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An Intensional Schrödinger Logic

NEWTON C. A. DA COSTA and D́ECIO KRAUSE

Abstract Weinvestigate the higher-order modal logicSωI , which is a variant
of the systemSω presented in our previous work. A semantics for that system,
founded on the theory of quasi sets, is outlined. We show how such a semantics,
motivated by the very intuitive base of Schrödinger logics, provides an alterna-
tive way to formalize some intensional concepts and features which have been
used in recent discussions on the logical foundations of quantum mechanics;
for example, that some terms like ‘electron’ have no precise reference and that
‘identical’ particles cannot be named unambiguously. In the last section, we
sketch a classical semantics for quasi set theory.

1 Introduction One of the most interesting debates in the field of science in our
time is whether the general principles of classical logic could be viewed as necessary
and permanent truths. Notwithstanding the fact that the real sciences provide numer-
ous insights for the development of deviant logics, in general the nonclassical logical
systems developed in this century did not arise from the desire to formalize the intu-
itions of scientists. On the contrary, the majority of them had their motivation from
the pure mathematical interest of investigating, as Hilbert said, “all logically possi-
ble theories” [20]. But logic can also be viewed, in a certain sense, as “la physique
de l’objet quelconque” (Gonseth [19], p. 155) and then, by considering this view, we
may be tempted to investigate those logical systems which arise from the necessities
of science, in particular by taking into account, as it was noticed by several authors,
that modern physics presents strong arguments for the questioning of classical con-
cepts like those of object and identity, which suggest revisions in standard concepts
like ‘set’, ‘individuatable thing’, ‘extension and intension of concepts’, and so on.1

With regard to identity, the papers listed above present arguments for the view
that in the microworld this concept does not conform with its use in the case of usual
macroscopic objects, that is, with the “traditional” theory of identity of classical logic
and mathematics (Krause [22]). Schr̈odinger, for instance, stressed that this concept
simply has no meaning for elementary particles; more specifically, in discussing the
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case where one is tempted to say that one andthe sameparticle was observed twice
at different instants of time, he said that

The circumstances may be such that they render it highly convenient and de-
sirable to express oneself so, but it is only an abbreviation of speech; for there
are other cases where the ‘sameness’ becomes entirely meaningless; and there
is no sharp boundary, no clear-cut distinction between them, there is a gradual
transition over intermediate cases. And I beg to emphasize this and I beg you to
believe it: It is not a question of our being able to ascertain the identity in some
instances and not being able to do so in others.It is beyond doubt that the ques-
tion of ‘sameness’, of identity, really and truly has no meaning. [our emphasis]
(Schr̈odinger [34], pp. 17–18; see also DaCosta [3], p. 117 and DaCosta [4])

Based on these Schrödingerian intuitions, it was outlined by da Costa in 1980 ([3],
pp. 117–18) that in a two-sorted first-order logical system the principle of identity
∀x(x = x) is not valid in general, since expressions likea = b are atomic formulas in
the case in whicha andb are both terms of just one of these two species (the second,
say); for the terms of the first species, that expression is simply not a formula.

A semantics for that system was also suggested, and it was noted that such a
semantics, which is formulated on the usual theories of sets, does not adequately ex-
press the intuitive idea of that logic, since the constants of the first species (the “prob-
lematic” ones referred to above) were interpreted as elements of a set (as in the usual
Tarskian semantics) and a set is a collection of distinguishable objects. This fact is,
of course, contrary to the spirit of Schrödinger logics, since the intuitive motivation
is that the objects of the first species should be considered as indistinguishable and
devoid of identity.2

The above mentioned first-order system was extended to a higher-order logic
(simple theory of types) in [4] and some additional topics were emphasized, for in-
stance, the possibility of violating Leibniz’s Principle of the Identity of Indiscernibles,
which, in some sense, reflects what has been pointed out in recent literature in con-
nection with the foundations of quantum mechanics (see French [14], French [15],
and [4] for further references). From this point of view, Schrödinger logics might be
viewed as alternative mathematical devices by means of which some of these funda-
mental intuitions can be formalized.

A “ classical” semantics was also presented for the higher-order systemSω men-
tioned above, that is, a semantics founded on the usual set theories, and a generalized
completeness theorem was proved. But, as it was pointed out in [4], the basic problem
which appears in the first-order system remains, since the concept of identity cannot
be applied to someentities. As it was suggested in [3], to stress the intuitive idea
underlying Schr̈odinger logics, aquasi set theory, in which the concept of a set is
extended, should be developed. In such a theory a semantics for Schrödinger logics
should be formulated. In addition, in a quasi set theory the existence of indistinguish-
able but nonidentical entities must be allowed. In this paper, we sketch the main fea-
tures of such a semantics, using the quasi set theory developed in Dalla Chiara [13].
As an interesting consequence, we show how such an enterprise allows us to handle
intensional concepts, as they have been presented in recent literature, in connection
with the logical basis of quantum mechanics (Dalla Chiara [9]). As for quasi sets,
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we recall that quasi set theories were developed in [22] and in Krause [24]; alterna-
tive systems were proposed in Krause [26] (developed in [13]) and in Krause [25].
Independently and motivated by other insights,quasettheories were proposed in
Dalla Chiara [10].3 The logical system we present here, denoted bySωI , differs from
the logicSω of [24] in the following way: instead of considering just one typei for
individuals and a two-sorted language in order to “separate” those individuals which
have the usual properties from the “problematic” ones, we introduce individual types
e1 ande2. The individuals of typee1 are those entities to which the concept of iden-
tity does not apply (they are calledm-objects in the quasi set terminology which will
be used throughout this paper), while the individuals of typee2 are the “classical”
ones. Furthermore,SωI is a modal logic in which the necessity operator� is used
as a primitive symbol. The logic is based on Gallin’s system MLp ([21], part 2), on
which our terminology is partially based. Additional explanations are introduced as
we go.

2 Motivation Recent research on the foundations of physics have suggested the
convenience of introducing intensional logics of some particular kind to cope with
certain problems regarding the basis of quantum mechanics (QM).4 As an example,
in discussing the semantical analysis of QM, Dalla Chiara pointed out that

Significant counterindications against the adequacy of a purely extensionalis-
tic approach in semantics have been suggested by contemporary physics. Mi-
crophysics seems to be, from a semantical point of view, essentially a world
of intensions, where individual objects and sets of individual objects appear,
so to speak, as unnatural notions. The concept ofextension(reference) be-
comes more and more blurred as we go deep into the logical intricacies of
Quantum Mechanics. . . . In my opinion, some characteristic semantical fea-
tures which clearly appear in the logical investigations about the microuniverse
do not merely point out some fairly pathological aspects of a world that is far
apart from our human world. On the contrary, they make us aware about certain
oversimplifications of our usual semantical principles. ([9], see also [10])

The discussion of the use of intensional concepts in physics certainly deserves careful
analysis, which we do not intend to develop here (but see the references). However,
motivating the semantics presented below, we recall without details some of Dalla
Chiara’s examples, which illustrate from an intuitive point of view the main ques-
tions to be considered below (see Section 6). In usual (extensional) semantics, the
extension of a proper name is an individual of the universe of discourse, but in mi-
crophysics the indistinguishability of elementary particles causes serious problems
regarding this view. In fact, ifa is a constant of the language (say, a first-order lan-
guage), which shouldnamean elementary particle, then QM suggests that in general
a has no precise reference. In other words, what is to beρ(a), whereρ is the function
corresponding to the standard denotation function in Tarskian semantics? Also predi-
cates (it suffices to reason on one-place predicates), which usually have subsets of the
domain of individuals as their extensions, may not behave semantically as expected.
Take for instance the predicate ‘electron’. As Dalla Chiara calls to our attention, in
microphysics this concept has no precise extension, despite having a well-defined in-
tension (characterized, roughly speaking, by the physical properties that characterize
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the entity ‘electron’).5 That is, the extension of such a predicate cannot be identified
with a well-defined subset of the domain in the standard set-theoretical sense.

Other important topics could be considered in connection with the use of inten-
sions in physics, for instance the supposed necessity of introducingintensional struc-
tures, as those presented in [9]. But we hope that the few examples just mentioned
are sufficient to illustrate our point.

3 The language of the system SωI To begin with, let us introduce the concept of
type. The set oftypesis defined as the smallest collection� such that: (a)e1, e2 ∈ �

and (b) if τ1, . . . , τn ∈ �, then 〈τ1, . . . , τn〉 ∈ �. e1 and e2 are the types of the
individuals; the objects of typee1 are calledm-atoms and are intuitively thought
of as elementary particles of modern physics (first-quantized approach). Follow-
ing Schr̈odinger, we suppose that the concept of identity cannot be applied to them
(cf. [4]). The language of the systemSωI may be described as follows: it contains
the usual connectives (we suppose that¬ and−→ are the primitive ones, while the
others are defined as usual), the symbol of equality, auxiliary symbols, and quantifiers
(∀ is the primitive and∃ is defined in the standard way) and the necessity operator� .
With respect to variables and constants, for each typeτ ∈ � there exists a denumer-
ably infinite collection of variablesXτ

1, Xτ
2, . . . of typeτ and a (possibly empty) set

of constants (Aτ
1, Aτ

2, . . .) of that type; we useXτ, Yτ, Cτ, andDτ perhaps with sub-
scripts as metavariables for variables and constants of typeτ, respectively. Theterms
of typeτ are the variables and the constants of that type; so, we have individual terms
of typese1 ande2. WeuseUτ, Vτ, perhaps with subscripts, as syntactical variables
for terms of typeτ. The atomic formulas are defined in the usual way: ifUτ is a term
of typeτ = 〈τ1, . . . , τn〉 andUτ1, . . . ,Uτn are terms of typesτ1, . . . , τn respectively,
thenUτ(Uτ1, . . . ,Uτn) is an atomic formula; so isUτ = Vτ if τ is not of typee1. Then,
the language permits us to talk neither about the identity nor about the diversity of the
individuals of typee1. The other formulas are defined as usual. A formula containing
at leastUτ1, . . . ,Uτn as free variables sometimes shall be writtenF(Uτ1, . . . ,Uτn).

4 Semantics The aim of this section is to outline the tools for the proof of the
“weak” completeness theorem forSωI which we shall sketch in the next section. We
start by recalling intuitive topics concerning quasi sets which will be used below.

4.1 The quasi set theory Quasi set theories can be roughly described as mathe-
matical devices for treating collections of indistinguishable objects (see [25]). The
theoryS∗∗ developed in [13] (see also [24]) allows the presence of a certain kind of
Urelemente, (them-atoms) to which the usual concept of identity does not apply. The
underlying logic ofS∗∗ is classical quantificational logic without identity; the specific
symbols are three unary predicate lettersm(x) (read “x is anm-atom”), M(x) (read
“ x is anM-atom”, that is, a standard Urelement) andZ(x) (read “x is a standard set”;
by a setwe mean a quasi set whose transitive closure does not containm-atoms—
these “sets” have all the properties of the ZFC-sets); two binary predicate symbols,∈
(membership) and≡ (indistinguishability); and a unary functional symbolqc (quasi
cardinality). A quasi set (qset for short) is defined as an entity which is not an Urele-
ment (i.e., it is anything that is neither anm-atom nor a classical atom). Ifx is a quasi
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set, we write(Q)x. The concept of quasi cardinality is introduced in such a way that
it extends the concept of cardinality for arbitrary qsets (cf. [24]).

In what follows we talk about quasi sets in an informal way, but our exposition
can be, in principle, formalized in a quasi set theory. The axioms of indistinguisha-
bility state first that≡ has the properties of an equivalence relation. Then, we de-
fine the concept ofextensional equality=E in the following way:x =E y if and only
if (Q(x) ∧ Q(y) ∧ ∀z(z ∈ x ←→ z ∈ y)) ∨ (M(x) ∧ M(y) ∧ x ≡ y). That is, in
the quasi set theory extensional entities are indistinguishable standard Urelemente or
qsets which have exactly the “same” elements.6 Then we postulate that the substi-
tutivity principle is valid only to extensional entities: in symbols,∀x∀y(x =E y −→
(A(x, x) −→ A(x, y))) is an axiom. The extensional equality has all the formal prop-
erties of classical identity.

Furthermore,similar qsets are those nonempty qsets such that the elements of
one of them are indistinguishable from the elements of the other. Intuitively, similar
qsets are composed by elements “of the same sort.” The basic axiom is the “weak” ex-
tensionality which states that similar qsets which have the same quasi cardinality are
indistinguishable qsets (we also say that indistinguishable qsets are “equal”).7 Then,
this equality relation is not extensional and this fact allows that intensional concepts
be handled in the theory. Furthermore, the axioms entail that if the quasi cardinal of
the qsetx is α and ifβ ≤ α is a quasi cardinal, then there exists a subqsety ⊆ x such
that the quasi cardinal ofy is β. This permits us to use the concept of apower qset
(the qset of the subqsets ofx) in the next section. Thepower qset axiomstates that
if α is the quasi cardinal of a certain qsetx, then the qset of all subquasi sets ofx
(the power qset ofx) hasquasi cardinal 2α. This entails that the theory is consistent
with the hypothesis that, for instance,x hasα singletons, that is,α subquasi sets with
just one element. A similar argument applies to subqsets with two, three,. . . , α el-
ements. Apparently, the possibility of the existence of these singletons would entail
that a kind of Leibnizian identity is automatically defined in quasi set theory. But let
us remark that the quasi set theory does not permit us to distinguish between such sin-
gletons since all of them are indistinguishable from one another by the axiom of weak
extensionality. The details may be found in [25], but we insist that despite the theory
being compatible with the idea ofα singletons, their existence cannot be proven. It
should be remarked that this is precisely what happens in quantum physics, since,
for example, although the hypothesis that there are exactly six electrons at the level
2p of a sodium atom does agree with experimental evidence, no one can distinguish
the “unitary” subcollections of electrons. Notwithstanding, quantum physics would
be contradictory if such a supposition could not be admitted. So, by means of the
mentioned power qset axiom, we maintain the possibility of reasoning on absolutely
indistinguishable “distinct” objects (the word ‘distinct’ is to be understood here as a
metalinguistic expression; it cannot be formalized in quasi set theory, at least with
regard tom-atoms).

Finally, let us recall here the concept of aquasi functionwhich will be used be-
low. In quasi set theory, the concept of (binary) ‘relation’ is defined in the standard
way, as quasi sets of ‘ordered pairs’, by means of the weak concept of ‘pair’; but
there is a problem regarding the concept of function, since a function (in the standard
sense) could not distinguish between possible values of a certain argument, due to
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their indistinguishability (when there arem-atoms involved). Then we have defined a
weaker concept of a mapping which maps indistinguishable things into indistinguish-
able things; in the case of “macroscopic” objects (like standard Urelemente or “sets”),
the concept coincides with the standard notion of function. In short, quasi functions
are such that given an argument, the corresponding value is not well defined, as the
formal definition below explains. For more details, see [25]. Suppose thatR is the
predicate for ‘relation’ defined in the standard sense. Letx andy be quasi sets. Then
we say thatf is aq-functionfrom x to y if f is such that

R( f ) ∧ ∀u(u ∈ x −→ ∃v(v ∈ y∧ 〈u, v〉 ∈ f ))∧
∀u∀u′∀v∀v′(〈u, v〉 ∈ f ∧ 〈u′, v′〉 ∈ f ∧ u ≡ u′ −→ v ≡ v′)

The concepts of q-injection, q-surjection, and q-bijection can be introduced in an ob-
vious way; for more details, see [25]. In addition, the axioms imply that the theory
ZFU (Zermelo-Fraenkel with Urelemente) can be interpreted inS∗∗. Additional re-
marks on quasi sets will be introduced when necessary.

4.2 The generalized quasi set semantics Let D = 〈m, M〉 be an ordered pair (in-
troduced in the usual way in the theoryS∗∗), wherem �= ∅ is a finite pure qset (i.e., a
finite qset which has onlym-atoms as elements) andM �= ∅ is a set.8 Furthermore,
we suppose thatI is a nonempty set (whose elements are calledindexor state of af-
fairs).9 By a framefor SωI based onD and I we mean an indexed family of qsets
(Fτ )τ∈� where

1. Fe1 = m;
2. Fe2 = M;
3. for eachτ = 〈τ1, . . . , τn〉 ∈ �, Fτ is a nonempty subqset of

[P (Fτ1 × · · · × Fτn)]
I

If the equality holds in (3), then the frame isstandard. By ageneral model(g-model
for short) forSωI based onD and I we understand an ordered pair

M = 〈Fτ, ρ〉τ∈�

such that

1. (Fτ )τ∈� is a frame forSωI based onD and I ;
2. ρ is a quasi function which assigns to each constantCτ an element ofFτ.10

A standard modelfor SωI is a g-model whose frame is standard. Before introducing
other semantical concepts, let us consider some examples which illustrate the “inten-
sional” counterpart of such a semantics. The first two examples show that the classi-
cal intensional case [21] remains valid when the entities are not of the typee1. The
last ones exemplify the specific case of Schrödinger logics.

Example 4.1 Let us consider the constantCe2. SinceFe2 = M, thenρ(Ce2) ∈ M,
that is to say,Ce2 names an element of a standard set. This is not, of course, surprising,
since the given constant is “classical”.
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Example 4.2 Now we consider the constantC〈e2〉. In this case,F〈e2〉 ⊆ [P (Fe2)]
I

= [P (M)] I . Then,F〈e2〉 is a class of functions fromI in P (M), also as in the classical
case. Intuitively,C〈e2〉 is a unary predicate (an individual property) whose arguments
are individuals of typee2 (i.e., classical individuals).11

Example 4.3 Let us take a constantCe1. In this case,Fe1 = mand thenρ(Ce1) ∈ m,
that is, the constantnamesanm-atom. Since them-atoms cannot be individualized,
counted, and so forth, the denotation ofCe1 is ambiguous. We can say that a constant
of typee1 plays the role of ageneralized noun(g-noun).

Example 4.4 Wenow consider a constantC〈e1〉. In this case,F〈e1〉 ⊆ [P (Fe1)]
I =

[P (m)] I . Then,ρ(C〈e1〉) ∈ F〈e1〉, that is, it is a (quasi) function fromI to P (m). In
other words,ρ(C〈e1〉) is a quasi function fromI to P (m). If m is a pure qset whose
elements are all indistinguishable from one another, then the denotation function does
not distinguish between qsets inP (m). In fact, in this case the only difference among
the subqsets ofm is their cardinality, that is, ifρ(C〈e2〉) is x, then every qsety such
thatx andy are similar (cf. Subsection 4.1) may act as the denotation ofC〈e2〉 as well
(see [13]). This interpretation accommodates the intuitive idea that a predicate like
‘electron’ does not have a well-defined extension.

The last two examples suggest an interpretation of ‘quantum predicates’ such as ‘elec-
tron’, in conformity to the discussion of Section 2; such predicates, which do not have
well-defined extensions (in the sense that every qset of a certain class of similar qsets
may be considered as their extension) are relations-in-intension of sortU〈e1〉. In the
same way, indistinguishable elements of a pure qset are not individuatable entities;
they can only be aggregated in a certain quantity (every qset has a cardinal). They ac-
curately exemplify the ‘quanta’ in Teller and Redhead’s terminology (cf. [32], [33]).
Since them-atoms have no names, the terms of typee1 have no precise denotation;
they refer ambiguously to an arbitrary element of the domain. In other words, we may
properly say that such constants do not represent anything in particular: they lack a
(precise, well-defined) referent.

The set of allassignments overa g-modelM , denotedAs(M ), is the set of all
q-functions f on the set of variables ofSωI such thatf (Xτ ) ∈ Fτ, for every variable
Xτ of typeτ. For any f ∈ As(M ), we denote byf the extension off to the set of
all constants, defined byf (Cτ ) = ρ(Cτ ) ∈ Fτ.

If i ∈ I and f ∈ As(M ), then the notion

M, i, f sat A

is defined by recursion on the length of the formulaA as follows:

1. M, i, f sat Uτ(Uτ1, . . . ,Uτn) iff 〈 f (Uτ1), . . . , f (Uτn)〉 ∈ f (Uτ )(i );
2. M, i, f sat Uτ = Vτ iff 〈 f (Uτ ), f (Vτ )〉 ∈ �≡(τ) where �≡(τ) is the

“pseudo-diagonal” ofFτ, which may be defined inS∗∗ as the subqset ofFτ ×Fτ

whose elements are indistinguishable from one another (whenτ �= e1, this qset
is the diagonal ofFτ in the standard sense);

3. M, i, f sat � A iff M, j, f sat A for every j ∈ I ;
4. usual clauses for¬, −→, and∀.
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A formula A is true in a g-modelM (denoted|=M A) if and only ifM, i, f sat A
for everyi ∈ I and f ∈ As(M ). A set � of formulas ofSωI is g-satisfiablein SωI
if and only if for some g-modelM, index i, and assignmentf , M, i, f sat A for all
A ∈ �. A formula A is ag-semantical consequenceof a set	 of formulas, and we
write 	 |=g A, if and only ifM, i, f sat A for i ∈ I , f ∈ As(M ) and g-modelM
wheneverM, i, f sat B for every formulaB ∈ 	. If 	 = ∅, then we write|=g A and
say thatA is g-valid in SωI . In the next section we present an axiom system forSωI
and prove a generalized completeness theorem for this logic.

5 The theory SωI The postulates ofSωI (axiom schemata and inference rules) are
the following.

(A1) A, where A comes from a tautology in¬ and−→ by uniform
substitution of formulas ofSωI for the variables.

(A2) ∀Xτ(A −→ B) −→ (A −→ ∀Xτ B), where X does not occur
free in A.

(A3) ∀Xτ A(Xτ ) −→ A(Uτ ) whereUτ is a term free forXτ in A(Xτ )

and of the same type ofXτ.
(A4) Xe2 = Xe2.
(A5) Xe2 = Ye2 −→ � (Xe2 = Ye2).
(A6) � (Uτ = Vτ ) −→ (A(Uτ ) −→ A(Vτ )), whereUτ andVτ are

free for Xτ in A(Xτ ).
(A5) � A −→ A.
(A6) � (A −→ B) −→ (� A −→ � B).
(A7) �A −→ ��A.
(R1) FromA andA −→ B to infer B.
(R2) FromA to infer∀Xτ A.
(R3) FromA to infer � A.

The usual syntactical notions are defined in the standard way, such as formal theorem
( �) of SωI , the concept of the consequence of a set of formulas, and so on. A set�

of formulas isconsistentif and only if some formula is not derivable from� in SωI .
Wewill sketch below the proofs of the soundness and of the generalized completeness
theorems for this logic.

5.1 Soundness and generalized completeness The soundness theorem forSωI is
formulated as follows. If� A in SωI then|=g A in SωI . This result implies that if
	 � A, then	 |=g A and that if a set of formulas� is g-satisfiable inSωI , then� is
consistent.

The proof is obtained by showing that all the axioms ofSωI are g-valid and that
the inference rules preserve g-validity. This follows from the fact that ifM is a g-
model forSωI and the termUτ is free for the variableXτ in A(Xτ ), then for every
i ∈ I and f ∈ As(M ), it results that

M; i; f, f (Cτ ) sat A(Xτ ) iff M, i, f sat A(Cτ )

where the terminology has an obvious meaning ([21]).12 The generalized complete-
ness theorem forSωI is the converse of the above result; it is sufficient to prove that
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� is consistent if and only if� is g-satisfiable. The implication from right to left is
straightforward; we consider then only the implication from left to right.

To begin with, let us assume that the consistent set� omits infinitely many vari-
ables of each type, that is, there are infinitely many variables of each type which do
not occur in any formula of�. Then there exists a sequence� = (�i )i∈ω of sets of
formulas such that

(i) � ⊆ �0;

(ii) for eachi ∈ ω, �i is a maximally consistent set of formulas inSωI ;

(iii) for each i ∈ ω and each formulaB(Xτ ), ∃Xτ B(Xτ ) ∈ �i iff B(Yτ ) ∈ �i for
some variableYτ which is free forXτ in B(Xτ ): that is,� is a Henkin Theory;

(iv) for eachi ∈ ω and each formulaB, we have�B ∈ �i iff B ∈ � j for somej ∈ ω;

(v) for eachi ∈ ω and each formulaB(Xτ ), we have∀Xτ B(Xτ ) ∈ �i iff B(Yτ ) ∈
�i for every variableYτ which is free forXτ in B(Xτ );

(vi) for eachi ∈ ω and each formulaB, we have � B ∈ �i iff B ∈ � j for every
j ∈ ω.13

The g-model relative to which the formulas of� are g-satisfiable can be described
as follows. First, we consider an equivalence relation on the collectionTrτ of terms
of SωI of typeτ such thatUτ is equivalent toVτ if and only if � (Uτ = Vτ ) ∈ �i if
τ �= e1 and, ifτ = e1, thenUe1 is equivalent toVe1 (in this case we writeUe1 ≡ Ve1)
if and only if for every formulaF that belongs to�i , it results thatF[Ue1/Ve1] also
belongs to�i . In other words,Ue1 is equivalent toVe1 if and only if Ue1 andVe1 can
be replaced one by the other in all their occurrences in any predicate in such a way
that the resulting formulas are necessarily equivalent. The defined relation does not
depend oni ∈ ω. Then, by recursion on the typeτ, wedefine a setFτ and a mapping
ρτ from the set of terms of typeτ into Fτ such that

1. ρτ is ontoFτ,

2. ρτ(Uτ ) ≡ ρτ(Vτ ) iff Uτ � Vτ.

First, letFei be the quotient setTrei / � (i = 1,2)14 andρ(Uei ) = [Uei ]� (these are
the equivalence classes ofUei by the relation�). Then, by supposing thatFτk andρτk

have been defined fork < n, wedefine the mappingρτ from Trτ into [P (Fτ0 × · · · ×
Fτn−1)]

ω, whereτ = 〈τ0, . . . , τn−1〉, as follows:

〈ρ0(U
τ0
0 ), . . . , ρn−1(U

τn−1
n−1 )〉 ∈ ρτ(U

τ )(i )

if and only if the formulaUτ(Uτ0, . . . ,Uτn−1) belongs to�i . If welet Fτ be the range
of ρτ, then conditions 1 and 2 above are met. The g-model based onD = m∪ M and
index setI = ω is the ordered pairM = 〈Fτ, ρ〉τ∈�, whereρ(Cτ ) = ρτ(Cτ ) for every
constantCτ. Then, by induction on the length of the formulaA, it results that

M, i, µ sat A iff A ∈ �i

for everyi ∈ I , whereµ ∈ As(M ).15 In the case wherei = 0 andµ = f , we obtain
the desired result.
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5.2 Comprehension and other axioms Our logic can be extended to a system
which encompasses all the instances of the followingcomprehension schema, where
τ = 〈τ1, . . . , τn〉 andXτ is the first variable of typeτ which does not occur free in the
formula F(Xτ1, . . . , Xτn):

∃Xτ �∀Xτ1, . . . ,∀Xτn(Xτ(Xτ1, . . . , Xτn) ←→ F(Xτ1, . . . , Xτn))

This scheme, which is valid in all the standard models ofSωI , formalizes the prin-
ciple that every formulaF(Xτ1, . . . , Xτn) with free variables determines a relation-
in-intension (a predicate). In considering a g-modelM = 〈Fτ, ρ〉τ∈� for SωI , if
Uτ1, . . . ,Uτn are respectively elements ofFτ1, . . . , Fτn, the predicateF being defined
by

F(i )
def= {(Xτ1, . . . , Xτn) : M; i; f,Uτ1, . . . ,Uτn sat F(Xτ1, . . . , Xτn)}

for all i ∈ I and assignmentf ∈ As(M ) belongs toFτ (the terminology is that of
[21]). Consequently, the g-model is also a g-model forSωI plus the comprehension
schema, and the completeness theorem is also true for this extended logic.16 The prin-
ciple ofextensional comprehension, which says that every formula with free variables
determines an (extensional)n-ary relation and the axioms of infinity and choice, can
be formulated in the language ofSωI in exactly the same way as in [21], pp. 77–78;
in the same way we can treat the axioms of infinity and choice (see also [4], where
these last two axioms are formulated for the logicSω).

As occurs in Gallin’s system, the principle of extensional comprehension can
be proved to be independent of the axiomatic ofSωI plus comprehension. That is,
there are g-models ofSωI plus comprehension in which the extensional comprehen-
sion principle fails. We do not present these g-models here, but due to the pecu-
liarities of our logic (mainly regarding the failure of the general principle of iden-
tity), we guess that perhaps they are related to Takeuti’s quantum set theoretical mod-
els [36], which are built starting from a complete orthomodular lattice instead of
a complete Boolean algebra as usual (for this last case, see [21], chap. 4). As re-
marked in Dalla Chiara [8], in Takeuti’sortho-valuedmodel the identity relation is
non-Leibnizian, in the sense that the substitutivity law of identity fails. The analogies
between this case and Schrödinger logics seem evident and of course deserve further
attention. In future works we intend to investigate this question.

6 Concluding remarks and the classical interpretation of quasi sets At the end
of the last section, we mentioned some points to be developed in connection with our
logic. Here we comment on other topics we think are of interest, but once more they
are referred to without details. First, taking into account Gallin’s characterization of
the algebra of “propositions”17 of the g-models of his system MLp plus comprehen-
sion as a subalgebra of the Boolean algebra of all subsets ofI , it would be interest-
ing to analyze the modifications to be made in the axioms and in the interpretations
of what is to be considered a “proposition” (in such a way that they play the role of
‘propositions’ in quantum mechanics), such that the algebra be an orthomodular lat-
tice, as occurs in QM, instead of a Boolean algebra. In this way, perhaps we can char-
acterize a quantum logic more from a distinct point of view than the usual ones ([8],
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Mittelstaed [29]). We have remarked in the last section that as it occurs in the clas-
sical case (Gallin’s system), the extensional comprehension fails to hold inSωI, but
in this case something stronger than in MLp can be inferred. In fact, the fundamental
point is not only the existence of g-models in which the extensional comprehension
fails. In SωI we have more: there are, in fact, predicates which do not define (precise)
extensions (hence relations), such as those of typeτ = 〈τ1, . . . , τn〉 in which at least
one of theτi is obtained recursively frome1. So, a formula with free variables which
defines such an “ambiguous” predicate is also “ambiguous” in some sense, that is, it
does not define apreciseand well-defined relation (a well-defined subset of objects
of the domain). These relations are, of course,quasi relations, in the sense of quasi
set theories.18

Manin pointed out that quantum mechanics uses as a language a fragment
of classical functional analysis, having not its “own language” ([28], pp. 84–85).
Schr̈odinger himself had already felt the necessity of a radically new and different
language than the classical one to speak about the fundamental entities of which mat-
ter is composed, a language which could join both the particle and the wave aspects
of it (see da Costa [6]). In fact, usual quantum logics start from algebraic structures
which reflect essentially the properties of operators defined on the closed subspaces
of a Hilbert space, and it is not easy to recognize in what sense these formal algebras
refer to the very basic ontology of quantum physics. In short, quantum logics ap-
parently are closer to a calculus of statements about the microworld than they are to
describing the very underlying logic of elementary particles. In fact, it is well known
that the usual formalisms via Hilbert spaces (first-quantized approach) raise a lot of
intricate “philosophical puzzles,” some of them related to the birth of “surplus formal
structures,” that is, mathematical structures which correspond to nothing in the real
world ([32], [33]). These structures are originated by the wrong implicit supposition
that elementary particles are individuatable entities, that is, things which behave as
classical physical objects.

The tendency to abandon labels by using (say) the Fock space formalism, which
permits us to drop the labels, seems to be more adequate from the philosophical point
of view, since in this case we are (apparently) formally describing no more particles
but legitimate ‘quanta’,19 that is, entities which cannot be strictly counted, arranged
in some order, and so on, but that can only be aggregate in certain quantities. As it has
been said elsewhere ([26] and also French [17]), this raises other kinds of “puzzles”,
since despite the fact that a vector in the Fock space is a form of description of states
with a certain number of quanta without any reference whatever to “primitive this-
ness” (Teller [37]), we continue to talk of ‘quantum entities’, and it is natural to ask
for the kind of logic these entities obey.20 Since there are strong arguments against the
classical theory of identity in what concerns these entities (for instance, all the argu-
ments pointed out in recent literature which aim at showing that Leibniz’s Law is not
true in the quantum world ([14], [15]), we are tempted to guess that Schrödinger log-
ics can perhaps be useful in formalizing some aspects of the behavior of elementary
particles. Then, systems which combine such “deviations” from the traditional theory
of identity (as it seems reasonable to admit in connection with elementary particles)
with the possibility of realizing intensional concepts, a fortiori might also appear as
legitimate ‘quantum logics’ in some sense. Further analysis may show in what sense
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systems of this kind should be modified in order to attain the very objective of quan-
tum logics, as put forward in [8] and [29]. But these questions will also be postponed
for future works.

6.1 Classical semantics for quasi set theory Wenote that it is possible to provide
a “classical” interpretation of quasi sets.21 The idea is the following one. Suppose
that m is a set, thatR is an equivalence relation onm, and thatCi , i = 1,2, . . . are
the corresponding equivalence classes. Then, for eachx ∈ m, wedefinêx = 〈x, Cx〉,
whereCx is the equivalence class to whichx belongs. Let us call̂m the set of all
such ordered pairs. Intuitively speaking, every element ofm is associated with an
equivalence class and̂x can be thought of as “an ‘individual’ and a ‘state’ in which
the individual lies on.” The idea of identifying an object with an equivalence class to
which it belongs is closely related to Weyl’s concept of an ‘aggregate of individuals’
(Weyl [38], app. B; see also Krause [23]).

Wemay define on̂marelation∼ by x̂ ∼ ŷ if and only ifCx = Cy. It is easy to see
that∼ is an equivalence relation. Then, in stating thatx̂ ∼ ŷ , weare “identifying” the
objects denoted byx andy by the equivalence class they belong to, or by the “sort”
or “state” they are in, but without direct reference to the objects themselves. One
may object that this procedure is equivalent to state thatxRyin the original set. Of
course this is what occurs inclassicaldomains. But if we are trying to approach those
domains of reality in which the objects have the properties of them-atoms mentioned
in the previous sections, it would be convenient to refer to the classes or states only,
and not to the objects directly.22 The set̂m may be calledWeyl’s aggregate. Now let
us suppose thatA is a set such thatA = M ∪ m̂ whereM is a nonempty set and̂m is
as above.23

Then a translation from the language of quasi set theory to the language of ZF
can be defined without difficulty (the details will be omitted since we have not de-
scribed in full the language of quasi sets). The fundamental intuitive idea is to inter-
pret them-atoms as elements of̂m, that is, as ordered pairs as defined above. Then for
everyx andy in A, wesay thatx is indistinguishable fromy if and only if x̂ ∼ ŷ when
bothx andy belong tomor bothx andy belong toM andx = y. All other primitive
symbols of the quasi set theory are translated in an obvious way and, by using this
device, the translations of the axioms of that theory are true in a universe defined on
the setA. In other words, we have defined a “classical model” forS∗∗. Hence, if ZF
is consistent, so isS∗∗.

