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An Intensional Schrodinger Logic
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Abstract Weinvestigate the higher-order modal lo@gI, which is a variant

of the systenf5, presented in our previous work. A semantics for that system,
founded on the theory of quasi sets, is outlined. We show how such a semantics,
motivated by the very intuitive base of Sékdinger logics, provides an alterna-

tive way to formalize some intensional concepts and features which have been
used in recent discussions on the logical foundations of quantum mechanics;
for example, that some terms like ‘electron’ have no precise reference and that
‘identical’ particles cannot be named unambiguously. In the last section, we
sketch a classical semantics for quasi set theory.

1 Introduction  One of the most interesting debates in the field of science in our
time is whether the general principles of classical logic could be viewed as necessary
and permanent truths. Notwithstanding the fact that the real sciences provide numer-
ous insights for the development of deviant logics, in general the nonclassical logical
systems developed in this century did not arise from the desire to formalize the intu-
itions of scientists. On the contrary, the majority of them had their motivation from
the pure mathematical interest of investigating, as Hilbert said, “all logically possi-
ble theories”[P0). But logic can also be viewed, in a certain sense,laphysique
de 'objet quelconque(Gonseth@, p. 155) and then, by considering this view, we
may be tempted to investigate those logical systems which arise from the necessities
of science, in particular by taking into account, as it was noticed by several authors,
that modern physics presents strong arguments for the questioning of classical con-
cepts like those of object and identity, which suggest revisions in standard concepts
like ‘set’, ‘individuatable thing’, ‘extension and intension of concepts’, and sé on.
With regard to identity, the papers listed above present arguments for the view
that in the microworld this concept does not conform with its use in the case of usual
macroscopic objects, that is, with the “traditional” theory of identity of classical logic
and mathematics (Kraudgq]). Schivdinger, for instance, stressed that this concept
simply has no meaning for elementary particles; more specifically, in discussing the
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case where one is tempted to say that onethagdameparticle was observed twice
at different instants of time, he said that

The circumstances may be such that they render it highly convenient and de-
sirable to express oneself so, but it is only an abbreviation of speech; for there
are other cases where the ‘sameness’ becomes entirely meaningless; and there
is no sharp boundary, no clear-cut distinction between them, there is a gradual
transition over intermediate cases. And | beg to emphasize this and | beg you to
believe it: It is not a question of our being able to ascertain the identity in some
instances and not being able to do so in othiiis.beyond doubt that the ques-

tion of ‘'sameness’, of identity, really and truly has no mean[ogr emphasis]
(Schidinger B4], pp. 17-18; see also DaCod],[p. 117 and DaCost&)

Based on these Sdidlingerian intuitions, it was outlined by da Costa in 19@,([

pp. 117-18) that in a two-sorted first-order logical system the principle of identity
VX(x = X) is not valid in general, since expressions like: b are atomic formulas in

the case in whicla andb are both terms of just one of these two species (the second,
say); for the terms of the first species, that expression is simply not a formula.

A semantics for that system was also suggested, and it was noted that such a
semantics, which is formulated on the usual theories of sets, does not adequately ex-
press the intuitive idea of that logic, since the constants of the first species (the “prob-
lematic” ones referred to above) were interpreted as elements of a set (as in the usual
Tarskian semantics) and a set is a collection of distinguishable objects. This fact is,
of course, contrary to the spirit of Sdtinger logics, since the intuitive motivation
is that the objects of the first species should be considered as indistinguishable and
devoid of identity?

The above mentioned first-order system was extended to a higher-order logic
(simple theory of types) ifd] and some additional topics were emphasized, for in-
stance, the possibility of violating Leibniz’s Principle of the Identity of Indiscernibles,
which, in some sense, reflects what has been pointed out in recent literature in con-
nection with the foundations of quantum mechanics (see Frén@hHrench [L5],
and Y] for further references). From this point of view, Satiinger logics might be
viewed as alternative mathematical devices by means of which some of these funda-
mental intuitions can be formalized.

A “classical” semantics was also presented for the higher-order sigsteran-
tioned above, that is, a semantics founded on the usual set theories, and a generalized
completeness theorem was proved. But, as it was pointed & th¢ basic problem
which appears in the first-order system remains, since the concept of identity cannot
be applied to somentities As it was suggested ifg], to stress the intuitive idea
underlying Schidinger logics, aquasi set theoryin which the concept of a set is
extended, should be developed. In such a theory a semantics f@d8afer logics
should be formulated. In addition, in a quasi set theory the existence of indistinguish-
able but nonidentical entities must be allowed. In this paper, we sketch the main fea-
tures of such a semantics, using the quasi set theory developed in Dalla @Bjara |
As an interesting consequence, we show how such an enterprise allows us to handle
intensional concepts, as they have been presented in recent literature, in connection
with the logical basis of quantum mechanics (Dalla ChiBjj [As for quasi sets,
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we recall that quasi set theories were developed 4nd in Krauself4]; alterna-

