
STOCHASTIC SYSTEMS
Vol. 7, No. 2, December 2017, pp. 289–314

http://pubsonline.informs.org/journal/stsy/ ISSN 1946-5238 (print), ISSN 1946-5238 (online)

Detecting Markov Chain Instability: A Monte Carlo Approach
M. Mandjes,a B. Patch,a, b N. S. Waltona, c

aUniversity of Amsterdam; bThe University of Queensland; cThe University of Manchester
Contact: m.r.h.mandjes@uva.nl (MM); b.patch@uq.edu.au, http://orcid.org/0000-0002-6019-3428 (BP); neil.walton@manchester.ac.uk,

http://orcid.org/0000-0002-5241-9765 (NSW)

Received: September 2016
Accepted: July 2017

MSC2010 Subject Classification: 60K25;
90B22; 68W40; 68M20

https://doi.org/10.1287/stsy.2017.0003

Copyright: © 2017 The Author(s)

Abstract. We devise a Monte Carlo based method for detecting whether a non-negative
Markov chain is stable for a given set of parameter values. More precisely, for a given
subset of the parameter space, we develop an algorithm that is capable of deciding
whether the set has a subset of positive Lebesgue measure for which the Markov chain is
unstable. The approach is based on a variant of simulated annealing, and consequently
only mild assumptions are needed to obtain performance guarantees.

The theoretical underpinnings of our algorithm are based on a result stating that the
stability of a set of parameters can be phrased in terms of the stability of a single Markov
chain that searches the set for unstable parameters. Our framework leads to a proce-
dure that is capable of performing statistically rigorous tests for instability, which has
been extensively tested using several examples of standard and non-standard queueing
networks.

History: Former designation of this paper was SSY-2016-220.
Open Access Statement: This work is licensed under a Creative Commons Attribution 4.0 International

License. You are free to copy, distribute, transmit and adapt this work, but you must attribute
this work as “Stochastic Systems. Copyright © 2017 The Author(s). https://doi.org/10.1287/
stsy.2017.0003, used under a Creative Commons Attribution License: https://creativecommons
.org/licenses/by/4.0/.”

Funding: BP and MM acknowledge support from Gravitation project Networks [Grant 024.002.003],
funded by the Netherlands Organisation for Scientific Research (NWO). BP further acknowledges
support from an Australian Government Research Training Program (RTP) Scholarship, and also
from the Australian Research Council (ARC) through the ARC Centre of Excellence for the Math-
ematical and Statistical Frontiers (ACEMS) under grant number CE140100049. NW’s research was
partly funded by the VENI research programme, also funded by the NWO.

Keywords: Markov chains • stability • Monte Carlo algorithm • queueing networks • stochastic networks

1. Introduction
The stability of a Markov chain is arguably among its most important properties. For example, in queueing
applications it offers the guarantee that service has been sufficiently provisioned to cope with the load imposed
on the network in the long run. For this reason the assessment of the stability of Markov chains has long
been an area of intense research. The objective is often to determine the set of parameter values for which the
system’s state does not diverge, referred to as the stability region, of a Markov chain. For many relatively standard
Markov chains the stability region is easily expressed in terms of quantities related to the transition probabilities.
However, despite a substantial and growing literature, for a large class of systems determining the stability
region has appeared a subtle and highly non-trivial task. Importantly, various (at first sight) counterintuitive
results have been found; in particular, for specific queueing models “naïvely conjectured” conditions turn out
to be insufficient to ensure stability.
More specifically, initial results, for example those by Jackson (1963), Baskett et al. (1975), and Kelly (1975),

suggested that the stability of queueing networks would be determined by the network’s subcritical region
(i.e., the set of parameters for which the nominal load at each queue is less than 1). This conjecture was later
proven incorrect by a series of counterexamples that showed instability can occur with subcritical parameters
when seemingly benign work conserving rules are applied. Early examples include those of Lu and Kumar
(1991), Rybko and Stolyar (1993), and Kumar and Seidman (1990). In these examples the instability is typically
essentially caused by the priority rules that apply between the customer classes. Similar effects can, however,
be constructed in first-in first-out queueing networks with customer classes that have strongly differing mean
service requirements, see for example Bramson (1994). It was thus realized that, at first sight counterintuitively,
decreasing the mean service requirement of certain job classes can in fact induce instability. As a consequence
the stability region need not be monotone (nor convex) in its parameters. For example, Bordenave et al. provide
an instance of a non-convex stability region in Bordenave et al. (2012). There are various other examples of

289

http://pubsonline.informs.org/journal/stsy/
mailto:m.r.h.mandjes@uva.nl
mailto:b.patch@uq.edu.au
http://orcid.org/0000-0002-6019-3428
mailto:neil.walton@manchester.ac.uk
http://orcid.org/0000-0002-5241-9765
https://doi.org/10.1287/stsy.2017.0003
https://doi.org/10.1287/stsy.2017.0003
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Mandjes et al.: Detecting Markov Chain Instability
290 Stochastic Systems, 2017, vol. 7, no. 2, pp. 289–314, ©2017 The Author(s)

queueing networks with unusually shaped stability regions. In MacPhee et al. (2007) provide an example with
a “thick null recurrent set,” in Baccelli and Bonald (1999) show that for certain TCP models the stability region
is of a fractal nature, and in Nazarathy et al. (2015) investigate a case where the stability region is conjectured
to consist of disjoint parts.
To avoid determining the stability regions of queueing networks on a case-by-case basis, various general

approaches have been proposed. Perhaps the most straightforward among these amounts to determining the
invariant measure of the number of customers; when this allows a normalization, then a stationary distribu-
tion exists. This approach works for a set of classical models, relying on concepts such as product form and
(quasi-)reversibility (Kelly 1979), but unfortunately not for many (sometimes just slightly more complex) other
systems.

An arguably more robust approach to determining stability is to construct an appropriate Lyapunov function,
and then apply the Foster-Lyapunov theorem. Along these lines Tassiulas and Ephremides, for example, use a
quadratic Lyapunov function to find a series of policies which are stable in a wide variety of settings (Tassiulas
and Ephremides 1992). Constructing an appropriate Lyapunov function is often specific to the application at
hand, but the approach can be simplified by studying the fluid model associated with the queueing network.
Such a fluid approach was first described by Rybko and Stolyar (1993) and was developed in a general form by
Dai (1995); a textbook treatment is presented in Bramson (2008). Importantly, for specific models this approach
can help determine the conditions under which there is stability, but it does not instantly provide a stability
condition for a given network at hand. Thus far, no general framework has been developed that is capable of
deciding whether a given Markov chain is stable or not.

The objective of this paper is to develop a general simulation based approach to determining when a given
Markov chain should be classified as unstable. A first paper to consider this approach is Wieland et al. (2003).
Then, concurrently to our work, Leahu and Mandjes (2016) proposes a simulation based method for determining
the stability region of a multiclass queueing network with respect to its arrival rate, when it is possible to verify
that the stability region satisfies particular stochastic monotonicity properties. Given the variety of models and
counter-examples discussed above, we place importance on the generality of settings to which our algorithm
is suitable. To apply our algorithm we do not place structural assumptions on the stability region, we do not
restrict parameters of interest, and we do not restrict the mechanism from which the simulations are derived.
We focus on providing theoretical guarantees on the performance of our method for a broad class of models
where simulations can exhibit either positive or negative drift.

In particular, rather than specific parameter choices, we are interested in the stability classification of param-
eter sets. The distinguishing features are: (i) that the methodology can be easily used for a relatively broad
class of systems, and (ii) that the technique is based on Monte Carlo simulation. Clearly, it is straightforward
to develop a simulation-based method that can speculatively test stability for a single parameter setting. It is
nevertheless far from obvious how an algorithm should be set up that can identify whether a system is unstable
for any of the parameter values within a given set.

This paper resolves this issue by proposing a simulated annealing (Kirkpatrick and Vecchi 1983) based algo-
rithm that systematically searches the parameter set, and determines whether it contains a subset of positive
measure consisting only of unstable parameter values. Instead of having to perform a series of simulations to
answer the stability identification question, our algorithm performs a single simulation run of a process that
encompasses both the queueing network and the parameter set, which is provably capable of finding positive
measurable subsets of unstable parameters. That is, the output of our algorithm is a statistical statement that
provides explicit asymptotic performance guarantees. We view our work as a substantive pioneering study on
the simulation based computation of the stability region of Markov chains.

The framework we propose has the major advantages over existing ones of being broadly applicable and
relying only on mild modeling assumptions. Our method provably provides the correct outcome if the Markov
chain has bounded increments. Another significant advantage of the approach is that the annealing algorithm
can essentially be performed separately from the simulation of the queueing network; as a consequence, the
program can be organized with an inner loop (simulating the queueing network with given parameter val-
ues using a rather complex simulator) and an outer loop (simulating the annealing step). It thus enables us
to computationally determine the stability region for (i) relatively straightforward models with non standard
features for which this has not been identified in closed form, but also for (ii) larger, realistic models capturing
application-specific details.

We now proceed by providing an informal description of the setting we consider as well as our algorithm.
The key object in this paper is the collection of Markov chains

((X(λ)k)k≥0: λ ∈L),

Mandjes et al.: Detecting Markov Chain Instability
Stochastic Systems, 2017, vol. 7, no. 2, pp. 289–314, ©2017 The Author(s) 291

each of them evolving on the state space X , where L ⊂ �I is a set of parameter values. For instance, λ ∈ L
could parametrize the arrival rates of a queueing network consisting of I queues. Our algorithm detects if there
is a subset L̄ ⊂L of positive measure for which the Markov chains (X(λ): λ ∈ L̄) are unstable. Importantly, for
reasons that will become clear, we use a definition of “stability” that differs slightly from those in common
use. We essentially define stability of an individual chain through a Lyapunov drift condition imposed on a
function f . For example, f (x) could give the total number of jobs in the queueing network when it is in state x.
Informally speaking, if for f the process f (X(λ)) has negative drift above some finite threshold, then we call X(λ)

f -stable. Alternatively, if f (X(λ)) has positive drift above some finite threshold, then we call X(λ) f -unstable. If
there exists a L̄ ⊂ L of positive Lebesgue measure such that X(λ) is f -unstable for all λ ∈ L̄, then we call L
f -unstable, and otherwise we call L stable.
The main idea behind the algorithm is that it generates a discrete time process with state space (X , L). Given

an initial state (x , λ), a new parameter proposal γ is chosen uniformly from L. The Markov chain X(γ) then
evolves for τ(x) time units starting from initial state x. In our implementation τ(x) is chosen to be proportional
to f (x). Denoting X(γ)

τ(x) �: y, the next state of the bivariate process is subsequently chosen by comparing the
proposed state (y , γ) with the current state (x , λ) according to the Metropolis rule:

(x′, λ′)�
{
(y , γ) with probability exp(η [f (y) − f (x)]−),
(x , λ) otherwise.

(1)

Here [z]− :� min{0, z} and η is a positive tuning parameter for the algorithm.
The above iteration is motivated by the simulated annealing algorithm initially proposed by Kirkpatrick and

Vecchi (1983). The main advantage of this type of update is the relative generality of optimization problems that
it can provably handle, while still being superior to exhaustive search methods. A key distinction between our
method and the typical implementation of simulated annealing is that our cooling schedule is achieved using
a combination of the fixed parameter η and the parameter τ(x), that varies with the state of the Markov chain.
In addition to the global search algorithm just described, we will also study a local search version. This version

is different in two respects. Firstly, the new parameter proposal γ is sampled uniformly from the neighborhood
of the current parameter, a set we denote by Bλ. Secondly, we allow X(λ) and X(γ) to evolve for τ(x) time units
starting from initial state x, let X(λ)

τ(x) :� y′ and then apply the above Metropolis rule with x replaced by y′. Our
key theorems apply to both versions of the algorithm and we explore differences in performance of the two
methods through examples.
After having pointed out how the algorithm works, we now provide results that separate its sample paths

into either the stable or unstable regimes. Let Sk � (Yk , Λk) be the state of the bivariate process achieved after
k iterations of the above rule (1) and let Tk be the total amount of time that the algorithm has run for by the
kth iteration. The first main theoretical contribution of this paper, later stated formally in Theorem 3.4, shows
under mild conditions on X, that if there does not exist a subset of unstable parameters L̄ ⊂ L with positive
Lebesgue measure, then almost surely

lim
k→∞

f (Yk)
Tk

� 0. (2)

Importantly, the second main theoretical contribution of this paper, later stated formally in Theorem 3.5, shows
that there exists a true “dichotomy” since if there does exist an unstable set of parameters L̄ ⊂L with positive
Lebesgue measure, then the process (Yk : k ∈ �+) diverges, in the sense that, almost surely

lim inf
k→∞

f (Yk)
Tk

> 0. (3)

The bound (3) relies on a martingale argument in combination with an application of the Azuma–Hoeffding
inequality. The bound (2) is proven by a coupling argument: as it turns out, in the stable situation the process
f (Y) can be majorized by a Markov chain (Wk : k ∈ �+) that has an asymptotic drift of zero. An advantage of
the coupling approach used to prove (2) is that the Markov process W is easily simulated, and can therefore be
used to provide probabilistic bounds on the likelihood of instability. We use this approach to perform rigorous
statistical tests for instability of the underlying set L. There are many potential approaches to the adaptation
of our theoretical results to a practical test for instability. The approach we suggest is to compare f (Yk) with
the quantiles of Wk . Specifically, we let the process f (Y) evolve according to the rule given in (1) until the
total number of steps in X taken between steps of Y exceeds some predetermined level k∗, at which point we
compare f (Yk) with the 1− α quantile of Wk , with α being the desired confidence level. If f (Yk) exceeds this

Mandjes et al.: Detecting Markov Chain Instability
292 Stochastic Systems, 2017, vol. 7, no. 2, pp. 289–314, ©2017 The Author(s)

quantile then we obtain a strong rigorous statistical statement of instability, whereas otherwise we fail to reject
the “null hypothesis” of stability.
We provide five example applications of our algorithm. We apply it to a system consisting of a set of parallel

queues studied by Tassiulas and Ephremides (1993), a tandem queueing system, the celebrated Rybko–Stolyar
network (Rybko and Stolyar 1993), a network of input queued switches studied by Andrews and Zhang (2003),
and a broken diamond random access network (RAN) recently studied by Ghaderi et al. (2014).

Since the stability region is well known for the parallel and tandem systems, these are ideal examples on
which to verify that the algorithm performs as expected. We use the tandem system to show that although
our results are in a discrete time setting, we are still able to effectively study continuous time systems using
a jump chain associated with the process. Additionally, this network also highlights that we are able to test
multidimensional parameter sets for instability, and suggests that we are able to relax the Markov assumption.
The Rybko–Stolyar network is a popular example of a system with oscillating queue sizes. Not only does our
analysis confirm existing theoretical results that give sufficient conditions for stability of this system, it also
provides a statistically rigorous statement that these conditions are also necessary. The network of input queued
switches allows us to show that our algorithm provides interesting results for systems with high dimensional
state spaces and complex dynamics. In addition, we are able to use our methodology to show that this is
an example of a system where the longest queue first policy is not maximally stable. Our final example, the
RAN of Ghaderi et al., is currently a hot topic of research in the applied probability community. This system
exhibits oscillatory queue size sample path behavior reminiscent of the Rybko–Stolyar network, but in a higher
dimensional setting. We are able to expand on the theoretical results of Ghaderi et al. (2014) by providing
more specific (statistical) information about which parameter sets are unstable. Throughout this section results
are given in terms of both the global and local versions of the algorithm. For some of the models (parallel,
tandem, Rybko–Stolyar), the local algorithm appears to perform better, while for others (switches, RAN) the
global algorithm appears to be superior.

The remainder of this paper is structured as follows. In Section 2 we give a formal description of our frame-
work and the assumptions imposed. Section 3 presents the algorithm and states our main results, i.e., Theo-
rems 3.5 and 3.4. In Section 4 detailed proofs are given (of our main results, propositions, and lemmas). We
then provide a range of case studies in Section 5 that demonstrate the algorithm’s potential. Section 6 presents
concluding remarks as well as an outlook on future research.

2. Framework
In this section we present the setup considered in the paper. The object of study is the irreducible Markov
chain X(λ) that is parametrized by parameter λ ∈ L; these parameters can, for example, be thought of as the
arrival or service rates in a queueing network. It is assumed throughout that L is a closed subset of �I

+
, for some

I ∈ �, with finite positive Lebesgue measure (which is denoted |L |). The Markov chain, which may represent
the evolution of the population of a queueing network, attains values in X :��J

+ :� {0, 1, . . .} J , for some J ∈ �.
As pointed out in the introduction, the main goal of this paper is to devise a procedure that identifies if a

parameter set contains any unstable parameters. Put more precisely, the algorithm verifies whether or not there
is a subset L̄ of L such that for all λ ∈ L̄ the associated Markov chain is unstable.

Further, for each λ ∈ L, we let Bλ be the neighborhood of λ. As is commonly assumed for local search
algorithms, we assume that λ ∈Bλ and for any λ1 , λn ∈L there is a sequence of neighborhoods with λk+1 ∈Bk
for k � 1, . . . , n − 1.
We will work extensively with a Lyapunov function that maps the state of the Markov chain to a nonnegative

real number, that is a monotone function f : X→[0,∞). In our queueing network example, f (x) could represent
the sum of the queue sizes within the network (that is, the total network population). We assume that f is
unbounded in the sense that

lim inf
|x |→∞

f (x)�∞.

It is assumed throughout that for all λ the process f (X(λ)) has bounded increments, implying there exists a
constant φ f > 0 such that

| f (X(λ)k+1) − f (X(λ)k)| ≤ φ f . (4)
We now provide the formal definitions of stability and instability, as used in this paper.

Definition 2.1. Given f , we say that the set of parameters L is f -stable if there exists δ > 0, σ > 0, and κ > 0 such
that

Ɛ[f (X(λ)k) − f (X(λ)0) | X
(λ)
0 � x] ≤ −δσ (5)

for all x such that |x | ≥ κ, for all λ ∈L, and all k ≥ σ.

Mandjes et al.: Detecting Markov Chain Instability
Stochastic Systems, 2017, vol. 7, no. 2, pp. 289–314, ©2017 The Author(s) 293

Similarly, the set of parameters L is f -unstable if there exists a set L̄ ⊂ L of positive measure, δ > 0, σ > 0,
and κ > 0 such that

Ɛ[f (X(λ)k) − f (X(λ)0) | X
(λ)
0 � x] ≥ δσ (6)

for all x such that |x | ≥ κ, for all λ ∈ L̄, and all k ≥ σ.
For a given value of λ, the conditions (5) and (6) are Lyapunov conditions for which one can obtain positive

recurrence or transience of the Markov chain X(λ), respectively (see for instance Hairer 2010). We remark that a
countable state space Markov chain is positive recurrent if and only if there exists a Lyapunov function f for
which it is f -stable, see Meyn and Tweedie (2012, Theorem 11.0.1). In our definition of f -stable we consider over
set of Markov chains for which the same choice of f provides positive recurrent. In this sense, the definitions of
“stable” and “unstable” then ask whether or not the Markov chains X(λ) are positive recurrent for parameters λ
in L. For our simulations we use the L1 norm, i.e., the sum of queue sizes, though of course other functions
might be considered.
We further remark that if a fluid limit, f̄ (X̄(λ)), exists for each (rescaled) process,(f (X(λ)bktc)

k
: t ≥ 0

)
, λ ∈L ,

then the above conditions (5) and (6) imply that

d f̄ (X̄(λ)(t))
dt

≤ −δ and
d f̄ (X̄(λ)(t))

dt
≥ δ

for X̄(λ)(t) > 0. In other words, (5) and (6) respectively imply fluid stability and fluid instability (see for instance
Bramson 1994). In general, fluid stability and instability are not equivalent to the positive recurrence and tran-
sience of an underlying Markov process. Nevertheless, the Lyapunov analysis of fluid models remains one of
the most widely deployed and established devices used to determine the positive recurrence and transience of
Markov processes. Similarly, our work provides a broadly applicable technique that may be used to determine
the positive recurrence and transience of families of Markov processes.

Now that we have introduced our framework, the next section describes our algorithm, as well as the main
results upon which the algorithm is based.

3. Implementation and Main Results
In this section we explicitly give our algorithm and provide a detailed discussion of the choices underlying it.
We then give in Theorems 3.4 and 3.5 our main theoretical contribution. We follow this up with a suggested
method of using our results to implement actual tests for instability.

3.1. Algorithm
We now describe our algorithm for identifying whether a parameter set is unstable. Our approach is based
on the principle of searching the relevant parameter set for a parameter choice that maximizes the drift of the
Markov process under consideration. As such, well known optimization algorithms provide an ideal source
of inspiration for potential methods. As previously mentioned, the approach taken in this paper is based on
the well known simulated annealing optimization algorithm. While many other optimization techniques have
found acceptance through testing against well known “hard” problems, the simulated annealing algorithm has
shown itself to be amenable to rigorous results on performance guarantees.

In this section we provide a detailed description of our algorithm, and through the use of two theorems
provide guarantees on its asymptotic performance. A key advantage of this strong theoretical grounding is that
the machinery used to provide these theoretical guarantees also allows us to develop a hypothesis test that
outputs a statistical statement of whether or not a Markov chain is stable given a particular parameter set. In
this section we also include an illustration of the algorithm and its output in the context of a single server
discrete time queueing system. In later sections we demonstrate the algorithm’s potential through a series of
experiments concerning more complex systems.

We assume that τ(x)� c f (x)+ d, where c , d ∈ (0,∞) are chosen by the algorithm’s user. Note that this implies
τ(x)→∞ as |x | →∞ and that τ has bounded increments. Finally, let Tk give the time that our chain has been
running for at the k-th step, that is,

Tk �

k−1∑
i�0
τ(Yi).

We now have all of the machinery needed to give both versions of our algorithm.

Mandjes et al.: Detecting Markov Chain Instability
294 Stochastic Systems, 2017, vol. 7, no. 2, pp. 289–314, ©2017 The Author(s)

Algorithm 3.1 (Global search algorithm)
Initialize: Set k � 1, T0 � 0, choose Y0 from X, and Λ0 from L.
(i) For x � Yk−1 and τ � τ(Yk−1), set Tk � Tk−1 + τ and sample γ ∼Uniform(L).
(ii) Sample y � X(γ)τ conditional on X(γ)0 � x.
(iii) For λ �Λk−1, set

(Yk ,Λk)�
{
(y , γ) with probability eη[f (y)− f (x)]− ,

(x , λ) otherwise. (7)

(iv) If stopping condition is met, then stop, else set k � k + 1 and return to (i).

As outlined in the introduction, each step of the global search algorithm compares x, as sampled in the
previous step, with a new value y, sampled using a uniformly at random selected parameter γ from L with
runtime τ(x) and initial state x. The state is then updated according to the Metropolis rule (7).
Recalling from Section 2 that Bλ is a neighborhood of λ in L, the local search version operates as follows.

Algorithm 3.2 (Local search algorithm)
Initialize: Set k � 1, T0 � 0, choose Y0 from X, and Λ0 from L.
(i) For x � Yk−1, λ �Λk−1 and τ � τ(Yk−1), set Tk � Tk−1 + τ and sample γ ∼Uniform(Bλ).
(ii) Sample x′ � X(λ)τ conditional on X(λ)0 � x.
(iii) Sample y � X(γ)τ conditional on X(γ)0 � x.
(iv) Set

(Yk ,Λk)�
{
(y , γ) with probability eη[f (y)− f (x′)]− ,

(x′, λ) otherwise. (8)

(v) If stopping condition is met, then stop, else set k � k + 1 and return to (i).

The local search algorithm compares states (x′, λ) and (y , γ) where x′ is sampled by running the current
parameter λ for a further τ steps and (y , γ) is sampled by running a neighboring parameter γ ∈ Bλ for the
same number of steps. These states are then compared according to the Metropolis rule (8).
As we will discuss in more detail, the relative performance of the global search and local search differ

depending on the model and setting to which they apply. Under general modeling assumptions both algorithms
converge to a behavior that only accept unstable parameters in L. The Global Search Algorithm proposes
parameters uniformly at random and thus asymptotically will only accept parameters uniformly at random in
the unstable set L̄. This is useful if one wants to identify the region of instability, in addition to determining
if instability occurs. The Local Search Algorithm proposes two neighboring parameters and compares them
simultaneously. In this way the Local Search Algorithm applies a hill-climbing heuristic. In this sense it is more
aggressive in approaching regions of instability, but will not identify the entire unstable region.
When analyzing Algorithm 3.1, we assume that L is a general measurable set and that L̄ is a set with

positive Lebesgue measure, while for the local search Algorithm 3.2 we place some restrictions. We assume the
following:

Assumption 3.3. When analyzing the local search algorithm we assume that L is a finite set where for each L′ ⊂ L
either L′ is unstable or L′ is stable, according to Definition 2.1. Further, we assume that there exists a state x0 where

� (X(λ)1 � x0 | X(λ)0 � x0) > 0. (9)

In a queueing setting x0 may, for example, correspond to a state where all queues are idle.
An important feature of our work is that we do not place structural conditions on L such as convexity or

monotonicity. Since examples of Markov processes violating these conditions frequently occur in both theory
and practice, by avoiding such conditions our work is widely applicable. Another key feature is that we do not
assume knowledge of the process generating each sample path is available, we only require samples of the state
description in response to parameter choices. This further extends the set of models that may be analyzed using
our method, since practical simulators (although Markovian) are often not generated from a simple closed form
Markovian descriptor (transition matrix or infinitesimal generator), but rather come in the form of a “black box”
that provides outputs in response to parameter inputs.
Note that we have not provided an explicit stopping condition for the algorithm yet. Since our results are

asymptotic in the number of steps k, it may be sensible to run the algorithm until some large k, chosen based

Mandjes et al.: Detecting Markov Chain Instability
Stochastic Systems, 2017, vol. 7, no. 2, pp. 289–314, ©2017 The Author(s) 295

on CPU time limitations. An alternative may be to dictate a particular total budget of time that the algorithm
may evolve in X . To do this, choose a k∗ and run the algorithm until Tk > k∗. In either case it may not be obvious
whether the sample path belongs to the stable or unstable regimes, an issue that we address with a test for
instability in Section 3.3.
We now briefly address some of the choices we made in the design of the algorithm. Firstly, note that the τ

function we introduced has replaced the cooling schedule from the traditional simulated annealing algorithm.
The functional form of τ ensures that when Yk is large the subsequent Λk+1 proposal is given an increased
opportunity to demonstrate that it has higher drift. Since a large Yk hints that an unstable parameter choice has
been recently chosen this helps to ensure that CPU budget is expended comparing parameter choices which
appear to be unstable.
The conditioning in step (ii) of the algorithm on X(γ)0 � x, rather than starting each new sample from X(γ)0 equal

to zero, is intentionally designed to allow the system to build up to a size where instability properties become
evident. That is, as per Definition 6, the drift properties we are seeking only become evident after |x | > κ has
occurred. Forcing the system to reach |x | > κ in a single X(γ)

τ(x) sample may result in the algorithm inefficiently
repeating “burn in” time.

3.2. Main Results
Our main theoretical contributions are Theorems 3.5 and 3.4 below. These demonstrate the stability of a set L
can be summarized asymptotic sample path behavior of the process f (Y)/T. In essence the stability of a parame-
terized family of Markov processes can be summarized by the stability of a single Markov process, as generated
by Algorithm 3.1 or Algorithm 3.2.
The main results of this paper are as follows:

Theorem 3.4. If the set L is stable then, almost surely,

lim
k→∞

f (Yk)
Tk

� 0. (10)

Theorem 3.4 shows that when L is stable, the sample path of f (Y)/T converges to 0.

Theorem 3.5. If the set L is unstable then, almost surely,

lim inf
k→∞

f (Yk)
Tk

> 0. (11)

Theorem 3.5 shows that when L is unstable, the sample path of f (Y)/T eventually never returns to 0. In
practical use it is f (Yk)/Tk , for some large k, that is observed, rather than its limiting value. It is therefore not
possible to directly apply the theorems. Instead, when f (Y)/T appears to converge to 0, the contrapositive of
Theorem 3.5 provides evidence that the parameter set is not unstable. Conversely, when f (Y)/T appears to
diverge, converge to a positive constant, or fluctuate within a set that does not contain 0, the contrapositive of
Theorem 3.4 provides evidence that the parameter set is not stable.
We now include a short example to illustrate these theorems. Consider a simple discrete time queueing system

where an arrival occurs at the beginning of each time slot with probability p ∈ [0, 1], and then subsequently, if
the queue is non-empty, a service occurs with probability 0.5. Clearly, so long as the queue is non-empty the
expected change in queue size between time periods is p − 0.5. Hence, for p < 0.5 the system is L1-stable with
κ � σ � 1 and δ � 0.5− p. Figure 1 illustrates Theorems 3.5 and 3.4 using the sample path behavior of f (Y)/T for
this simple system. The sample path corresponding to p sampled from L � [0, 0.4] appear to converge towards 0,
providing evidence that this set is not unstable. Similarly, the sample path corresponding to p sampled from
L � [0, 0.6] appears to remain constant at approximately 10−2 in the global case and appears to diverge in the
local case, providing evidence that this set is not stable.
We remark that the behavior of the unstable sample path substantially differs between the global and local

versions of the algorithm. In the global case the unstable sample path quickly separates from the stable sample
path and appears to tend towards some constant value. For the local algorithm, however, the stable and unstable
sample paths appear highly similar until suddenly the unstable sample path rapidly increases. This suggests
that if n is not large enough, the local algorithm may perform very poorly, however for n large it may perform
vastly better.
It is not necessarily clear in finite time if a sample path of f (Y)/T belongs to the regime of Theorem 3.4 or

Theorem 3.5. In the next subsection we address this issue by presenting a test for instability.

Mandjes et al.: Detecting Markov Chain Instability
296 Stochastic Systems, 2017, vol. 7, no. 2, pp. 289–314, ©2017 The Author(s)

Figure 1. (Color online) Comparison of f (Y)/T sample paths for stable (L � [0, 0.4]) and unstable (L � [0, 0.6]) parameter
sets when the global and local versions of the algorithm are applied to a simple queue.

0 1,000 2,000 3,000
10–4

10–3

10–2

10–1

n
0 1,000 2,000 3,000

n

f(
Y

n)
/T

n

10–4

10–3

10–2

10–1

f(
Y

n)
/T

n

Global Local

� = [0, 0.6]

� = [0, 0.4]

�
 =

 [0
, 0

.6
]

� = [0, 0.4]

3.3. A Test for Instability
We now provide a method to test, statistically, whether or not a parameter set is unstable. Here one could
consider a null-hypothesis which states that the parameter set is stable for some given δ, cf. (5). Given this
and the simulated model, we can construct a closed form family of random variables Z(w), w ≥ 0 (given by
Lemma 4.1 in Section 4.1) such that Z(w) stochastically majorizes the increments of f (Yk). With this choice of
Z(w), we can then define a Markov chain (Wk : k ∈ �+) according to the recursion

Wk � Wk−1 +Z(Wk−1). (12)

The following proposition will be proven to show that there is a coupling where the Markov chain (Wk : k ∈�+)
stochastically dominates (f (Yk): k ∈ �+).
Proposition 3.6. For stable L, when f (Y0) ≤W0, there exists a coupling between (Yk : k ∈ �+) and (Wk : k ∈ �+) such
that

f (Yk) ≤Wk , for all k.

Since Theorem 3.5 says that f (Y) will diverge in the unstable case, we suggest comparing f (Yk), as outputted
by Algorithm 3.1, with the quantiles of Wk . In particular, let q(α)k be such that � (Wk > q(α)k) � 1 − α. Note that,
given a problem instance chosen according to Definition 2.1 and (4) (that is, particular values of φ f , δ, σ, and κ),
the quantiles of q(α)k can be estimated quickly and easily through Monte Carlo simulations of the W process. If
f (Yk)> q(α)k then we suggest concluding that the parameter set is f -unstable for that problem instance. Otherwise
we suggest that there is not enough evidence to make a conclusion either way.
To illustrate this approach we return to the simple example introduced in the previous section. In Figure 2

estimated q(0.05) curves with δ� 0.05 and δ� 0.01, τ(x)� 0.5x+1, and σ� κ�Y0 � 1 are compared with estimated
mean curves for the f (Y) process with L � [0, `] for ` � 0.6, 0.55, 0.5, 0.45, and 0.4. As expected the q(0.05) curves
bound the mean curves of f (Y) for ` < 0.5, while for ` > 0.5 the mean curves of f (Y) appear to eventually
exceed the q(0.05) curve. With reference to Definition 2.1, δ is the downward drift that a process must exhibit in
order to be stable. As can be seen here, it is to be expected that q(0.05) curves generated using a particular δ value
bound those generated using higher values of δ. Since we test for a stabilizing drift up to δ, it is desirable to use
a δ which is as low as possible. In Section 5 we investigate further the trade-off between simulation run-time
and δ that users of our algorithm must keep in mind. Note that the global and local q(0.05) curves are nearly
indistinguishable from each other here.
In some instances, obtaining long sample paths of f (Y) may be a computationally intensive task. We now

describe an approach to managing the user’s simulation budget, but various other approaches could be taken.
In order to achieve a significance level of at least α, we propose choosing a simulation budget k∗, to take the
first sample point f (Yk) such that Tk+1 > k∗ and to then compare this f (Yk) with an estimate of q(α)k . If f (Yk)
exceeds q(α)k then we suggest rejecting the “null hypothesis” of stability, and otherwise we suggest concluding
that there is not enough evidence to make a conclusion. This is the approach that we take in Section 5. Note that
this does not involve comparing the “test statistic” f (Yk) with its distribution, but rather we compare it with
a distribution which is stochastically dominant. Assuming that the 1− α quantile estimate for Wk is accurate,
asymptotically in k∗ the significance level will in fact tend to 0 for all α > 0, and never exceed α.

Mandjes et al.: Detecting Markov Chain Instability
Stochastic Systems, 2017, vol. 7, no. 2, pp. 289–314, ©2017 The Author(s) 297

Figure 2. (Color online) Estimated mean curves of f (Y) when L � [0, 0.4], [0, 0.45], [0, 0.5], [0, 0.55], or [0, 0.6] for a simple
queue compared to estimated q(0.05) curves with δ � 0.01 or δ � 0.05.

10–1

101

103

105

Local
�

[f
(Y

n)
],

 q
n(0

.0
5)

10–1

101

103

105

�
[f

(Y
n)

],
 q

n(0
.0

5)

Global

� = [0, 0.4]

� = [0, 0.45]

� = [0, 0.5]� = [0, 0.55]

� = [0
, 0.6]

� = 0.01

� = 0.05

� = [0, 0.4]

� = [0, 0.45]

� = [0, 0.5]

�
 =

 [
0,

 0
.5

5]

�
 =

 [
0,

 0
.6

]

� = 0.01

� = 0.05

0 1,000 2,000 3,000

n

0 1,000 2,000 3,000

n

We summarize the above discussion in Algorithm 3.7, below. Note that this algorithm is just one of many
potential extensions of our basic Algorithm 3.1, for which we give specific theoretical results, and an input to
this algorithm is an appropriate (q(α): k ∈ �+) estimate.

Algorithm 3.7 (Stability test algorithm)
Initialize: Set k � 1, T0 � 0, choose Y0 from X, and Λ0 from L.
(i) For x � Yk−1 and τ � τ(Yk−1), set Tk � Tk−1 + τ and sample γ ∼Uniform(L).
(ii) Sample y � X(γ)τ conditional on X(γ)0 � x.
(iii) For λ �Λk−1, set

(Yk ,Λk)�
{
(y , γ) with probability eη[f (y)− f (x)]− ,

(x , λ) otherwise. (13)

(iv) If Tk + τ(Yk) > k∗, then proceed to (v), else set k � k + 1 and return to (i).
(v) If f (Yk) > q(α)k , then conclude L is f -unstable.

In Section 4 we prove the results presented above, and then in the Section 5 we will demonstrate the algo-
rithm’s potential on some more complex systems.

4. Proofs
We first prove Theorem 3.4 in Section 4.1, which applies to the stable regime, in the context of the global search
algorithm and provide a remark on the minor modifications to this proof that would be needed to show the
local search case. We then prove Theorem 3.5, which applies to the unstable case, for the global search and local
search algorithms in Sections 4.2 and 4.3 respectively.

4.1. Stable Parameter Set
In this subsection we prove Theorem 3.4. In what follows, we first give a formal definition of the random
variables Z(w). Then, to prove Theorem 3.4, we require Proposition 3.6, given in Section 3, and Proposition 4.2,
given below. The first of these propositions shows the existence of a process that majorizes any Y process
generated from a stable parameter set. The second proposition then shows that this majorizing process has an
asymptotic drift of zero, which leads to the result of the theorem. In order to obtain Proposition 3.6 we require
Lemma 4.1, given next, and Lemma A.1, which is a simple technical lemma that can be found in the appendix.
Lemma 4.1 explicitly provides a level dependent random variable that bounds the jumps of the f (Y) process
and Lemma A.1 gives a useful monotonicity property for these jumps. Proposition 4.2 is proven by contradiction
and depends on Lemma A.2 which states that the sequence of random variables defined in Lemma 4.1 are
square integrable and tend to an expectation of zero as the level diverges.

Mandjes et al.: Detecting Markov Chain Instability
298 Stochastic Systems, 2017, vol. 7, no. 2, pp. 289–314, ©2017 The Author(s)

In this section all of the proofs are performed in the context of the global search algorithm, however at the end
of the section we remark on the minor modification required to adapt the proof to the local search algorithm
context.

We develop a process W that stochastically majorizes any f (Y) process generated from a stable parameter
set. Recall φ f , δ and σ from Definition 2.1. We define the function n such that n(w) is the smallest integer such
that σn(w) ≥ τ(x) when the underlying process is in a state x � f −1(w). We bound the jumps of f (X(λ)), for a
given stable λ. The following lemma provides this bound.
Lemma 4.1. If λ is f -stable, then there exists random variables (Z(w): w ≥ 0) and a constant w∗ such that, for all x with
f (x) ≥ w∗,

� (f (X(λ)
τ(x)) − f (x) ≥ z | X(λ)0 � x) ≤ � (Z(f (x)) ≥ z),

where, for σ, κ and δ as given in (5), Z(w) is a random variable with distribution

� (Z(w) ≥ z)�


1∧
[
exp

(
−(z − α1(w))2

2α2(w)

)
+ n(w)exp

(
−(z − α3(w))2

2α4(w)

)]
, if z > 0,

1, otherwise.
(14)

where

α1(w)� σφ− σn(w)δ, α2(w)� (φ f + δ)2σ2n(w), α3(w)� σφ−w + κ, α4(w)� φ2
f σ

2n(w).

The proof of this lemma is straightforward, yet, somewhat technical; a proof is given in the appendix. The
form of the expression for � (Z(w) ≥ z) given above can be understood as follows. By (5) the stable downward
drift condition only applies when the chain has run for at least σ steps, so we consider the process on steps
of size σ and ensure that we take enough of these steps, n(w), to exceed τ(x). The maximum is a result of the
trivial upper bound on probabilities, and the 1+ n(w) exponential terms correspond to a union bound using an
equivalent number of applications of the Azuma–Hoeffding inequality.
The downward drift condition requires |x | > κ, and so we apply Azuma–Hoeffding to different martingales

depending on whether the sample path of interest enters the states {x: |x | < κ} or not. The first exponential
term corresponds to sample paths that never enter |x | < κ, and so the martingale we use does not include κ and
has steps which are bounded by (φ f + δ)σ. The remaining exponential terms correspond to sample paths that
hit the level κ. We associate with these sample paths a martingale which reflects the fact that for such sample
paths there be must be an excursion from κ to z + f (x) that can be stopped just before this excursion occurs.
As such these remaining exponentials do not rely on δ.
From Lemma 4.1 we can prove Proposition 3.6.

Proof of Proposition 3.6. The inequality in Lemma 4.1 bounds the upward movement of the Markov process Xλ.
For w0 � f (x0), we see that

� (f (Y1) − f (Y0) ≥ z | Y0 � x0) ≤ � (Z(w0) ≥ z), ∀ z ≥ 0. (15)

Namely, if f (X(λ)
τ(x0)
) − f (X(λ)0) > 0, then f (Y1) − f (Y0) � f (X(λ)

τ(x0)
) − f (X(λ)0). Therefore the bound (15) holds by

Lemma 4.1 for z > 0. Further, for z ≤ 0, the right-hand side of (15) is equal to 1, so the bound trivially holds.
Lemma A.1, stated and proved in the appendix, assists with the coupling of W and Y by providing a mono-

tonicity property for the transitions of W . Specifically, for constants v, w with w∗ ≤ v ≤ w, we have that

� (W1 ≥ z |W0 � v) ≤ � (W1 ≥ z |W0 � w). (16)

Combining together (15) and (16), we have that

� (f (Y1) ≥ z | Y0 � x0) ≤ � (W1 ≥ z |W0 � w0) (17)

whenever f (x0) ≤ w0.
A direct consequence of this inequality is that there is a coupling of f (Yk) and Wk where, provided f (Y0) ≤W0,

then f (Yk) ≤Wk for all k. This short, but standard, argument is presented in the next paragraph.
Let

FY, x0
(z)� � (f (Y1) ≥ z | Y0 � x0), FZ,w0

(z)� � (W1 ≥ z |W0 � w0),

and U be an independent uniform [0, 1] random variable. The distribution of F−1
Y, x0
(U) and F−1

Z,w0
(U) are respec-

tively versions of f (Y1) and W1 for initial values Y0 � x0 and W0 � w0 (see e.g., Williams 1991, Section 3.12). Thus
we set f (Y1)� F−1

Y, x0
(U) and W1 � F−1

Z,w0
(U).

Mandjes et al.: Detecting Markov Chain Instability
Stochastic Systems, 2017, vol. 7, no. 2, pp. 289–314, ©2017 The Author(s) 299

Notice that once f (Y1) is determined, we can extend the coupling to determine Y1. To do this, we take an
independent random variable with distribution

� (Y1 � y | f (Y1),Y0).

Now, from inequality (17) it is clear that F−1
Y, x0
(u) ≤ F−1

Z,w0
(u) for all values of u. Thus under this coupling

f (Y1)� F−1
Y, x0
(U) ≤ F−1

Z,w0
(U)� W1.

Continuing inductively, we have f (Yk) ≤Wk for all k, as claimed. �

We now analyze the chain Wk . As the following lemma states, we find that its asymptotic drift is zero,
whenever the parameter set L is stable.

Proposition 4.2.
lim sup

k→∞

Wk

k
� 0.

Proof. It is a straightforward calculation to show that Z(w) is L2 bounded in w and that ƐZ(w)→ 0 as w→∞.
This is shown in Lemma A.2 in the appendix. We analyze the martingale

Mk �

k∑
n�1
(Z(Wn−1) − Ɛ[Z(Wn−1) |Wn−1])� Wk −W0 −

k∑
n�1

Ɛ[Z(Wn−1) |Wn−1]. (18)

Since Z(w) is L2 bounded, Mk is an L2 martingale (with unbounded variation). Further, such L2 martingales
obey the strong law of large numbers, that is

lim
k→∞

Mk

k
� 0. (19)

For instance, see Williams (1991, Section 12.14) for a proof.
We therefore have

lim sup
k→∞

Wk

k
� lim sup

k→∞

(
W0 + Mk

k
+

1
k

k∑
n�1

Ɛ[Z(Wn−1) |Wn−1]
)

≤ lim sup
k→∞

W0 + Mk

k
+ lim sup

k→∞

1
k

k∑
n�1

Ɛ[Z(Wn−1) |Wn−1]

� lim sup
k→∞

1
k

k∑
n�1

Ɛ[Z(Wn−1) |Wn−1], (20)

where the first equality holds due to (18) and the final equality holds due to (19).
We now note that the inequality (20) can only hold when limk→∞Wk/k � 0. To see this, note that if

lim supk Wk/k were positive then Wk must diverge. However, as was shown in Lemma A.2, we also have that
Ɛ[Z(Wn−1) |Wn−1]→ 0 as Wn−1→∞. Thus the average of these terms must be zero, that is

0 � lim sup
k→∞

1
k

k∑
n�1

Ɛ[Z(Wn−1) |Wn−1] ≥ lim sup
k→∞

Wk

k
> 0,

which is a contradiction. Thus, lim supk→∞Wk/k � 0, as required. �

The proof of Theorem 3.4 is now an application of Propositions 3.6 and 4.2.

Proof of Theorem 3.4. For W0 � f (Y0) Proposition 3.6 provides

f (Yk) ≤Wk , for all k.

The time increment τ(x) is bounded below, so Tk ≥ γk for some positive constant γ. Hence, Proposition 4.2
implies

lim sup
k→∞

f (Yk)
Tk
≤ lim sup

k→∞

Wk

γk
� 0,

as required. �

Mandjes et al.: Detecting Markov Chain Instability
300 Stochastic Systems, 2017, vol. 7, no. 2, pp. 289–314, ©2017 The Author(s)

Remark 4.3 (Adapting the Proof to Local-Search). We briefly remark one way in which the above argument can be
adapted to the local-search case. Firstly, we note that local search (in the worse case) will choose the maximum
of two independent simulation runs. Given that both parameters γ and λ are stable and given Lemma 4.1, we
then have that the local search update can be bounded as follows

� (f (Y1) ≥ z | f (Y0)� x , λ, γ) ≤ �
(
{ f (X(λ)τ) − f (x) ≥ z} ∪ { f (X(λ)τ) − f (x) ≥ z}

)
≤ � (Z(f (x))+Z′(f (x)) ≥ 2z).

In the second inequality above, we apply Lemma 4.1 to obtain two i.i.d. copies of Z(f (x)). From this one can
see that the result of the proof of Theorem 3.4 follows by replacing (12) with

Wk � Wk−1 +Z(Wk−1)+Z′(Wk−1)

for two iid versions of Z. This gives one straightforward way of adapting the proof of Theorem 3.4. Other
methods with tighter bounds are also possible.

4.2. Proof of Theorem 3.5 for the Global Search Algorithm
In this subsection we prove Theorem 3.5 for the global search algorithm. The proof relies on two lemmas,
Lemmas 4.4, and 4.5. In Lemma 4.4 we bound the drift of f (Y) and show that f (Y) can be used to construct
a submartingale. This follows from the fact that unstable parameters choices significantly increase the drift,
while stable parameter choices do not significantly decrease it. In Lemma 4.5 we bound the moments of this
submartingale. Then, using standard martingale arguments we show that every time the submartingale exceeds
some level, with positive probability it stays above this level forever. Since f (Y) is an irreducible Markov chain
our divergence result then follows.
In the following we use the notation [x]+ :� max{x , 0} and ∆ f (x , y) :� f (y) − f (x).

Lemma 4.4. If L is unstable, then there exist constants κ ≥ 0 and a > 0 such that for all x with |x | ≥ κ

Ɛ[f (Yk+1) − f (Yk) | Yk � x] ≥ aτ(Yk) > 0. (21)

Proof. Aside from the simulation in X between Y samples, our algorithm consists of two random steps: (i) the
selection of Λk+1, and (ii) the random state update rule (7). Upon conditioning on these two steps the expected
change in f can be calculated as follows

Ɛ[∆(Yk , Yk+1) | Yk � x]� 1
|L |

∫
L

Ɛ[∆ f (Yk , Yk+1) | Yk � x ,Λk+1 � µ] dµ

�
1
|L |

∫
L

Ɛ

[
∆ f (X(µ)0 , X(µ)

τ(x))exp
(
−η

[
−∆ f (X(µ)0 , X(µ)

τ(x))
]
+

)]
dµ. (22)

Denote p :� |L̄ |/|L | ∈ (0, 1], where L̄ is the set for which Xλ is unstable (cf. (6)). Now split the above integral
by distinguishing between: (i) µ ∈ L̄, and (ii) µ ∈ L\L̄. It is readily verified that for all z ∈ � the function
z 7→ z exp(−η [−z]+) satisfies

z exp(−η[−z]+) ≥max{z ,−(e η)−1}. (23)

The stated bound is trivial for z ≥ 0, and for z < 0 simply note that z exp(−η[−z]+) is minimized at z �−η−1.
For µ ∈ L̄ we use the lower bound of z in (23),

1
|L |

∫
L̄

Ɛ
[
∆ f (X(µ)0 , X(µ)

τ(x))exp(−η[−∆ f (X(µ)0 , X(µ)
τ(x))]+)

]
dµ ≥ 1

|L |

∫
L̄

Ɛ
[
∆ f (X(µ)0 , X(µ)

τ(x))
]
dµ ≥ pδτ(x). (24)

In the second inequality above, we apply the assumption that our Markov chain is unstable on L (cf. (6)).
For µ ∈L\L̄, we use the lower bound of −(eµ)−1 in (23). This yields

1
|L |

∫
L\L̄

Ɛ
[
∆ f (X(µ)0 , X(µ)

τ(x))exp(−η[−∆ f (X(µ)0 , X(µ)
τ(x))]+)

]
dµ ≥ −(1− p)(eµ)−1. (25)

Combining Equation (22) with Inequalities (24) and (25) yields

Ɛ[∆ f (Yk , Yk+1) | Yk � x] ≥ pδτ(x) − (1− p)(eµ)−1. (26)

Since τ(x)→∞ as |x | →∞. There exists κ > 0 such that p δ τ(x) − (1− p)(eµ)−1 ≥ pδτ(x)/2 for all |x | > κ. Letting
a � pδ/2, we have the result. �

Mandjes et al.: Detecting Markov Chain Instability
Stochastic Systems, 2017, vol. 7, no. 2, pp. 289–314, ©2017 The Author(s) 301

Let kκ be the hitting time for f (Y) on the states {x: |x | ≤ κ}. An immediate consequence of the above proof
is that the process

Fk :� f (Yk∧kκ) − a
(k∧kκ)−1∑

i�0
τ(Yi)

forms a submartingale. This in itself is not sufficient to prove f (Yk) diverges in the sense of Theorem 3.5.
However, this is possible when we bound the moments of Fk as follows. In the following let Sk � (Yk , Λk).

Lemma 4.5. If L is unstable, then there exist an r > 0 such that for |Yk−1 | ≥ κ

Ɛ
[
exp

(
−r (Fk − Fk−1)

)
| Sk−1

]
< 1. (27)

Proof. The change in the process from Fk−1 to Fk is achieved by a process with bounded increments. Upon
applying the Azuma–Hoeffding inequality, we have that

� (Fk − Fk−1 − Ɛ[Fk − Fk−1] ≤ −y | Sk−1) ≤ exp
(
−

2y2

τkφ
2
f

)
. (28)

Now consider the following sequence of inequalities:

Ɛ[exp(−r (Fk − Fk−1)) | Sk−1]�
∫ ∞

0
� (exp(−r(Fk − Fk−1)) ≥ z | Sk−1)dz

�

∫ ∞

0
�

(
Fk − Fk−1 ≤ −

1
r

log z
���� Sk−1

)
dz

≤
∫ ∞

0
�

(
Fk − Fk−1 − Ɛ[Fk − Fk−1] ≤ −aτk −

1
r

log z
���� Sk−1

)
dz

≤
∫ ∞

exp(−raτk)
�

(
Fk − Fk−1 − Ɛ[Fk − Fk−1] ≤ −aτk −

1
r

log z
���� Sk−1

)
dz + e−raτk

≤
∫ ∞

exp(−raτk)
exp

(
− 2
τkφ

2
f

(aτk + r−1 log z)2
)
dz + exp(−raτk).

In the first inequality above, we apply the bound that Ɛ[Fk−Fk−1] ≥ aτk from Lemma 4.4. In the second inequality,
for values of z such that −aτk − r−1 log z ≥ 0 we bound the integrand from above by 1, which results in the
exp(−raτk) term appearing. In the final inequality we apply (28).
We now show that the right hand side of the expression above is strictly less than 1 for a suitable choice of

r, and τk suitably large:∫ ∞

exp(−r aτk)
e−(2/(τk φ

2
f))(a τk+r−1 log z)2 dz �

1
r

∫ ∞

0
e−2y2/(τkφ

2
f) · er y · e−raτk dy

�
1
r

∫ ∞

0
exp

(
− 2
τkφ

2
f

(y − rτkφ
2
f /4)2

)
· exp(r2 τk/4) · exp(−raτk)dy

≤ r−1
√
τkφ

2
f π/2 · exp(r2τk/4− raτk).

The final inequality follows by integrating over � rather than �+ and by noting that the integral of exp(−y2)
over � is equal to

√
π.

Observe that there exists r > 0 such that r2/4− ra < 0. Thus for this choice of r, for all τk suitably large, we
have that, as desired, ∫ ∞

exp(−r a τk)
exp

(
− 1
τk
(a τk + r−1 log z)2

)
dz + exp(−r a τk) < 1. �

We can now prove Theorem 3.5 using well known martingale arguments.

Mandjes et al.: Detecting Markov Chain Instability
302 Stochastic Systems, 2017, vol. 7, no. 2, pp. 289–314, ©2017 The Author(s)

Proof of Theorem 3.5. We first apply standard stopping arguments to (27) to show that if Y0 is such that |Y0 | > κ,
then there is positive probability that Fk will not go negative, namely,

�
(

inf
k≥0

Fk ≥ 0
)
≥ 1− exp(−rK) > 0, (29)

for some K > 0. We do so by investigating the probability of its complement.
Let T be the first time when Fk < 0 occurs for k ≥ 0, which is a stopping time. Using Lemma 4.5, recalling that

r > 0,

�
(

inf
k≥0

Fk < 0
)
� � (FT < 0)� � (e−rFT > 1) ≤ Ɛexp(−rFT)� Ɛ

[
lim inf

n→∞
exp(−rFT∧n)

]
≤ lim inf

n→∞
Ɛ[exp(−rFT∧n)] ≤ lim inf

n→∞
Ɛexp(−rF0)� Ɛexp(−rF0) ≤ exp(−rK)

where K :� miny: |y |>κ{ f (y)} is a positive constant since f is positive and f (x) → ∞ as |x | → ∞. The first two
equalities above apply our stopping time definition and an exponential change of variable. The first inequality
above applies Markov’s inequality, the second applies Fatou’s lemma and the third is the optional stopping
theorem (see e.g., Williams 1991, Section 10.10) applied to our supermartingale.
The next step is to show using the Strong Markov Property, that at every time ` when |Y` | > κ holds, there is

a positive probability that the process Fk remains positive for all remaining time. Due to irreducibility |Yk | > κ
occurs infinitely often, and so eventually it will be that Fk > 0 for all time. We now argue this point more
formally. Let `0 be the first time that |Yk | > κ holds. For n ≥ 1, let

F(n)k � f (Yk) − a
k−1∑

i�`n−1

τ(Yi),

which is the process F started from time `n−1. Let σn be the first time after `n−1 when F(n)k < 0 holds, and let `n
be the first time after σn that |Yk | > κ holds. Since our Markov chain is irreducible it must be that if σn is finite,
then `n+1 is finite. By this and (29) we have

� (σn <∞ | σn−1 <∞)� � (σn <∞ | `n <∞) < e−rK .

Thus, upon noting that σn cannot possibly be finite if σn−1 is not, we have

� (σn <∞) ≤ exp(−rK)� (σn−1 <∞) < · · · < exp(−nrK).

Now, note that
∞∑

n�0
� (σn <∞)�

∞∑
n�0

exp(−nrK) <∞,

so by Borel–Cantelli (see e.g., Williams 1991, Section 2.7)

� (F(n)k < 0, infinitely often)� 0.

Thus, there exists a k′ such that for all k ≥ k′, we have that

f (Yk) − a
k−1∑
i�k′

τ(Yi) ≥ 0

which, after rearranging, implies

lim inf
k→∞

f (Yk)∑k−1
i�0 τ(Yi)

≥ lim inf
k→∞

f (Yk)∑k−1
i�k′ τ(Yi)

· lim inf
k→∞

∑k−1
i�k′ τ(Yi)∑k−1
i�0 τ(Yi)

≥ a ,

as required. �

4.3. Proof of Theorem 3.5 for the Local Search Algorithm
We now prove Theorem 3.5 under the premise that the local search algorithm, Algorithm 3.2, is applied. First,
we consider the situation where the local search algorithm must compare an unstable parameter λ with a
stable parameter γ. The following lemma will be used to show that the probability of the Metropolis rule, (8),
selecting γ will be a low probability event.

Mandjes et al.: Detecting Markov Chain Instability
Stochastic Systems, 2017, vol. 7, no. 2, pp. 289–314, ©2017 The Author(s) 303

Lemma 4.6. For the events

A �

{
f (X(λ)

τ(x)) − f (X(λ)0) ≤
3δ
4 f (X(λ)0)

}
and B �

{
f (X(γ)

τ(x)) − f (X(γ)0) ≥
δ
2 f (X(γ)0)

}
,

with λ ∈ L̄ and γ < L̄ there exists positive constants β1 and β2 such that

� (A | X(λ)0 � x) ≤ β1e−β2τ(x) , (30)
� (B | X(γ)0 � x) ≤ β1e−β2τ(x). (31)

Proof. The bound (30) is a consequence of the Azuma-Hoeffding Inequality. In particular,{
f (X(λ)

τ(x)) − f (X(λ)0) ≤
3δ
4 f (X(λ)0)

}
⊂

{
f (X(λ)τ∗) − f (X(λ)0) ≤

3δ
4 f (X(λ)0)

}
where τ∗ � min{t ≤ τ(x): |X(λ)t | ≤ κ} for suitably large values of |x |. Since λ is unstable, f (X(λ)t∧τ∗) is a sub-
martingale with bounded increments and drift δ. Thus we can directly apply the Azuma-Hoeffding Inequality
to obtain (30).
The bound (31) is a direct consequence of Lemma 4.1. In particular, taking w � f (x) and z � (δ/2) f (x), the

terms in the exponential in statement (14) of Lemma 4.1 are such that

(z − α1(w))2
2α2(w)

∼
[
(δ/(2c)+ 1)2
2(φ+ δ)2σ

]
τ(x), (z − α3(w))2

2α4(w)
∼

[
(1+ δ/2)2

2c2φσ

]
τ(x).

Further, n(f (x))�O(τ(x)). This in turn implies that there are constants β1 and β2 such that (31) holds. �
We let (Y,Λ) � (x , λ) be the initial state of Algorithm 3.2, we let γ < L̄ be the parameter selected in Step (i)

of Algorithm 3.2, and we let (Y′,Λ′) the state of Algorithm 3.2 after its first iteration. Given this notation, the
following lemma, which is a consequence of the above result, shows that with high probability Λ′ � λ and that
over this step τ(x) is increased by a positive fraction.
Lemma 4.7. There exists positive constants ε, β3, and β4 such that

� (τ(Y′) ≥ τ(x)(1+ ε),Λ′ � λ) ≥ 1− β3e−β4τ(x).

Proof. Let A and B be the events specified in Lemma 4.6, above. Given the event Ac , for Λ′ � λ we have that
f (Y′) ≥ (1+ 3δ/4) f (x). Since f (x) �Θ(τ(x)), for an appropriate choice of ε > 0 (dependent only on δ), we have
that

τ(Y′) ≥ (1+ ε)τ(x).
Now given this choice of ε the following equalities hold,

� (τ(Y′) ≥ τ(x)(1+ ε),Λ′ � λ) ≥ � (τ(Y′) ≥ τ(x)(1+ ε),Λ′ � λ | Ac ,Bc)� (Ac ∩ Bc) ≥ (1− e−(1/4)δ f (x))(1− 2β1e−β2τ(x))
The second inequality follows from definition of the Metropolis rule, (8), and from Lemma 4.6. From this it is
clear there are appropriate constants β3 and β4, as required. �
Proof of Theorem 3.5 for Local-Search Algorithm. We see that under Assumption 3.3, the local search algorithm
is such that the process Λk will eventually visit a state in L̄. To see this note that, from any state (Yk ,Λk)� (x , λ)
with λ < Λ̄, by irreducibility and positive recurrence of X(λ) and the fact λ ∈Bλ, there is a positive probability of
reaching state (x0 , λ). Further, by (9) there is a positive probability of reaching a state (x0 , µ) for any µ ∈ L̄. From
that state, again by the irreducibility of X(µ), there is a positive probability of reaching a state x′ with τ(x′) > τ
for any specified value of τ. Once such a state is reached we now show that there is a positive probability of Λk
remaining in Λ̄ indefinitely.
Let Ek be the following event

Ek :� {Λk ∈ L̄ , τk ≥ τk−1(1+ ε)}.
Then, by Lemma 4.7,

�

(⋂
k

Ek

)
≥ 1−

∑
k

�

(
Ec

k

���� ⋂
k′<k

Ek′

)
≥ 1−

∑
k

2β1e−β2τ0(1+ε)k . (32)

Thus for suitably large initial values of τ0 we have that

� (Λk ∈ L̄ , τk ≥ τk−1(1+ ε) ∀ k) > 0.

Hence, eventually it must occur that the algorithm evolves only according to unstable parameter choices. �

Mandjes et al.: Detecting Markov Chain Instability
304 Stochastic Systems, 2017, vol. 7, no. 2, pp. 289–314, ©2017 The Author(s)

5. Examples
This section presents five example applications of the algorithm, where each example is designed to highlight
aspects of the algorithm’s implementation and use. More specifically, we subsequently consider a network of
parallel queues, a tandem queueing system, the Rybko–Stolyar network, a network of input queued switches,
and a random access network (RAN).
Before proceeding with the examples we briefly provide some details on algorithm parameter choices used

in this section. The η parameter scales the effect of the difference between outcomes sampled from consecutive
draws from Λn samples. Taking η→∞ is akin to adopting a greedy hill climbing approach, while η→ 0 is
equivalent to moving at random. Hence the choice of η allows for a trade off between moving towards more
unstable parameter choices and becoming trapped in local (stable) optimizers. Throughout this section we have
chosen η� 1 as a balance between these two extremes. For the local search algorithm, associated with each λ ∈L
is a neighborhood Bλ from which the next parameter candidate will be selected. Choosing these neighborhoods
to be large will explore L more aggressively, while smaller neighborhoods will increase the effect of local
gradient information. Throughout our illustrations we take Bλ to be a ball centered at λ with radius ε � 0.01
that intersects with L. Finally, throughout the section we use U(A) as an indicator variable for the algorithm
declaring the set A unstable.

5.1. Parallel Queues with Randomly Varying Connectivity
For our first example we extend the illustrative example used in Section 3. Consider a system where N parallel
queues compete for the service of a single server. Time is slotted, and in each time slot t ∈�+ queue i ∈ {1, . . . ,N}
is connected to the server with probability 0.8. Similarly, at the beginning of each time slot an arrival occurs
at each queue with probability p ∈ [0, 1], so that there are at most N arrivals to the system in any particular
time slot. After the arrivals have occurred and connectivity is determined, the longest non-zero queue that is
connected to the server is reduced by one with probability 4

5—a policy called longest queue first (LQF). The
system is therefore a discrete time Markov chain X(p) taking values in �N

+
. We illustrate this system in Figure 3.

The stability region for this irreducible Markov chain is known. In particular, from Corollary 1 in Tassiulas
and Ephremides (1993) we have that for any p ≤ `∗, where

`∗ �
4
5

(
1− (1/5)N

N

)
,

the limiting distribution of X(p) exists, and otherwise does not.
Therefore any L ⊂ [0,∞) that shares an intersection with [`∗ ,∞) of positive measure, is unstable under our

Definition 2.1. Taking N � 4 and L to be of the form [0, `), we therefore have instability for approximately
those instances when ` > 0.2, that is `∗ ≈ 0.1997. Furthermore, Theorem 1 in Tassiulas and Ephremides (1993)
shows that the system is stable under the LQF policy for the network’s subcritical region—a property known as
maximal stability. This property is well known to hold for single-hop networks under LQF and its generalization
the Max Weight-α algorithm (see e.g., McKeown et al. 1999, Tassiulas and Ephremides 1992).
In Figure 4 we give the proportion of simulation runs out of 1,000 where the parameter set [0, 0.3] is declared

unstable by the local and global algorithms as k∗ is increased. Recall that k∗ is the total number of steps the
algorithm is permitted to take in X before a value of f (Yk) is compared to q(α)k . Now, the greatest change in f
occurs when there are no services and all queues experience an arrival, so that φ � 4. We assume κ � 4 and
σ� 1. It can be seen that longer simulation runs are more likely to declare the system unstable, with an apparent
almost sure declaration of instability in the limit. In this case, the local algorithm approaches this limit far more
rapidly than the global algorithm.

Figure 5 explores the effect of the chosen δ on an unstable declaration for an unstable parameter set. The figure
gives the proportion of simulation runs out of 100 where the parameter set [0, 0.21] is declared unstable by the

Figure 3. A parallel queueing system with randomly varying connectivity.

p

p

p

0.8

0.8

0.8

0.8

Mandjes et al.: Detecting Markov Chain Instability
Stochastic Systems, 2017, vol. 7, no. 2, pp. 289–314, ©2017 The Author(s) 305

Figure 4. Parallel system L1-stability tests with α � 0.05 for p sampled from the set L � [0, 0.3] for k∗ ∈ (0, 106] with
τ(x)� 0.5|x | + 1, δ � 0.01, σ � 1, κ � 4, φ � 4 and ε � 0.01.

0 0.2 0.4 0.6 0.8 1.0

·106

0

0.5

1.0

k*

Local

Global�
(�

[0
, 0

.3
])

Figure 5. Parallel system L1-stability tests for p sampled from the set L � [0, 0.21] for δ ∈ [0.01, 0.4] with τ(x)� 0.5|x | + 1,
σ � 1, κ � 4, ε � 0.01 and k∗ � 105 (dotted), 106 (dashed).

0 0.1 0.2 0.3 0.4
0

0.5

1.0

�

0 0.1 0.2 0.3 0.4

�

Global Local

�
(�

[0
, 0

.2
1]

)

0

0.5

1.0

�
(�

[0
, 0

.2
1]

)

local and global algorithms. Recall that the definition of stability we use compares the drift of the process under
consideration with a linear function that depends on δ. As discussed in Section 3, with reference to Figure 2, if
a parameter is unstable for a particular δ, then this implies instability for all higher values of δ. This is because
a W process parameterized by a particular δ will stochastically dominate all W processes parameterized by
higher choices of δ. Figure 5 demonstrates that this occurs for both the global and local search algorithms.
Again we see that the local algorithm appears to perform better—in this example it has detected lower values
of downward drift when k∗ � 105, 106.

Figure 6 explores the effect of the chosen δ on an unstable declaration for a stable parameter set. The figure
gives the proportion of simulation runs out of 100 where the parameter set [0, 0.19] is declared unstable by the
global algorithm. The algorithm rejects the null hypothesis of stability once δ reaches approximately 0.28. This
indicates that f (Y105) exceeds the (estimated) 95-th percentile of W105 parameterized with δ� 0.3, but is bounded
by the 95-th percentile of a W105 parameterized by δ � 0.25. For L � [0, 0.19] rejecting the null hypothesis of
downward drift greater than 0.28 is not unexpected. Over the range of δ considered the local algorithm did not
make a declaration of instability; hence the local algorithm nonetheless appears to perform better.

Figure 6. Parallel system L1-stability tests with α � 0.05 for p sampled from the set L � [0, 0.19] for δ ∈ [0.01, 0.4] with
τ(x)� 0.5|x | + 1, σ � 1, κ � 4, ε � 0.01 and k∗ � 105.

Global

0 0.1 0.2 0.3 0.4

�

0

0.5

1.0

�
(�

[0
, 0

.1
9]

)

Mandjes et al.: Detecting Markov Chain Instability
306 Stochastic Systems, 2017, vol. 7, no. 2, pp. 289–314, ©2017 The Author(s)

Figure 7. Parallel system L1-stability tests with α � 0.05 for p sampled from sets of the form L � [0, `] with τ(x)� 0.5|x |+ 1,
δ � 0.05, σ � 1, κ � 4, ε � 0.01 and k∗ � 105 (dotted), 106 (dashed), 107 (solid).

LocalGlobal

0

0.5

1.0

�
(�

[0
, �

])

0

0.5

1.0

�
(�

[0
, �

])

0 0.2 0.4

�

0 0.2 0.4

�

In Figure 7 we give the proportion of simulation runs out of 100 where the parameter set [0, `] is declared
unstable for a range of `. It can be seen that longer simulation runs declare the system unstable for a larger
proportion of the ` values that give an unstable L. The figure provides evidence that in the discrete time case
the algorithm is performing as it is intended to, in the next section we move to a continuous time example.

5.2. Tandem Queues
Our next example is the tandem queueing system. We will contrast the results for a Markov system consisting
of two M/M/1 queues with a system that has renewal arrivals and i.i.d. service times at both nodes (which is
not Markov). In the former system jobs arrive to a server according to a Poisson process with rate one, they
are then processed one at a time, first come first served (FCFS), with Exp(µ−1

1) service times, before being sent
to a subsequent server where they are again processed one at a time, FCFS, with service time Exp(µ−1

2). It is
well known that the output from the first server to the second corresponds to a Poisson process with rate
min{1, µ−1

1 }. Consequently, the system is L1-stable for (µ1 , µ2) ∈ [0, 1]2, and L1-unstable otherwise. In the latter
system we assume the times between arrivals to the first server are Erlang distributed with rate parameter 1/2
and shape parameter 2. Jobs are also served FCFS and must pass through the first server before being sent to
the second. In this case the service times are Weibull distributed with shape parameter 2, so that they have
distribution function (1− exp(−(x/µ)k) for x ≥ 0, with k � 2 and scale parameters µ � µ1 and µ � µ2 for the first
and second server, respectively. Note that in both cases the mean time between arrivals is 1, that the mean
service times are µ1 and µ2 for the former case, and are Γ(1.5)µ1 ≈ 0.8862µ1 and Γ(1.5)µ2 ≈ 0.8862µ2 in the
latter case.
To apply our discrete time framework to these continuous time systems, we have used the embedded process

corresponding to the sequence of states recorded immediately after each jump (which is Markovian for the
M/M/1 system, and non Markovian for the system with renewal arrivals and i.i.d. service times). In Figures 8
and 9 we are testing parameter sets of the form (µ1 , µ2) ∈L � [0, `]2, and as such sets with ` > 1 are L1-unstable
in the Markov case and approximately ` > 1.1284 � (0.8862)−1 in the non Markov case. In both the global and
local cases it is clear that the test converges to an accurate declaration of instability over ` ∈ (0.5, 1.5) as k∗→∞.

Figure 8. Tandem M/M/1 system L1-stability tests with α � 0.05 for (µ1 , µ2) sampled from sets of the form L � [0, `]2 with
τ(x)� 0.5|x | + 1, δ � 0.05, σ � 1, κ � 1, ε � 0.01 and k∗ � 105 (dotted), 106 (dashed), 107 (solid).

LocalGlobal

0.6 0.8 1.0 1.2 1.4

�

0.6 0.8 1.0 1.2 1.4

�

0

0.5

1.0

�
(�

[0
, l

]2)

0

0.5

1.0

�
(�

[0
, l

]2)

Mandjes et al.: Detecting Markov Chain Instability
Stochastic Systems, 2017, vol. 7, no. 2, pp. 289–314, ©2017 The Author(s) 307

Figure 9. Non-Markovian tandem system L1-stability tests with α � 0.05 for (µ1 , µ2) sampled from sets of the form
L � [0, `]2 with τ(x)� 0.5|x | + 1, δ � 0.05, σ � 1, κ � 1, ε � 0.01 and k∗ � 105 (dotted), 106 (dashed), 107 (solid).

Global Local

0.6 0.8 1.0 1.2 1.4

�

0.6 0.8 1.0 1.2 1.4

�

0

0.5

1.0
�

(�
[0

, �
]2)

0

0.5

1.0

�
(�

[0
, �

]2)

Figure 10. Tandem M/M/1 system L1-stability tests with α � 0.05 for (µ1 , µ2) sampled from L � [0, 1.2]2 with
τ(x)� c |x | + 1, δ � 0.05, σ � 1, κ � 1, ε � 0.01, k∗ � 105 (dotted), 106 (dashed), and c ∈ (0.1, 0.6).

0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1.0

c
0.2 0.4 0.6 0.8

c

Global Local

�
(�

[0
, 1

.2
]2)

0

0.5

1.0

�
(�

[0
, 1

.2
]2)

The figures provides evidence that it is possible to relax the discrete time and Markov assumptions we made
in the theoretical development of our algorithm.
Further, we are stretching the original modeling framework since there is no fixed σ after which the systems

exhibit unstable behavior. The required number of steps before an upward drift is expected to occur depends
on the system state. Consequently, over short time periods, unstable parameter choices may appear stable, e.g.,
in the Markov system, when the second server has a very large queue but a parameter selection with µ1 > 1 and
µ2 < 2−µ1 is made. Nonetheless, asymptotically both systems are expected to become infinitely large due to the
first queue being unstable, and through the τ function our algorithm is able to maintain accurate prediction.
Due to this, in systems of this kind the choice of c in the τ function may have an important impact on the
algorithm’s performance.
In Figure 10 we perform instability tests on [0, 1.2] for a range of c. For the global algorithm the choice of c

can have a substantial impact on performance, for k∗ � 106 a high value of c is required to obtain a high level
of accuracy. For the local algorithm, however, the choice of c does not appear to have as much of an effect as
the choice of k∗. This suggests that if k∗ is limited by computational resources, then it is preferable to use the
global algorithm with a high c—particularly if the system is suspected of exhibiting oscillatory behavior.

5.3. Rybko–Stolyar Queueing Network
The Rybko–Stolyar queueing network, displayed in Figure 11, was introduced in Rybko and Stolyar (1993) as
an example of a work-conserving queueing network that can be unstable for sub-critical parameter choices. To
the best of our knowledge, matching necessary and sufficient conditions for instability are not known.
This queueing network consists of two stations, each with a single server, which we call the left and right

stations. All customers served at the left station require Exp(µl) service time and all customers served at the
right station require Exp(µr) service time. There are two classes of customers. The first class enters the network
according to a Poisson process at rate λ where it is served at the left station before proceeding to the right
station to be served, and from here it departs the network. Jobs from the second class also enter the network
at rate λ, are served at the right station, proceed to be served at the left station, and then depart from the

Mandjes et al.: Detecting Markov Chain Instability
308 Stochastic Systems, 2017, vol. 7, no. 2, pp. 289–314, ©2017 The Author(s)

Figure 11. The Rybko–Stolyar network.

�

�

�r�l

Figure 12. Rybko–Stolyar system L1-stability tests with α � 0.05 for µl sampled from sets of the form L � [`, ` + 1] for
k∗ � 105 (dotted), 106 (dashed), 107 (solid) with λ � 1, µr � 4, τ(x)� 0.5|x | + 1, δ � 0.05, φ � κ � σ � 1 and ε � 0.01.

Global Local

1.0 1.5 2.0 2.5 3.0

�

1.0 1.5 2.0 2.5 3.0

�

0

0.5

1.0

�
(�

[�
, �

+
1]

)

0

0.5

1.0

�
(�

[�
, �

+
1]

)

network. Within each customer class the customers are served on a FCFS basis. Between the customer classes,
however, there is priority: jobs being served at their second station (bold in Figure 11) have priority over jobs
being served at their first station.
In Rybko and Stolyar (1993) it is shown that for λ equal to one and µr > 0, a sufficient condition for instability

is µl < 2. In Figure 12 we consider the situation where µl is sampled from sets of the form (`, `+1) for ` ∈ (1, 3),
with λ � 1 and µr � 4. Due to the result from Rybko and Stolyar (1993) we expect that ` ∈ (1, 2) will be returned
as unstable by the algorithm. This occurs for k∗ equal to 107. Interestingly, for ` > 2 we never reject the null
hypothesis of stability, suggesting that µl < 2 is also a necessary condition for instability with λ� 1 and µr > 0. In
this case the local algorithm appears to outperform the global algorithm. The estimates for the local algorithm
do, however, exhibit a large amount of variance (over the 100 sample paths used to generate the figure).

5.4. A Switch Network
Our next example is a network of input-queued switches which was investigated by Andrews and Zhang (2003).
This discrete time model provides an example where the LQF policy is not maximally stable. In this simulation
study, we are able to demonstrate the use of our algorithm on a model which exhibits complex queueing
dynamics on a 52 dimensional state space. Again, unlike the parallel queue or tandem models considered earlier,
the explicit form of the stability region of this model is unknown.
The model we are considering is illustrated in Figure 13. It has four main switches with labels A, B, C, and D

and four auxiliary switches with labels A′, B′, C′, and D′. Each of the main switches has ten external input
queues to which a packet arrival occurs instantaneously at the beginning of each time slot independently and
with probability r/30.

Packets are given a type according to the switch at which they first arrive, for example packets starting at A
are of type 1; packets are routed through the network according to their type. After these arrivals the longest
of the 12 queues at each main switch and of the three queues at each auxiliary switch sends a single packet to
the corresponding input queue of another switch or are removed from the system (as designated by Figure 13).
Packets sent in a time slot arrive at their destination at the beginning of the next time slot.
In Figure 14 we test for L1-instability in r on parameter sets of the form L s � [0.5, `]. Due to the large size of

the system we have chosen δ � 5. We set φ � 40, τ(x)� 0.5 |x |+1, and κ � σ � 1. Although the stability region for
this model is not yet known, this figure provides strong (statistical) evidence that the set [0, 0.95] is unstable.
We have thus demonstrated that our algorithm can be used to provide statistical evidence that the LQF policy
is not necessarily maximally stable in multi-hop settings. In this case the global algorithm appears to perform
much better, suggesting that k∗ � 107 is not great enough for the local algorithm to start performing well.

Mandjes et al.: Detecting Markov Chain Instability
Stochastic Systems, 2017, vol. 7, no. 2, pp. 289–314, ©2017 The Author(s) 309

Figure 13. A network of input queued switches.

C C�

D�

D

A�

B�

A

B

1 2 4

21 4

3

4

2

1

11

3

4

2

1

3

3

1

2 4 3

342

2

4

3

Figure 14. Network of input queued switches L1-stability tests with α � 0.05 for r sampled from sets of the form L � [0, `]
or L � [0.5, `] for k∗ � 105 (dotted), 106 (dashed), 107 (solid), τ(x)� 0.5|x | + 1, δ � 5, φ � 40, κ � σ � 1, and ε � 0.01.

Local

0.6 0.8 1.0

�

0.6 0.8 1.0

�

Global

0

0.5

1.0

�
(�

[0
.5

, �
])

0

0.5

1.0

�
(�

[0
.5

, �
])

It may be the case the ratio |L̄ |/L has a substantial impact on performance in finite time. Figure 15 explores
this relationship by testing for stability of [`, 0.95] over a variety of (k∗ , `) combinations. Intuitively, this ratio
should have a greater impact on performance of the local algorithm than the global algorithm. Instead, the figure
indicates highly similar (poor) performance over the varying combinations of (k∗ , `), with some degradation of
accuracy for very low k∗. While for the global algorithm fixing either k∗ or ` and then increasing the other leads
to substantial increases in accuracy.

Figure 15. Network of input queued switches L1-stability tests for r sampled from sets of the form L � [`, 0.95] for
k∗ ∈ (0, 7 · 106], τ(x)� 0.5|x | + 1, δ � 5, φ � 40, κ � σ � 1, and ε � 0.01.

2 4

·106 ·106

0.2

0.4

0.6

k*

�

0.2

0.4

0.6

�

Global

2 4

k*

Local

0.2

0.4

0.6

�
(�

[0
, 0

.9
5]

)

Mandjes et al.: Detecting Markov Chain Instability
310 Stochastic Systems, 2017, vol. 7, no. 2, pp. 289–314, ©2017 The Author(s)

Figure 16. (Color online) A broken diamond random access network.

1

2

3

4

5

6

5.5. A Broken Diamond Random Access Network
So far we have presented classical examples that facilitated the assessment of the algorithm’s performance. In
our final example we address a contemporary area of research initiated by Ghaderi et al. (2014), exploring the
stability properties of a wireless network with a queue-based random-access algorithm. We focus on a network
consisting of nodes {1, 2, . . . , 6}, some of which are connected by edges, as depicted in Figure 16 (where it is
remarked that Ghaderi et al. (2014) is set in a more general context). In our model we assume that nodes which
are connected by an edge interfere with each other, that is, they cannot transmit simultaneously.
In this continuous time model, packets arrive to node i according to a Poisson process with rate λi and take

Exp(µi) time to transmit, so that the traffic intensity at node i is ρi � λi/µi . Let U(t) ∈ {0, 1}6 be a vector of
indicator variables representing which nodes are active at time t and X(t) ∈ {0, 1, . . .}6 be a vector representing
the number of packets at each node at time t.

In order to fully describe the evolution of this process, we must specify how nodes decide when to attempt
transmission of packets. Whenever a node is not being interfered with it will wait an Exp(νi) amount of back-off
period. At this point, it will then begin transmitting with probability φi(Xi(t)), where φi(0) � 0, and otherwise
it will begin another back-off period with the same distribution. After each successful transmission, node i
will release the medium and begin a back-off period with probability ψi(Xi(t−)), with ψi(1) � 1 for all i, and
otherwise begin another transmission.
It is easy to see that (X,U) is a Markov process evolving according to the rates given in Table 1. Note that

here ūi � 0 indicates that none of the neighbors of i is transmitting.
Consider the network in Figure 16, and suppose that φi(x) ≡ 1, x > 0, and ψi(x)� o(x−γ), with γ > 1. Let

(ρ1 , ρ2 , ρ3 , ρ4 , ρ5 , ρ6)� ρ (κ1 , κ2 , κ3 , κ3 − α̃, κ6 − α̃, κ6),

with (κ1∨ κ2)+ κ3 + κ6 � 1, and 0 < α̃ < (κ3∧ κ6). Then the main result of Ghaderi et al. (2014) implies that there
exists a constant ρ∗(κ, α̃) < 1, such that for all ρ ∈ (ρ∗(κ, α̃), 1] the Markov process is transient under the given
parameter conditions.
We now consider the example network from the simulation section of Ghaderi et al. (2014). The relative traffic

intensities are taken to satisfy κ1 � κ2 � κ3 � 0.4 and κ6 � 0.2 with α̃ � 0. Further, φi(x) ≡ 1, x ≥ 1, and ψi(x) �
(1+ x)−2. The authors note that it is “difficult to make any conclusive statements concerning stability/instability
based on simulation results alone.” They do, however, remark that for these parameter choices and ρ � 0.97,
their simulated sample paths appear to demonstrate strong signs of instability.
In order to perform our stability test, we assume κ � φ � σ � 1. In Figure 17 we test for L1 instability with

δ � 0.05. Looking at Figure 17, which uses our simulation based stability test, we are able to say, with a strong

Table 1. Transition rates of the random access network network in Figure 16.

Transition Rate States

(x , u)→ (x + ei , u) λi All
(x , u)→ (x , u + ei) νi φi(xi) xi > 0, ui � 0, ūi � 0
(x , u)→ (x − ei , u) µi (1−ψi(xi)) xi ≥ 1, ui � 1
(x , u)→ (x − ei , u − ei) µi ψi(xi) xi ≥ 1, ui � 1

Mandjes et al.: Detecting Markov Chain Instability
Stochastic Systems, 2017, vol. 7, no. 2, pp. 289–314, ©2017 The Author(s) 311

Figure 17. Broken diamond random access network L1-stability tests with α � 0.05 for sets of the form L � [0, `] for
k∗ � 105 (dotted), 106 (dashed), 107 (solid), τ(x)� 0.5|x | + 1, δ � 0.05, φ � κ � σ � 1, and ε � 0.01.

Global Local

0 0.2 0.4 0.6 0.8 1.0

�

0 0.2 0.4 0.6 0.8 1.0

�

0

0.5

1.0
�

(�
[0

, �
])

0

0.5

1.0

�
(�

[0
, �

])

statistically firm footing, that there exists a constant ρ∗(κ, α̃) < 1, such that for all ρ ∈ (ρ∗(κ, α̃), `] the network is
unstable for a range of ` in approximately [0.6, 1]. This statement expands on the statement of the theorem (for
a particular choice of parameters) by allowing for more information to be gained about what values are likely
to be possible for ρ∗(κ, α̃). Of course, our statement does not rule out perverse behavior such as the network
suddenly exploding after 107 jumps of the process. It can however be very quickly and easily applied to similar
or even vastly more complex networks. We note that the global algorithm is in this case enabling us to make this
strong statement, while the local algorithm algorithm only allows us to make the statement for a substantially
reduced set of `.

6. Concluding Remarks
The main contribution of this paper concerned the development of an automated procedure that determines if,
for a specified set of parameter values, a given Markov chain is unstable. A distinctive feature of our work is
that our method is simulation based, and in addition broadly applicable and straightforward to implement. It
provides statistical statements on the stability of the parameter set, but, notably, we have succeeded in providing
explicit performance guarantees. Some of our experiments show that our technique provides us with useful
insights for models for which the stability set has not been characterized so far.
Our paper can be considered as a pioneering study on this topic, and various extensions and improvements

are envisaged. An important first branch of research could relate to relaxing the assumptions imposed, such
as the fact that we restrict ourselves to the class of Markov processes and the bounded step size assumption.
Experiments that we performed for non Markovian tandem queues indicated that the approach still provides
us with the correct result, if we perform our algorithm as if the underlying system is Markovian. In order
to remove the bounded step size assumption it would be necessary to use a concentration inequality that is
stronger than Azuma–Hoeffding. Additionally, our experiments contrasted global and local search versions of
the algorithm. We obtained mixed results on performance, and were unable to declare either version superior
to the other. Determining conditions that point towards which of these versions should be used in different
circumstances remains to be a challenge.

The objective of a second branch of research could be to enhance our procedure such that it can identify,
in case instability is detected, which components of the multi-dimensional Markov chain are unstable. A third
branch is of an empirical nature, and relates to models of which the stability region is not yet known. By
performing systematic simulation studies one could possibly state conjectures.

Acknowledgments
The authors thank Yoni Nazarathy (The University of Queensland) for suggesting this area of research and for stimulating
discussions.

Appendix A. Lemmas
Lemma A.1. There exists a positive constant w∗ such that

� (W1 ≥ z |W0 � v) ≤ � (W1 ≥ z |W0 � w).

for v and w such that z ≤ w∗ ≤ v ≤ w.

