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Abstract. We consider a stochastic model for a blood bank, in which amounts of blood
are offered and demanded according to independent compound Poisson processes.
Blood is perishable, i.e., blood can only be kept in storage for a limited amount of time.
Furthermore, demand for blood is impatient, i.e., a demand for blood may be canceled
if it cannot be satisfied soon enough. For a range of perishability functions and demand
impatience functions, we derive the steady-state distributions of the amount of blood
kept in storage, and of the amount of demand for blood (at any point in time, at most
one of these quantities is positive). Under certain conditions we also obtain the fluid and
diffusion limits of the blood inventory process, showing in particular that the diffusion
limit process is an Ornstein-Uhlenbeck process.
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1. Introduction
This paper is devoted to the study of a stochastic blood bank model in which amounts of blood are offered
and demanded according to stochastic processes, and in which blood is perishable (i.e., blood can only be kept
for a limited amount of time) and demand for blood is impatient (i.e., a demand for blood may be canceled if
it cannot be satisfied soon enough). Let us first provide some background, and subsequently sketch the blood
bank model in some more detail.
One of the major issues in securing blood supply to patients worldwide is to provide blood of the best

achievable quality, in the needed quantities. In most countries blood, which is collected as whole blood units
from human donors, is separated into different components which are subsequently stored under different
storage conditions according to their biological characteristics, functions and respective expiration dates. Blood
units and components are ordered by local hospital blood banks (LBB) from the Central Blood Bank (CBB)
respectively according to their operational needs. The CBB has to run its inventory and supply according to
these requests and to the need to keep sufficient stock for immediate release in emergency situations. It also
has to perform tests to determine the unit’s blood type and to detect the presence of various pathogens which
are able to cause transfusion-transmitted diseases, such as Hepatitis B (HBV), Hepatitis C (HCV), Human
Immunodeficiency Virus (HIV) and Syphilis; see, e.g., