that there is a guess for which M halts in an accepting state if
and only if M pemin @. Thus deciding if M pemin ¢ isin =P, so the complement is
inTI5. O
Theorem 6.15  Deciding whether ¢ ¢, v isin 15

Proof:  Wewill show that deciding whether not ¢ == ¥ isin E:f by giving anon-
deterministic Turing MachineM with accessto al‘[?-oracle. First M guessesaTEL C-
model M based on ¢ by guessing a function f : A(¢) — N U {co} such that for
al € € A(p) either f(e) < 4- (length(¢))? or f(e) = co. Then it checksfori e
{0, ...,4- (length(¢))?} whether {Ke| f(¢) <i}U{—=Ke|f(e) > i} is S5-consistent,
using the oracle. If not it haltsin arejecting state (f does not induce a TEL C-model).
Now it usesthe H'2°-oracleto determine whether M =nin @. If not it haltsin areject-
ing state. Otherwise it uses alabeling agorithm to check whether M = v (asin the
proof of the previouslemma, using the I'T 5’ -oracle for S5-consequence); if thisistrue
M haltsin arejecting state, otherwise in an accepting state. The algorithm worksin
polynomial time, and Lemmal6.12]ensures there is a guess for which M haltsin an
accepting state if and only if not ¢ == ¥. Soasthisisin 25, the complement isin

ns. O
Combining this with Proposition[6.8] we immediately get the following.

Corollary 6.16 Minimal conservative consequence is I15-complete.

7 Downward persistence  The entailment relation we have defined is a nonmono-
tonic one, which meansthat onecan havethat o =1, y butnoto A g = for some
formulasc, B, and y (see Gabbay, Hogger and Robinson [9]). We areinterested in the
class of formulas g which can be added to the premises without disturbing any of the

conclusions. It will turn out that thisisthe class of downward persistent formul as (see
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also [[21]). In the rest of this section we will investigate the class of formulas which
are preserved under decreasing or increasing (with respect to <) the models. Since
our logicisessentially atemporalized version of S5, wewill first look at S5-formulas
preserved under going to larger and smaller models.

Definition 7.1 (Preservation under supermodels)

1. An Sb-formula ¢ is preserved under supermodels if for any two S5-models
M, N suchthat N € M, andme N: if (N, m) =5 ¢ then (M, m) =g5 ¢.
2. Definethe class of S5-formulas DIAM by:

DIAM := p|—p|DIAM A DIAM|DIAM V DIAM|M(DIAM)

We want to prove that formulas in this class are the only ones (up to equivalence)
which are preserved under supermodels.

Theorem 7.2 An Sh-formula ¢ is preserved under supermodelsif and only if itis
S5-equivalent to a formulain DIAM.

Proof: It iseasy to see that aformula equivalent to onein DIAM is preserved un-
der supermodels. Now let ¢ be preserved under supermodels. Suppose Mod(P) =
{mq,....,mp}. Fori=1,...,ndefine A(i) = min{N € Mod(P)|(N, m;) Ess5 ¢},
where for a set B of S5-models, minB = {N € B| thereisno M € ‘B such that M
is aproper subset of N}. Definefor j=1,....,n:aj:= A{plpe P.mj & p} A
/A\{—plp € P,m; = p}, and for an S5-model M, ¢ = A{Majlj=1,...,nand
m;j € M}. Itiseasy to seethat for an S5-model N we havethat M € N if and only if
(N, m) =5 v for someor all me N. Now definefor j=1,...,n:

aj A \V{pmIM e A(j)} if there exists an S5-model N with

V= (N, mj) E=s5 9,
1 otherwise.