This fact might be interesting in the following sense. The usual formalizations of
quantum mechanics, like the Copenhagen interpretation, can be formulated in a “clas-
sical” way, that is, by using the usual set theory (for instance,via the Hilbert-space
formalism). But the Hilbert space formalism produces some “philosophical puzzles”
and has motivated some authors, such as Redhead and Teller to provide arguments
against the first-quantized approach and to suggest that the Fock space formalism is
more convenient, as we mentioned. Nevertheless, even in the occupation number for-
malism one still talks of ‘quantum entities’ of some sort ([26], [17]) and in reality all
these approaches do not lead up to the core of the (philosophical) problem concerning
the individuality of elementary particles. In fact, roughly speaking, one may say that
there are basically three ways of formalizing quantum mechanics: (1) by means of
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the usual formulations, as in the Copenhagen interpretation, where the laws of quan-
tum mechanics turn out to be something like the laws of our macroscopic measuring
instruments; (2) by means of the classical set theories, where elementary particles
are considered as set-theoretical constructs (like the ordered pairsx̂ above); and (3)
by using quasi sets, where indistinguishable but not identical entities can be consid-
ered “right from the start,” as demanded, for instance, by Post [31], expressing a view
which is perhaps closely related to the ontology of quantum field theories.
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NOTES

1. With regard to the concepts of physical object and sets, see [10] and [24]; concerning ex-
tensions and intensions, see Dalla Chiara [11] and [12], and Mittelstaed [30]; the view
of elementary particles as individuatable entities is criticized in [32] and [33], where the
authors introduced the term ‘individuatable’. In these papers there are additional refer-
ences.

2. We are concerned here only with showing that interesting logical systems can be devel-
oped in connection with a very plausible reading of Schrödinger’s ideas (cf. [3], [4], and
[6]). For a more detailed exegesis of Schrödinger’s thought, see Ben-Menahem [1] and
Bitbol [2].

3. In [13] a “comparative” study between these systems was outlined. (Added in proof:
The fundamental distinction between quasets and quasi sets, roughly speaking, is that
in quaset theory the concept of identity holds for all objects and the axiomatics entails
that there is a kind of “epistemic” indeterminacy regarding the elements which belong to
a quaset, while in quasi set theory the concept of identity lacks sense for some objects.
In this case, there is a kind of “ontic” indeterminacy among (some of) the elements of a
quasi set. See [25] for more details. The use of quasi sets to discuss the concept of vague
objects was suggested in French [16] and in Krause [27].)

4. Bressan had already shown that certain higher-order modal logics are of interest in con-
nection with the foundations of physics. See [21], p. 6.

5. Dalla Chiara and di Francia noted that, contrary to the case of the macroscopic natural-
kind names, in considering particle names the intension is always represented by the con-
junction of a finite number of properties. Cf. [10], p. 269. In the last section we shall
provide more details about this topic.

6. It is convenient to note that the word ‘extensional’ is used in this definition in a quite
different sense fromSωI in which this word is connected with ‘reference’ and ‘denota-
tion’.

7. That is, the (weak) equality= is introduced to abbreviate the indistinguishability relation
for qsets:x = y iff x andy are indistinguishable qsets. The result is that equal qsets may
be extensionaly distinct in the sense that they may be equal without having “the same”
elements.

8. All these concepts can be defined in quasi set theory, see [24].

9. As in Montague’s approach to intensional logic, we may suppose thatI is the Cartesian
productW× T whereW is a (quasi) set of possible worlds andT is a totally ordered set
of instants of time; see Gochet [18].
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10. Then, in particular,ρ(Ce1 ) ∈ m andρ(Ce2 ) ∈ M.

11. It is important to recall that, as in usual intensional logics, the word ‘n-ary predicate’ is
used here to meanrelation-in-intension(cf. [21], p. 67).

12. Similar to [21], p. 74.

13. The existence of such a sequence can be proved by adapting the method presented in
[21], p. 75.

14. That is to say,m= Tre1/ � andM = Tre2/ �.

15. The proof is analogous to that of [21], p. 75.

16. As in [21], pp. 76ff.

17. In the language of our theory, propositions are elements of the setF∅5⊆ [P ({∅})] I = 2I

in any g-model (also cf. [21], p. 72).

18. Added in proof: In a recent work [27], French and Krause developed a logic of predicates
of this kind, termed ‘opaque predicates’, whose semantics is also founded on quasi set
theory.

19. As Redhead and Teller prefer to call the basic entities, in order to avoid the ‘interpretive
disaster’ of thinking of them as ‘particles’, that is, as individuatable entities (see [32],
[33]).

20. Added in proof: The case of the Fock space formalism, in connection to Redhead and
Teller’s idea that by using it we may avoid the commitment to labels, is criticized in [17].

21. For details, see da Costa [5].

22. It seems to us that the so-called sortal logics (Stevenson [35]) may also have an inter-
pretation in this sense. See also da Costa [7].

23. See [5].
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