Mandjes et al.: Detecting Markov Chain Instability
312 Stochastic Systems, 2017, vol. 7, no. 2, pp. 289–314, ©2017 The Author(s)

Proof. Noting the equality
� (W1 ≥ z |W0 � w)� � (Z(w) ≥ z −w),

we claim it is sufficient to prove that the function

g(z ,w)� exp
(
−(z −w + n(w))2

bw

)
(A.1)

is nondecreasing in w for values of z with z ≥ w. This is because the second term in (14) evaluated at a point z −w, given
our assumptions on the function τ, will tend to zero as z→∞, and the first term is of the form (A.1). Also note that for g
nondecreasing the function 1∧ g is also nondecreasing.

After taking logs and rearranging g(v , z) ≤ g(w , z), we see that it is sufficient to show that

z + n(v) − v√
n(v)

≥ z + n(w) −w√
n(w)

(A.2)

for z ≤ w∗ ≤ v ≤ w. It is finally noted that (A.2) holds as long as for w ≥ w∗ we have n(w) ≤ w. �

Lemma A.2. The random variables Z(w) are L2 bounded and

ƐZ(w)→ 0 as w→ 0.

Proof. In particular, we bound the mean of Z(w) for large values of w as follows:

ƐZ(w)�
∫ ∞

0
� (Z(w) ≥ z)dz ≤

∫ ∞

0

[
exp

(
−(z + a1n(w))2

b1n(w)

)
+ n(w) exp

(
−(z + a2w)2

b2n(w)

)]
dz.

We start by bounding the first of these terms:∫ ∞

0
exp

(
−(z + a1n(w))2

b1n(w)

)
dz �

∫ ∞

0
− b1n(w)

2(z + a1n(w)) d
(
exp

(
−(z + a1n(w))2

b1n(w)

))
dz

�
b1

2a1
exp

(
−

a2
1 n(w)

b1

)
−

∫ ∞

0

b1n(w)
2(z + a1n(w))2 exp

(
−(z + a1n(w))2

b1n(w)

)
dz ≤ b1

a1
exp

(
−

a2
1 n(w)

b1

)
.

Upon applying a similar sequence of steps to the second term we find that

ƐZ(w) ≤ b1

a1
exp

(
−

a2
1 n(w)

b1

)
+

b2n(w)
2a2w

exp
(
−

a2
2 w2

b2n(w)

)
.

We conclude that ƐZ(w)→ 0 as w→∞, as required.
We now analyze the second moment of Z(w) to establish that these random variables are L2 bounded. Observe that

Ɛ[Z(w)2]�
∫ ∞

0
2z� (Z(w) ≥ z)dz �

∫ ∞

0
2z

[
exp

(
−(z + a1n(w))2

b1n(w)

)
+ n(w)exp

(
−(z + a2w)2

b2n(w)

)]
dz

We bound the first of these terms as follows:∫ ∞

0
2z exp

(
−(z + a1n(w))2

b1n(w)

)
dz �

∫ ∞

0
b1n(w) z

(z + a1n(w)) d
(
−exp

(
−(z + a1n(w))2

b1n(w)

))
≤

∫ ∞

0
b1n(w)d

(
−exp

(
−(z + a1n(w))2

b1n(w)

))
� b1n(w)exp

(
−

a2
1 n(w)

b1

)
.

We then apply similar steps to the second term, which yields

Ɛ[Z(w)2] ≤ b1n(w)exp
(
−

a2
1 n(w)

b1

)
+ b2n(w)2 exp

(
−

a2
2 n(w)2
b2w

)
.

The right-hand terms are uniformly bounded in w, as required. �

Proof of Lemma 4.1. The set L is assumed to be stable. That is there exists δ > 0, σ > 0 and κ > 0 such that

Ɛ[f (X(λ)k) − f (X(λ)0) | X
(λ)
0 � x] ≤ −δσ (A.3)

for all k > σ, all x such that |x | > κ, and λ ∈L.
Since (A.3) only occurs after σ time units have occurred, we consider our process on steps of size σ. That is, we consider

the process (X(λ)σn : n ∈ �+). Assuming we start with x0 > κ, let n(x0) be the smallest integer for which σn(x0) ≥ τ(x0) holds.

Mandjes et al.: Detecting Markov Chain Instability
Stochastic Systems, 2017, vol. 7, no. 2, pp. 289–314, ©2017 The Author(s) 313

Since the increments of f (X(λ)) are bounded by φ f we have that

� x0
(f (X(λ)

τ(x0)
) − f (x0) ≥ z) ≤ � x0

(f (X(λ)
σn(x0)
) − f (x0) ≥ z − σφ f). (A.4)

Let nκ be the hitting time for (X(λ)nσ : n ∈ �+) on the states {x: |x | ≤ κ}.
By splitting the right-hand expression of (A.4) into terms depending on whether the event nκ ≤ n(x0) occurs or not, we

obtain two terms

� x0
(f (X(λ)

σn(x0)
) − f (x0) ≥ z − σφ f)

� � x0
(f (X(λ)

σn(x0)
) − f (x0) ≥ z − σφ f , nκ > n(x0)) (A.5)

+� x0
(f (X(λ)

σn(x0)
) − f (x0) ≥ z − σφ f , nκ ≤ n(x0)) (A.6)

We deal with these two terms, (A.5) and (A.6), separately.
First, we bound the term (A.5). We consider the process

Mn � f (X(λ)
σ(n∧nκ)

) − f (x0) − δσ(n ∧ nκ),

which, for X(λ)0 > κ, is a supermartingale by the stability assumption (A.3). Due to our bounded increments assumption we
can apply the Azuma–Hoeffding inequality to this process to obtain

� x0
(f (X(λ)

σn(x0)
) − f (x0) ≥ z − σφ f , nκ > n(x0)) ≤ � x0

(Mn(x0) ≥ z − σφ f + δσn(x0)) ≤ exp
(
−
(z − σφ f + δσn(x0))2

2(φ f + δ)2σ2n(x0)

)
. (A.7)

This provides a bound on our first term (A.5).
We now bound the second term (A.6). For this term the process f (X(λ)σn) has hit below level κ, so there must be an

excursion from level κ to level z + f (x0). There are at most n(x0) such excursions that can occur from below z + f (x0). We
can apply the Azuma–Hoeffding inequality to each excursion. A simple union bound on these excursions then gives an
upper bound that is, for our purposes, sufficiently tight.

We let n0 be a time for which κ < f (X(λ)σn0) ≤ κ + σφ f . We remark that this condition is satisfied immediately after the
process leaves the set of states {x: |x | ≤ κ}. Again let nκ be the first time after n0 for which {x: |x | ≤ κ} holds.

Now consider the process
M̂n � f (X(λ)

σ(n∧nκ)
) − f (X(λ)σn0), n ≥ 0,

which, again by (A.3), is a supermartingale.
The process M̂ follows an excursion of f (X(λ)σn) from when it hits above κ to when it hits below again. Further, let M̂∗

n be
the maximum achieved by the process M̂ by time n, that is

M̂∗
n � max

k≤n
{M̂k}.

Notice that for the event in (A.6) to hold there must be an excursion of M̂∗ from just above κ to above z − σφ f + f (x0). We
can bound this probability using the Azuma–Hoeffding inequality as follows:

� x0
(M̂∗

n(x0) ≥ z − σφ f + f (x0) − κ) ≤ exp
(
−
(z − σφ f + f (x0) − κ)2

2φ2
f σ

2n(x0)

)
.

Further, there are at most n(x0) possible excursions of this type. Thus we arrive at the bound

� x0
(f (X(λ)

σn(x0)
) − f (x0) ≥ z − κ− σφ f , nκ > n(x0)) ≤ n(x0)� x0

(M̂∗
n(x0) ≥ z − σφ f + f (x0) − κ)

≤ n(x0)exp
(
−
(z − σφ f + f (x0) − κ)2

2φ2
f σ

2n(x0)

)
. (A.8)

Combining the bounds (A.7) and (A.8), we find the claimed inequality. �

References
Andrews M, Zhang L (2003) Achieving stability in networks of input-queued switches. Networking, IEEE/ACM Trans. 11(5):848–857.
Baccelli F, Bonald T (1999) Window flow control in FIFO networks with cross traffic. Queueing Systems 32(1):195–231.
Baskett F, Chandy KM, Muntz RR, Palacios FG (1975) Open, closed, and mixed networks of queues with different classes of customers.

J. ACM 22(2):248–260.
Bordenave C, McDonald D, Proutière A (2012) Asymptotic stability region of slotted ALOHA. Inform. Theory, IEEE Trans. 58(9):5841–5855.
Bramson M (1994) Instability of FIFO queueing networks. Ann. Appl. Probab. 4(2):414–431.
Bramson M (2008) Stability of Queueing Networks (Springer, New York).

Mandjes et al.: Detecting Markov Chain Instability
314 Stochastic Systems, 2017, vol. 7, no. 2, pp. 289–314, ©2017 The Author(s)

Dai J (1995) On positive Harris recurrence of multiclass queueing networks: A unified approach via fluid limit models. Ann. Appl. Probab.
5(1):49–77.

Ghaderi J, Borst S, Whiting P (2014) Queue-based random-access algorithms: Fluid limits and stability issues. Stochastic Systems 4(1):81–156.
Hairer M (2010) Convergence of Markov processes. Lecture Notes, http://www.hairer.org/notes/Convergence.pdf.
Jackson JR (1963) Jobshop-like queueing systems. Management Sci. 10(1):131–142.
Kelly FP (1975) Networks of queues with customers of different types. J. Appl. Probab. 12(3):542–554.
Kelly FP (1979) Reversibility and Stochastic Networks (John Wiley & Sons, Chichester, UK).
Kirkpatrick S, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680.
Kumar PR, Seidman TI (1990) Dynamic instabilities and stabilization methods in distributed real-time scheduling of manufacturing systems.

Automatic Control, IEEE Trans. 35(3):289–298.
Leahu H, Mandjes M (2016) A numerical approach to stability of multiclass queueing networks. Preprint arXiv:1606.07294.
Lu SH, Kumar PR (1991) Distributed scheduling based on due dates and buffer priorities. Automatic Control, IEEE Trans. 36(12):1406–1416.
MacPhee I, Menshikov M, Petritis D, Popov S (2007) A Markov chain model of a polling system with parameter regeneration. Ann. Appl.

Probab. 17(5/6):1447–1473.
McKeown N, Mekkittikul A, Anantharam V, Walrand J (1999) Achieving 100% throughput in an input-queued switch. Commun., IEEE Trans.

47(8):1260–1267.
Meyn S, Tweedie R (2012) Markov Chains and Stochastic Stability. Communications and Control Engineering (Springer, London).
Nazarathy Y, Taimre T, Asanjarani A, Kuhn J, Patch B, Vuorinen A (2015) The challenge of stabilizing control for queueing systems with

unobservable server states. Proc. 5th Australian Control Conf., AUCC ’15 (IEEE, Piscataway, NJ), 342–347.
Rybko A, Stolyar AL (1993) Ergodicity of stochastic processes describing the operation of open queueing networks. Problemy Peredachi

Informatsii 28(3):3–26.
Tassiulas L, Ephremides A (1992) Stability properties of constrained queueing systems and scheduling policies for maximum throughput

in multihop radio networks. Automatic Control, IEEE Trans. 37(12):1936–1948.
Tassiulas L, Ephremides A (1993) Dynamic server allocation to parallel queues with randomly varying connectivity. Inform. Theory, IEEE

Trans. 39(2):466–478.
Wieland JR, Pasupathy R, Schmeiser BW (2003) Queueing network simulation analysis: queueing-network stability: Simulation-based check-

ing. Chick SE, Sanchez PJ, Ferrin DM, Morrice DJ, eds. Proc. 35th Winter Simulation Conf.: Driving Innovation, WSC ’03 (ACM, New York),
520–527.

Williams D (1991) Probability with Martingales (Cambridge University Press, Cambridge, UK).

http://www.hairer.org/notes/Convergence.pdf

	Introduction
	Framework
	Implementation and Main Results
	Algorithm
	Main Results
	A Test for Instability

	Proofs
	Stable Parameter Set
	Proof of Theorem 3.5 for the Global Search Algorithm
	Proof of Theorem 3.5 for the Local Search Algorithm

	Examples
	Parallel Queues with Randomly Varying Connectivity
	Tandem Queues
	Rybko–Stolyar Queueing Network
	A Switch Network
	A Broken Diamond Random Access Network

	Concluding Remarks
	Appendix A. Lemmas