tive systems were proposed in Krau&€][(developed in[I3]) and in Krause[Z5].
Independently and motivated by other insighisasettheories were proposed in
Dalla ChiaralL0].23 The logical system we present here, denote&by, differs from

the logic S, of [24] in the following way: instead of considering just one tyer
individuals and a two-sorted language in order to “separate” those individuals which
have the usual properties from the “problematic” ones, we introduce individual types
e; ande,. The individuals of typee; are those entities to which the concept of iden-
tity does not apply (they are called-objects in the quasi set terminology which will

be used throughout this paper), while the individuals of tgpare the “classical’
ones. Furthermores, I is a modal logic in which the necessity operaloris used

as a primitive symbol. The logic is based on Gallin’s system,NI21], part 2), on
which our terminology is partially based. Additional explanations are introduced as
we go.

2 Motivation Recent research on the foundations of physics have suggested the
convenience of introducing intensional logics of some particular kind to cope with
certain problems regarding the basis of quantum mechanics {@¥)an example,

in discussing the semantical analysis of QM, Dalla Chiara pointed out that

Significant counterindications against the adequacy of a purely extensionalis-
tic approach in semantics have been suggested by contemporary physics. Mi-
crophysics seems to be, from a semantical point of view, essentially a world
of intensions, where individual objects and sets of individual objects appear,
S0 to speak, as unnatural notions. The concepxténsion(referencé be-
comes more and more blurred as we go deep into the logical intricacies of
Quantum Mechanics. . . . In my opinion, some characteristic semantical fea-
tures which clearly appear in the logical investigations about the microuniverse
do not merely point out some fairly pathological aspects of a world that is far
apart from our human world. On the contrary, they make us aware about certain
oversimplifications of our usual semantical principleB],(ee alsd0])

The discussion of the use of intensional concepts in physics certainly deserves careful
analysis, which we do not intend to develop here (but see the references). However,
motivating the semantics presented below, we recall without details some of Dalla
Chiara’s examples, which illustrate from an intuitive point of view the main ques-
tions to be considered below (see Section 6). In usual (extensional) semantics, the
extension of a proper name is an individual of the universe of discourse, but in mi-
crophysics the indistinguishability of elementary particles causes serious problems
regarding this view. In fact, i is a constant of the language (say, a first-order lan-
guage), which shouldamean elementary particle, then QM suggests that in general

a has no precise reference. In other words, what is to(bg, wherep is the function
corresponding to the standard denotation function in Tarskian semantics? Also predi-
cates (it suffices to reason on one-place predicates), which usually have subsets of the
domain of individuals as their extensions, may not behave semantically as expected.
Take for instance the predicate ‘electron’. As Dalla Chiara calls to our attention, in
microphysics this concept has no precise extension, despite having a well-defined in-
tension (characterized, roughly speaking, by the physical properties that characterize
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the entity ‘electron’)? That is, the extension of such a predicate cannot be identified
with a well-defined subset of the domain in the standard set-theoretical sense.

Other important topics could be considered in connection with the use of inten-
sions in physics, for instance the supposed necessity of introduntérgsional struc-
tures asthose presented if2]. But we hope that the few examples just mentioned
are sufficient to illustrate our point.

3 Thelanguage of thesystem S,I  To begin with, let us introduce the concept of
type. The set ofypesis defined as the smallest collectibinsuch that: (ag;, e, € I1

and (b) ifty, ...,y € T1, then(zy, ..., 7y) € I1. e ande, are the types of the
individuals the objects of type; are calledm-atoms and are intuitively thought

of as elementary particles of modern physics (first-quantized approach). Follow-
ing Schiddinger, we suppose that the concept of identity cannot be applied to them
(cf. [4]). The language of the syste®, I may be described as follows: it contains
the usual connectives (we suppose thand—> are the primitive ones, while the
others are defined as usual), the symbol of equality, auxiliary symbols, and quantifiers
(Vis the primitive andl is defined in the standard way) and the necessity opelrator
With respect to variables and constants, for each typdl there exists a denumer-
ably infinite collection of variableX{, X7, ... of type r and a (possibly empty) set

of constants A7, A, ...) of that type; we useX®, Y?, C*, andD* perhaps with sub-
scripts as metavariables for variables and constants ofitypepectively. Théerms

of typet are the variables and the constants of that type; so, we have individual terms
of typese; ande,. WeuseU?, V7, perhaps with subscripts, as syntactical variables
for terms of typer. The atomic formulas are defined in the usual wayifis a term
oftypetr = (11,..., Tn) andU™, ..., U™ are terms of types,, ..., T, respectively,
thenU® (U™, ..., U™)isanatomicformula; soid®™ = VT if ris not of typee;. Then,

the language permits us to talk neither about the identity nor about the diversity of the
individuals of typee;. The other formulas are defined as usual. A formula containing
atleastJ™, ..., U™ as free variables sometimes shall be writlefy™, ..., U™).

4 Semantics The aim of this section is to outline the tools for the proof of the
“weak” completeness theorem {8, I which we shall sketch in the next section. We
start by recalling intuitive topics concerning quasi sets which will be used below.

4.1 The quas set theory Quasi set theories can be roughly described as mathe-
matical devices for treating collections of indistinguishable objects [&gg [The
theory S** developed in[I3] (see alsdZ4]) allows the presence of a certain kind of
Urelemente(them-atoms) to which the usual concept of identity does not apply. The
underlying logic ofS* is classical quantificational logic without identity; the specific
symbols are three unary predicate lettexx) (read X is anm-atom”), M(x) (read

“xis anM-atom”, that is, a standard Urelement) afi¢k) (read ‘X is a standard set”;

by asetwe mean a quasi set whose transitive closure does not cantatoms—
these “sets” have all the properties of the ZFC-sets); two binary predicate symbols,
(membership) ane: (indistinguishability); and a unary functional symlupl (quasi
cardinality). A quasi set (gset for short) is defined as an entity which is not an Urele-
ment (i.e., it is anything that is neither aratom nor a classical atom). xXfis a quasi
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set, we write( Q)x. The concept of quasi cardinality is introduced in such a way that
it extends the concept of cardinality for arbitrary gsets [Z4]).

In what follows we talk about quasi sets in an informal way, but our exposition
can be, in principle, formalized in a quasi set theory. The axioms of indistinguisha-
bility state first that= has the properties of an equivalence relation. Then, we de-
fine the concept ofxtensional equality=g in the following way:x =g y if and only
if (QX)AQY)AVZ(zeX<«— ze YY)V (IMX) AM(Y)AX=Y). Thatis, in
the quasi set theory extensional entities are indistinguishable standard Urelemente or
gsets which have exactly the “same” eleménfBhen we postulate that the substi-
tutivity principle is valid only to extensional entities: in symbolsyy(X =g y —

(A(X, X) — A(X, y))) is an axiom. The extensional equality has all the formal prop-
erties of classical identity.

Furthermoresimilar gsets are those nonempty gsets such that the elements of
one of them are indistinguishable from the elements of the other. Intuitively, similar
gsets are composed by elements “of the same sort.” The basic axiom is the “weak” ex-
tensionality which states that similar gsets which have the same quasi cardinality are
indistinguishable gsets (we also say that indistinguishable gsets are “efT&i&n,
this equality relation is not extensional and this fact allows that intensional concepts
be handled in the theory. Furthermore, the axioms entail that if the quasi cardinal of
the gsekis « and if 8 < « is a quasi cardinal, then there exists a subgsetx such
that the quasi cardinal of is 8. This permits us to use the concept gb@awver gset
(the gset of the subgsets ®fin the next section. Thpower gset axionstates that
if « is the quasi cardinal of a certain gsetthen the gset of all subquasi sets)of
(the power gset o) hasquasi cardinal 2 This entails that the theory is consistent
with the hypothesis that, for instanocehasa singletonsthat is,« subquasi sets with
just one element. A similar argument applies to subgsets with two, three,« el-
ements. Apparently, the possibility of the existence of these singletons would entail
that a kind of Leibnizian identity is automatically defined in quasi set theory. But let
us remark that the quasi set theory does not permit us to distinguish between such sin-
gletons since all of them are indistinguishable from one another by the axiom of weak
extensionality. The details may be foundlﬁ, but we insist that despite the theory
being compatible with the idea of singletons, their existence cannot be proven. It
should be remarked that this is precisely what happens in quantum physics, since,
for example, although the hypothesis that there are exactly six electrons at the level
2p of a sodium atom does agree with experimental evidence, no one can distinguish
the “unitary” subcollections of electrons. Notwithstanding, quantum physics would
be contradictory if such a supposition could not be admitted. So, by means of the
mentioned power gset axiom, we maintain the possibility of reasoning on absolutely
indistinguishable “distinct” objects (the word ‘distinct’ is to be understood here as a
metalinguistic expression; it cannot be formalized in quasi set theory, at least with
regard tom-atoms).

Finally, let us recall here the concept ofj@asi functiorwhich will be used be-
low. In quasi set theory, the concept of (binary) ‘relation’ is defined in the standard
way, as quasi sets of ‘ordered pairs’, by means of the weak concept of ‘pair’; but
there is a problem regarding the concept of function, since a function (in the standard
sense) could not distinguish between possible values of a certain argument, due to
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their indistinguishability (when there aneatoms involved). Then we have defined a
weaker concept of a mapping which maps indistinguishable things into indistinguish-
able things; in the case of “macroscopic” objects (like standard Urelemente or “sets”),
the concept coincides with the standard notion of function. In short, quasi functions
are such that given an argument, the corresponding value is not well defined, as the
formal definition below explains. For more details, 88 [ Suppose thaR is the
predicate for ‘relation’ defined in the standard sense.xatdy be quasi sets. Then

we say thatf is ag-functionfrom xto y if f is such that

R(f)AVu(ue X — Fv(ve YA {U,v) € T)A
Yuvu'vovv' ((u,v) € FA U, VY e fAu=U — v=7)

The concepts of g-injection, g-surjection, and g-bijection can be introduced in an ob-
vious way; for more details, se@q]. In addition, the axioms imply that the theory
ZFU (Zermelo-Fraenkel with Urelemente) can be interpretef‘in Additional re-
marks on quasi sets will be introduced when necessary.

4.2 Thegeneralized quasi set semantics Let D = (m, M) be an ordered pair (in-
troduced in the usual way in the thedgy*), wherem £ & is a finite pure gset (i.e., a
finite gset which has onlyn-atoms as elements) amdl = @ is a sef Furthermore,
we suppose thdtis a nonempty set (whose elements are cditdéxor state of af-
fairs).? By aframefor S, I based orD and| we mean an indexed family of gsets
(#)zen Where

2. Jo, =M,
3. foreachr = (11, ..., 1) € I, % is a nonempty subqgset of

[P(Fy %X F)]

If the equality holds in (3), then the framestandard By ageneral mode{g-model
for short) forS, I based orD and| we understand an ordered pair

M: <—r}‘—[’ p)TEH

such that

1. (%):en is aframe forS, I based orD andl;
2. pis a quasi function which assigns to each cons&iran element off,.1°

A standard modédior S, I is a g-model whose frame is standard. Before introducing
other semantical concepts, let us consider some examples which illustrate the “inten-
sional” counterpart of such a semantics. The first two examples show that the classi-
cal intensional cas@[] remains valid when the entities are not of the tgpeThe

last ones exemplify the specific case of Sualinger logics.

Example4.1 Let us consider the consta@fz. Since %, = M, thenp(C%) € M,
thatis to sayC® names an element of a standard set. This is not, of course, surprising,
since the given constant is “classical”.
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Example4.2  Now we consider the consta@t®’. In this casefe,) C [P(Te,)]'
=[P(M)]'. Then, %, is a class of functions frorhin (M), dso as in the classical
case. IntuitivelyC® is a unary predicate (an individual property) whose arguments
are individuals of type, (i.e., classical individualst

Example4.3 Letustake aconsta@®. Inthis casef, = mandtherp(C®) e m,
that is, the constamamesanm-atom. Since then-atoms cannot be individualized,
counted, and so forth, the denotatiorG5f is ambiguous. We can say that a constant
of typee; plays the role of generalized noug-noun.

Example 4.4  We now consider a consta@t®’. In this case %e,) € [P(%,)]' =
[P(m)]'. Then,p(C®) € Fe,, thatis, it is a (quasi) function frorh to P(m). In

other words o (C®) is a quasi function from to P(m). If mis a pure gset whose
elements are all indistinguishable from one another, then the denotation function does
not distinguish between gsets®(m). Infact, in this case the only difference among

the subgsets ah s their cardinality, that is, ip(C®) is x, then every gsey such

thatx andy are similar (cf. Subsection 4.1) may act as the denotati@i%f as well
(seell.3). This interpretation accommodates the intuitive idea that a predicate like
‘electron’ does not have a well-defined extension.

The last two examples suggest an interpretation of ‘quantum predicates’ such as ‘elec-
tron’, in conformity to the discussion of Section 2; such predicates, which do not have
well-defined extensions (in the sense that every gset of a certain class of similar gsets
may be considered as their extension) are relations-in-intension df $ort In the
same way, indistinguishable elements of a pure gset are not individuatable entities;
they can only be aggregated in a certain quantity (every gset has a cardinal). They ac-
curately exemplify the ‘quanta’ in Teller and Redhead’s terminology [&&, [33)).
Since them-atoms have no names, the terms of tgpdave no precise denotation;
they refer ambiguously to an arbitrary element of the domain. In other words, we may
properly say that such constants do not represent anything in particular: they lack a
(precise, well-defined) referent.

The set of allassignments overg-modelM, denotedAs(M), is the set of all
g-functionsf on the set of variables @&, I such thatf (X*) € %, for every variable
X of typer. For any f € As(M), we denote byf the extension off to the set of
all constants, defined bj(C?) = p(C?) € #.

Ifi e 1 and f € As(M), then the notion

M,i, f sat A

is defined by recursion on the length of the forméAlas follows:

1. M i, f satUT(U™,...,U™) iff (fU™),..., fU™)) e FU);

2. M,i, f satUT=V" iff (f(U7?), f(V"))e A—_(r) where A_(7)isthe
“pseudo-diagonal” off;, which may be defined i&** as the subgset ¢f;, x %,
whose elements are indistinguishable from one another (whkee,, this gset
is the diagonal off; in the standard sense);

3. M, f satCOA iff M, j, f sat A forevery jel;

4. usual clauses for, —, andV.
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A formula A is true in a g-modelM (denoted=,, A) if and only if M, i, f sat A
for everyi e | and f € As(M). A se T of formulas ofS, I is g-satisfiablen S, I
if and only if for some g-modefV, indexi, and assignment, M, i, f sat A for all
A € X. A formula A is ag-semantical consequenoéa setl” of formulas, and we
write I =g A, if and only if M, i, f sat Aforie I, f € As(M) and g-modetV
whenevet\, i, f sat Bfor every formulaB € T. If I' = &, then we write=y Aand
say thatAis g-validin S, I. Inthe next section we present an axiom systent&fof
and prove a generalized completeness theorem for this logic.

5 Thetheory S,I The postulates d§, I (axiom schemata and inference rules) are
the following.

(Al) A, where A comes from a tautology im and — by uniform
substitution of formulas 08, I for the variables.

(A2) VX*(A — B) — (A — VX*B), where X does not occur
free in A.

(A3) VXTA(X") — AU") whereU" is a term free forX™ in A(X")
and of the same type of".

(A4) X = X,

(A5) X8 =Y®2 — (X% =Y®).

(AB) O =V" — (AWUY) — ANVY)), whereU® andV* are
free for X* in A(X").

(A5) OA— A

(AB) O0(A— B)— (OA— OB).

(A7) OA — OCA

(R1) FromA and A — Bto infer B.

(R2) FromAto inferv X" A,

(R3) FromAto infer O A.

The usual syntactical notions are defined in the standard way, such as formal theorem
(F) of S, I, the concept of the consequence of a set of formulas, and so on.3A set

of formulas isconsistentf and only if some formula is not derivable frolin S, 1.

Wewill sketch below the proofs of the soundness and of the generalized completeness
theorems for this logic.

5.1 Soundness and generalized completeness The soundness theorem 851 is
formulated as follows. If- Ain S,1 thenl=g Ain S,I. This result implies that if
I' = A, thenT" =g A and that if a set of formulax is g-satisfiable ir§, I, thenX is
consistent.

The proof is obtained by showing that all the axiom$gf are g-valid and that
the inference rules preserve g-validity. This follows from the fact that(ifs a g-
model forS, I and the ternmJ® is free for the variableX™ in A(X"), then for every
ielandfe As(M), it results that

M i; f, £(CY) sat A(X®) iff M, i, f sat A(CY)

where the terminology has an obvious meanifig]j[}2 The generalized complete-
ness theorem fog, I is the converse of the above result; it is sufficient to prove that
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¥ is consistent if and only it is g-satisfiable. The implication from right to left is
straightforward; we consider then only the implication from left to right.

To begin with, let us assume that the consistendsemits infinitely many vari-
ables of each type, that is, there are infinitely many variables of each type which do
not occur in any formula oE. Then there exists a sequente= (%;)ic,, Of sets of
formulas such that

(i) = < Xo;
(i) for eachi € w, % is a maximally consistent set of formulas®) I;
(i) for eachi € w and each formul@B(X?), 3X*B(X?) e % iff B(Y?) € X for
some variabley™ which is free forX® in B(X"): that is,X is a Henkin Theory;

(iv) foreachi € wand each formul®, we have® B € % iff B € = for somej € w;

(v) for eachi € w and each formul®(X?), we havev X*B(X?) € % iff B(Y?) €
¥ for every variabley® which is free forX® in B(X®);

(vi) for eachi € w and each formuld, we have 0B € % iff B € ¥; for every
jewl®

The g-model relative to which the formulas Bfare g-satisfiable can be described

as follows. First, we consider an equivalence relation on the colle@tiponf terms

of S, 1 of typet such thatU is equivalent tov” if and only if 0 (UT = V7) e % if

7 # € and, ift = e, thenU*® is equivalent to/® (in this case we writ®) & = V)

if and only if for every formulaF that belongs ta;, it results thatF[U®/ V®1] also
belongs tox;. In other wordsl®: is equivalent tove if and only if U® andV®e can

be replaced one by the other in all their occurrences in any predicate in such a way
that the resulting formulas are necessarily equivalent. The defined relation does not
depend on € w. Then, by recursion on the typewe define a setf; and a mapping

o from the set of terms of typeinto % such that

1. p isonto %,
2. p(UT) = p (V) iff UT ~ V7.

First, let % be the quotient séfre / =~ (i = 1, 2)* andp(U®) = [U®].. (these are
the equivalence classesdf by the relatior~). Then, by supposing th&t, andp,,
have been defined fdr< n, we define the mapping, from Tr, into [P(F, x - -- x
F. ]?, wheret = (1, ..., th-1), asfollows:

{(Po(Ug®), - .., pn1 (U h)) € p(UT) (D)
if and only if the formulaJ® (U™, ..., U™1) belongs tox;. If welet % be the range
of p, then conditions 1 and 2 above are met. The g-model bas&l-emU M and
index setl = wisthe ordered patM = (%, p) e, Wherep(C?) = p,(C?) for every
constaniC*. Then, by induction on the length of the formutait results that

Mi,u sat A iff AeX

for everyi e |, whereu € As(M).® In the case where= 0 andu = f, we obtain
the desired result.
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5.2 Comprehension and other axioms  Our logic can be extended to a system
which encompasses all the instances of the follovamgpprehension schemahere
7= (11, ..., Tn) @and X" is the first variable of type which does not occur free in the
formulaF(X™, ..., X™):

IXTOVX™E, VXXX, L, X)) «— F(X™, .., X))

This scheme, which is valid in all the standard model$gf, formalizes the prin-
ciple that every formuld (X™, ..., X™) with free variables determines a relation-
in-intension (a predicate). In considering a g-mo@él= (%, p)cen for S, 1, if
um,...,U™arerespectively elements gf , ..., ', the predicaté= being defined

by
FG) E((X™, ..., X™): i; f,U™, ... U™ sat F(X™,..., X™)}

for all i € | and assignmenf € As(M) belongs to%; (the terminology is that of
[21]). Consequently, the g-model is also a g-model$gt plus the comprehension
schema, and the completeness theorem is also true for this extendel® [Bhieprin-
ciple ofextensional comprehensiamhich says that every formula with free variables
determines an (extensionabary relation and the axioms of infinity and choice, can
be formulated in the language 8f I in exactly the same way as i@&]], pp. 77-78;

in the same way we can treat the axioms of infinity and choice (seeld|sotjere
these last two axioms are formulated for the lo8ig.

As occurs in Gallin’s system, the principle of extensional comprehension can
be proved to be independent of the axiomaticSpf plus comprehension. That is,
there are g-models &, I plus comprehension in which the extensional comprehen-
sion principle fails. We do not present these g-models here, but due to the pecu-
liarities of our logic (mainly regarding the failure of the general principle of iden-
tity), we guess that perhaps they are related to Takeuti's quantum set theoretical mod-
els B6], which are built starting from a complete orthomodular lattice instead of
a complete Boolean algebra as usual (for this last case[2Sdechap. 4). As re-
marked in Dalla Chiardd], in Takeuti'sortho-valuedmodel the identity relation is
non-Leibnizianin the sense that the substitutivity law of identity fails. The analogies
between this case and Sodinger logics seem evident and of course deserve further
attention. In future works we intend to investigate this question.

6 Concluding remarks and the classical interpretation of quasi sets At the end

of the last section, we mentioned some points to be developed in connection with our
logic. Here we comment on other topics we think are of interest, but once more they
are referred to without details. First, taking into account Gallin’s characterization of
the algebra of “propositions® of the g-models of his system Mlplus comprehen-

sion as a subalgebra of the Boolean algebra of all subsétstofvould be interest-

ing to analyze the modifications to be made in the axioms and in the interpretations
of what is to be considered a “proposition” (in such a way that they play the role of
‘propositions’ in quantum mechanics), such that the algebra be an orthomodular lat-
tice, as occurs in QM, instead of a Boolean algebra. In this way, perhaps we can char-
acterize a quantum logic more from a distinct point of view than the usual dges ([
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Mittelstaed [£9]). We have remarked in the last section that as it occurs in the clas-
sical case (Gallin’s system), the extensional comprehension fails to h&gdlirbut

in this case something stronger than in pMian be inferred. In fact, the fundamental
point is not only the existence of g-models in which the extensional comprehension
fails. In S, I we have more: there are, in fact, predicates which do not define (precise)
extensions (hence relations), such as those oftypd 1, ..., t,) in which at least

one of ther; is obtained recursively from,. So, a formula with free variables which
defines such an “ambiguous” predicate is also “ambiguous” in some sense, that is, it
does not define greciseand well-defined relation (a well-defined subset of objects
of the domain). These relations are, of courgaasi relationsin the sense of quasi

set theories?