Notethat L isequivalentto M(p A —p). Now let v = \/{yj|j=1,...,n}. Theny
isin DIAM. We will show that v is equivalent to ¢.
Suppose (N, m;) g5 . Then there exists an M € A(i) with M C N, so
(N, m) =5 om and (N, M) f=s5 @i Hence (N, my) f=s5 i and (N, my) =5 .
Suppose that (N, mj) =s5 ¥. Then there exists a j such that (N, my) =<5 ¥,
buttheni = j andthereexists M € A(i) suchthat (N, m;) g5 ¢m. ThusM € N and
(M, my) Es5 ¢, but since ¢ is preserved under supermodelswe have (N, my) =s5 ¢.
O

We are aso interested in formulas preserved under taking submodels.
Definition 7.3 (Preservation under submodels)

1. An S5-formula ¢ is preserved under submodels if for any two S5-models
M, N suchthat A € M,andme N: if (M, m) =g5 ¢ then (A, m) =<5 .
2. Definethe class of S5-formulas BOX by:

BOX := p|—P|BOX A BOX|BOX V BOX| K(BOX).
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Proposition 7.4  An S5-formula ¢ is preserved under submodelsif and only if itis
equivalent to a formulain BOX.

Proof: Easy. O

Now we are ready to use these results to get a preservation result for TEL-formulas.
Aswe were interested in downward persistent formulas because of the link with the
rule of monotonicity for minimal consequence, the definition of downward persis-
tence should use the corresponding notion of satisfaction of a formula in a model
(M = ¢). Also the notion of equivalence between formulas should be based on this
notion.

Definition 7.5 (Upward and downward persistence)
1. A subjective TEL-formula ¢ iscalled

downward persistent (dp) if for all TELc-models M, N(:
if M <N and N |= ¢ then M = g;
upward persistent (up) if for all TEL c-models M, N:
if M <N and M = ¢ then N = o.

2. DefinebP:= DIAM|DP A DP|DP V DP|F(DP)|G(DP)| P(DP)|H (DP)
UP := BOX|UP A UP|UP V UP|F(UP)|G(uP)|P(UP)|H (UP)
3. For two subjective TEL-formulas ¢, v

¢~ < foral TELc-models M : M = ¢ < M = .

We can link the notion of ~ with the notion =°: if we denote ¢ =° v and v =€ ¢ by
o=y then: ¢ ~ v <= g =°y. Thisimpliesthat ~ is decidable.
Now we are ready to prove the following.

Theorem 7.6 A subjective TEL-formula ¢ is downward persistent if and only if it
is equivalent (in the sense of ~) to a subjective formulain Dp.

Proof:  For asubjective (!) formulag € DP one can easily prove that for all TEL C-
models M, Nl andi e N: if M < A and (N, i) = ¢ then (M, i) = . Thisimplies
that aformula equivalent (in the sense of ~) to onein brPisdp.

Suppose ¢ isasubjective dp formula. We will construct its equivalent in Dp. If
thereisno TEL c-model M such that M = ¢ then ¢ isequivalent to L. Notethat L
isequivalent to M(p A —=p), which isasubjective formulain bp. Supposewe have a
propositional signature P with matoms. For aset of TEL C-models B definemax B =
(M e Blthereisno N € Bwith M < N[}. If thereisa TELc-model M such that
M = ¢, then we define 4 = max{M|M = ¢}. Suppose M = ¢ and M stabilizes
after timepoint (2™ — 1) - (2- depth(¢) + 1). Then we can delete pointsin sequences
of more than (2 - depth(¢) + 1) identical states before the stabilizing point without
disturbing the truth of ¢. If we do this for each such a sequence we end up with a
model of ¢ which is larger (with respect to <) than A and stabilizes not later than
(2M—1) - (2-depth(¢) + 1). Thus: 4 = max{M|M = ¢ and M stabilizes not |ater
than (2m— 1) - (2 - depth(¢) + 1)}. Asthe set we take the maximal elements of is
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nonempty and finite and therelation < on TEL c-modelsistransitive and irreflexive,
A isnonempty and finite. Note that the argument used here (for maximal models) is
similar to the one used for minimal modelsin the proof of Lemmal5.6] there theidea
was that a model which is too long can be enlarged (yielding a smaller model with
respect to <), whereas here the idea is that if a model istoo long, it can be reduced
(yielding a bigger model with respect to <).