Manin pointed out that quantum mechanics uses as a language a fragment
of classical functional analysis, having not its “own languagEg{[ pp. 84—-85).
Schiddinger himself had already felt the necessity of a radically new and different
language than the classical one to speak about the fundamental entities of which mat-
ter is composed, a language which could join both the particle and the wave aspects
of it (see da Costdf]). In fact, usual quantum logics start from algebraic structures
which reflect essentially the properties of operators defined on the closed subspaces
of a Hilbert space, and it is not easy to recognize in what sense these formal algebras
refer to the very basic ontology of quantum physics. In short, quantum logics ap-
parently are closer to a calculus of statements about the microworld than they are to
describing the very underlying logic of elementary particles. In fact, it is well known
that the usual formalisms via Hilbert spaces (first-quantized approach) raise a lot of
intricate “philosophical puzzles,” some of them related to the birth of “surplus formal
structures,” that is, mathematical structures which correspond to nothing in the real
world ([3Z] [B3)). These structures are originated by the wrong implicit supposition
that elementary particles are individuatable entities, that is, things which behave as
classical physical objects.

The tendency to abandon labels by using (say) the Fock space formalism, which
permits us to drop the labels, seems to be more adequate from the philosophical point
of view, since in this case we are (apparently) formally describing no more particles
but legitimate ‘quantaly that is, entities which cannot be strictly counted, arranged
in some order, and so on, but that can only be aggregate in certain quantities. As it has
been said elsewheréf] and also FrencHI[7]), this raises other kinds of “puzzles”,
since despite the fact that a vector in the Fock space is a form of description of states
with a certain number of quanta without any reference whatever to “primitive this-
ness” (Teller[B7]), we continue to talk of ‘quantum entities’, and it is natural to ask
for the kind of logic these entities obéy.Since there are strong arguments against the
classical theory of identity in what concerns these entities (for instance, all the argu-
ments pointed out in recent literature which aim at showing that Leibniz’s Law is not
true in the quantum world[{H], [L5]), we are tempted to guess that Sifinger log-
ics can perhaps be useful in formalizing some aspects of the behavior of elementary
particles. Then, systems which combine such “deviations” from the traditional theory
of identity (as it seems reasonable to admit in connection with elementary particles)
with the possibility of realizing intensional concepts, a fortiori might also appear as
legitimate ‘quantum logics’ in some sense. Further analysis may show in what sense
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systems of this kind should be modified in order to attain the very objective of quan-
tum logics, as put forward ifg] and P9]. But these questions will also be postponed
for future works.

6.1 Classical semanticsfor quasi settheory Wenote that it is possible to provide

a “classical” interpretation of quasi séfs.The idea is the following one. Suppose
thatmis a set, thaR is an equivalence relation an, and thatC;, i = 1,2, ... are

the corresponding equivalence classes. Then, for ea&cim, we defineX = (x, Cy),
whereCy is the equivalence class to whishbelongs. Let us cali the set of all
such ordered pairs. Intuitively speaking, every elememnmnd$ associated with an
equivalence class andcan be thought of as “an ‘individual’ and a ‘state’ in which
the individual lies on.” The idea of identifying an object with an equivalence class to
which it belongs is closely related to Weyl's concept of an ‘aggregate of individuals’
(Weyl [Bg], app. B; see also Krauséq).

Wemay define omarelation~ by X~ y ifand only ifC, = Cy. Itiseasy to see
that~ is an equivalence relation. Then, in stating tRat ¥, weare “identifying” the
objects denoted by andy by the equivalence class they belong to, or by the “sort”
or “state” they are in, but without direct reference to the objects themselves. One
may object that this procedure is equivalent to statexirytin the original set. Of
course this is what occurs atassicaldomains. But if we are trying to approach those
domains of reality in which the objects have the properties ofrttagoms mentioned
in the previous sections, it would be convenient to refer to the classes or states only,
and not to the objects directly. The seth may be calledVeyl's aggregate Now let
us suppose thak is a set such thah = M U MwhereM is a nonempty set arna is
as above?

Then a translation from the language of quasi set theory to the language of ZF
can be defined without difficulty (the details will be omitted since we have not de-
scribed in full the language of quasi sets). The fundamental intuitive idea is to inter-
pret them-atoms as elements 6, that is, as ordered pairs as defined above. Then for
everyxandyin A, wesay thaixis indistinguishable frony if and only if X~ ¥ when
bothx andy belong tom or bothx andy belong toM andx = y. All other primitive
symbols of the quasi set theory are translated in an obvious way and, by using this
device, the translations of the axioms of that theory are true in a universe defined on
the setA. In other words, we have defined a “classical model’$5t. Hence, if ZF
is consistent, so i$**.

This fact might be interesting in the following sense. The usual formalizations of
guantum mechanics, like the Copenhagen interpretation, can be formulated in a “clas-
sical” way, that is, by using the usual set theory (for instan@ethe Hilbert-space
formalism). But the Hilbert space formalism produces some “philosophical puzzles”
and has motivated some authors, such as Redhead and Teller to provide arguments
against the first-quantized approach and to suggest that the Fock space formalism is
more convenient, as we mentioned. Nevertheless, even in the occupation number for-
malism one still talks of ‘quantum entities’ of some sofd] [[L7]) and in reality all
these approaches do not lead up to the core of the (philosophical) problem concerning
the individuality of elementary particles. In fact, roughly speaking, one may say that
there are basically three ways of formalizing quantum mechanics: (1) by means of
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the usual formulations, as in the Copenhagen interpretation, where the laws of quan-
tum mechanics turn out to be something like the laws of our macroscopic measuring
instruments; (2) by means of the classical set theories, where elementary particles
are considered as set-theoretical constructs (like the orderedXmi®/e); and (3)

by using quasi sets, where indistinguishable but not identical entities can be consid-
ered “right from the start,” as demanded, for instance, by Bd§téxpressing a view
which is perhaps closely related to the ontology of quantum field theories.
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NOTES

1. With regard to the concepts of physical object and setsI§kafid [24]; concerning ex-
tensions and intensions, see Dalla Chiird pnd [LZ], and Mittelstaed30]; the view
of elementary particles as individuatable entities is criticize@# and B3], where the
authors introduced the term ‘individuatable’. In these papers there are additional refer-
ences.

2. We are concerned here only with showing that interesting logical systems can be devel-
oped in connection with a very plausible reading of ®dimger’s ideas (cf, [@ and
[6). For a more detailed exegesis of Satlinger’s thought, see Ben-Menahdij &nd
Bitbol [2].

3. In [13 a “comparative” study between these systems was outlined. (Added in proof:
The fundamental distinction between quasets and quasi sets, roughly speaking, is that
in quaset theory the concept of identity holds for all objects and the axiomatics entails
that there is a kind of “epistemic” indeterminacy regarding the elements which belong to
aquaset, while in quasi set theory the concept of identity lacks sense for some objects.
In this case, there is a kind of “ontic” indeterminacy among (some of) the elements of a
quasi set. Se@[] for more details. The use of quasi sets to discuss the concept of vague
objects was suggested in Frenli[and in Krause[p7].)

4. Bressan had already shown that certain higher-order modal logics are of interest in con-
nection with the foundations of physics. SEE][ p. 6.

5. Dalla Chiara and di Francia noted that, contrary to the case of the macroscopic natural-
kind names, in considering particle names the intension is always represented by the con-
junction of a finite number of properties. CHLQ], p. 269. In the last section we shall
provide more details about this topic.

6. It is convenient to note that the word ‘extensional’ is used in this definition in a quite
different sense frong, I in which this word is connected with ‘reference’ and ‘denota-
tion’.

7. Thatis, the (weak) equality is introduced to abbreviate the indistinguishability relation
for gsets:x = yiff xandy are indistinguishable gsets. The result is that equal gsets may
be extensionaly distinct in the sense that they may be equal without having “the same”
elements.

8. All these concepts can be defined in quasi set theoryPgge [

9. Asin Montague’s approach to intensional logic, we may supposé thdhe Cartesian
productW x T whereW is a (quasi) set of possible worlds amds a totally ordered set
of instants of time; see Goch@&id].
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10. Then, in particulap(C®) €e mandp(C®) € M.

11. Itisimportant to recall that, as in usual intensional logics, the wordry predicate’ is
used here to meamlation-in-intensior(cf. [21], p. 67).

12. Similar to[21], p. 74.

13. The existence of such a sequence can be proved by adapting the method presented in

24, p. 75.
14. Thatis to sayn= Tre,/ ~andM = Tre,/ .
15. The proof is analogous to that &ff], p. 75.
16. Asin [Z1], pp. 76ff.

17. Inthe language of our theory, propositions are elements of tifg8et [P({2})]' = 2'
in any g-model (also cflA1], p. 72).

18. Added in proof: In arecentworkT], French and Krause developed a logic of predicates
of this kind, termed ‘opaque predicates’, whose semantics is also founded on quasi set
theory.

19. As Redhead and Teller prefer to call the basic entities, in order to avoid the ‘interpretive
disaster’ of thinking of them as ‘particles’, that is, as individuatable entities &g [

20. Added in proof: The case of the Fock space formalism, in connection to Redhead and
Teller’s idea that by using it we may avoid the commitment to labels, is criticiz€idh [

21. For details, see da Cos[

22. It seems to us that the so-called sortal logics (Stevef&E@nrhay also have an inter-
pretation in this sense. See also da Cd&}a [

23. Seelf].
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