Suppose Mod(P) = {my, ...., my} (with of course n = 2™). Again define for
i=1,..., n:oj:=/A{plpe P,m; = p} A Al—plp € P,m; i~ p}. Now define
fori=1,...,nandforaTeLc-model M : n(i, M) = sup{j € Njm;y € M j}, where
SUpY = —oo. Let

D(atn(i’M) — Maj) ifn@i, M) eN
Vi, M) =1 OMa) if n(i, M) = oo
T if n(i, M) = —o0

(Notethat T isequivalentto sfM(p Vv —p).)

Furthermore, define ¢, = Ay, M)li = 1,...,n}. Now it can easily be
proventhat N = ¢ g <= N < M theformulas v (i, M) make sure that the val -
uation my isin A/; at least until the last time point s for which my isin M. Finaly,
define: ¢ = \/{me/[ € 4}. Thenyisinbrand ¢ ~ v:

e Suppose M = ¢. Then there exists A € 4 with M < N (1), so M = 2N

and M = .
e Suppose M = . Thenthereexists A\ € 4 with M = wN,soMf A; and
as N € Awehave N = ¢, and ¢ wasdp, SO M = ¢. O

Asin the case of S5-formulas we have the following.

Proposition 7.7 A subjective TEL-formula ¢ is upward persistent if and only if it
is equivalent (in the sense of ~) to a subjective formulain up.

Proof: If ¢ isup then =g is dp so by the previous theorem —Clp ~  for some
Y € DP. Then ¢ ~ =y and =y is equivalent to some formulain uP. O

Furthermore, the property of downward persistence is decidable.
Proposition 7.8  For a subjective formula ¢ it is decidable whether ¢ is dp.

Proof: Suppose P contains n propositional atoms. We will prove that ¢ is dp if
and only if for all TELc-models M, A with size(M) < (2" — 1) - (2 - depth(p) +
1), size(N) <2-(2"—1)-(2-depth(p) + 1): if N < M and M |= ¢ then N |= .
Thisimplies the decidability of dp.

Suppose ¢ isnot dp, then there exist TEL c-models M, A with N < M, M =
@, and N = ¢. Now we construct a TEL c-model M by deleting points from se-
quences of more than 2 - depth(¢) + 1 identical states before the stabilizing point
from M until each such sequence is exactly 2 - depth(¢) + 1 states long. Then
size(M') < (2"—1) - (2-depth(p) + 1), N < M, and M’ = ¢ (by Lemmal5.4].
Now we construct a model A\’ using the following procedure. First we identify all
sequences of identical statesin A\ after time point (2" — 1) - (2 - depth(g) + 1) but
before the stabilizing point of A of length morethan (2 - depth(¢) + 1) points. From
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each such sequence we delete points until it has length (2 - depth(¢) + 1). Then
sze(N) <2-(2"—1)- (2-depth(p) + 1), N = ¢ (Lemma[Ed), and it is easily
checked that \' < M. O

Similarly it isdecidable whether aformulais up, and this gives us another way of ver-
ifying TELC theoremssincerg c ¢ <= MY = @ and ¢ isup, where M" isthe
totally ignorant model defined by Mg = Mod(P) for al s (note that for all TELC-
models A\’ we have M" < A(; use soundness and completeness of TELC). Since
TEL C-theoremhood is co-NP-complete, we have the following as an immediate con-
sequence.

Corollary 7.9  Upward persistence for subjective formulasis co-NP-hard.

For avaluation m € Mod(P) we can define the TELc-model M™ by (M™); = {m}
for al t. Itis easy to see that such amodel is maximal in the ordering <, and this
gives us another way of checking TEL C theoremssince -1gLc ¢ <= ¢ isdp and
M™ = ¢ for dl me Mod(P). Furthermorewe have: ¢ upand dp <= F1gLc ¢ or
@ ~ L, which gives us the following.

Corollary 7.10  Checking whether a subjective formula is downward and upward
persistent is co-NP-complete.

One of the reasons we were interested in formulas preserved under shrinking models
wasthelink to monotonicity, which we can now prove with thefollowing proposition.

Proposition 7.11  If a subjective formula $ is downward persistent then for all sub-
jectiveformulasa, y: if o =5, vy thena A B =5, v

Proof: Suppose g is downward persistent and that for two formulas «, y we have
a =5 y. Takeaminimal model M of a A B, then M =a A B, 50 M = . But M
isalso minimal with respect to this property, for suppose A < M and N = «, then
since B is downward persistent, we also have \ = 8, s0 N = a A B. But since M
was aminimal model of @ A 8 we must have N\l = M. So M isaminimal model of

a S0 M = y. We have proved that o A B =5, 7 O

Wehave given asyntactical characterization of downward persistent formulasand the
link with monotonicity, but it isalso possible to characterize the downward persistent
formulas using monotonicity (referring only to minimal entailment).

Proposition 7.12 A subjective formula ¢ is downward persistent if and only if
Yo, Bra =t B=aAe =L B

Proof: The“only if” part is Proposition[7.11]

Suppose ¢ is not dp, then there exist TELc-models M, A such that N <
M, M = ¢, but N = ¢. For aTELC-model £, define (using notation from the
proof of Theorem [Z.6): m(i, £) = min{j € N|m ¢ M} where min@ = oo and
¥* = (D@t o — K(=a))li =1,....n.m(i, £) < co}.

Itiseasy to seethat foraTELC-model X, K = ‘#2 if andonly if > £. Now
take o = (WN A (g — wM)) and 8 = O(—¢). Any TELC-model £ of o hasto
satisfy £ > A, and N = o (N = Op — M since (A, i) b Op for al i € N).
Therefore N\ =min @, and it isthe only minimal model of «. Since N\ = O (—¢) we
have o =C. - B. Any TELC-model £ of @ A ¢ has £ = Oy, s0 £ & wM, which

min
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implies £ > M. Also M = a A ¢ (since N < M), so M is the unique minimal
model of o A . But M (= B, and therefore we do not have o A ¢ 6. B. O
So this proposition says that aformulais downward persistent if and only if you can
always be sure that adding this formulato your knowledge does not disturb any con-

sequences.

8 Conclusionsandfurther research  Thelogic TEL C was proposed to describethe
behavior of a conservative reasoning agent. This logic was shown to be decidable,
and a sound and compl ete axiomatization was given. Based on this logic we defined
anotion of minimal entailment and studied the decidability and complexity. TELC
was found to be co-NP-complete and minimal consequence was shown to be 1‘[5’ -
complete. Furthermore, a syntactical characterization of formulas preserved under
going to smaller models was presented and a link with monotonicity was given.

The fact that the interaction between the epistemic part and the temporal part
of thelogicis quite limited (only conservativity gives alink) isimportant for the re-
sultsin this paper. No interaction axioms were required for TEL, and the soundness
and completenessresults easily followed from [[8]. The syntactical characterization of
Section 7 was obtained by first treating S5 and using thisfor TEL. Compositionality
makes things easier.

The translation of default logic into TEL is already known ([El); further work is
needed to find the trandations for other nonmonotonic logics such as autoepistemic
logic.

Although a decision procedure is sketched for minimal entailment, we would
also like to have an axiomatization. This might not be easy: it would immediately
yield an axiomatization for default logic, which has not been given before.

We have characterized the downward persistent formulas. Wewould liketo find
asimilar result for the class of formulaswhich have no minimal models(like F (K p)).
These are the formulas which are in a sense not “honest” since they do not describe
the reasoning behavior of an agent properly.

The use of S5 asthelogic to describe the knowledge of the agent at any point in
time (allowing negative introspection) isnot alwaysrealistic. If we use another modal
logic such as S4, many resultsin this paper would have to be re-examined; in partic-
ular the complexity might be higher. A number of constructions used in the proofs
will no longer work, and we might have to use methods like those in, for instance,
Andréka, van Benthem and Nemeti [2].

It would also beinteresting to lift the restriction of conservativity. Thisplaysan
important rolein many of the proofsinthisarticle but doesnot allow retraction, which
is needed for belief revision (see for instance Alchourron, Gardenfors and Makin-
son [[J). Inthe nonconservative case, we would also like to extend the language with
operators like Next, Since, and Until.

Finally, we would like to extend the framework to the case of many agents, also
allowing communication between agents and interaction with the outside world. Itis
not straightforward how to extend the information ordering to this case. Some ideas
on how to do this are given in [[12].
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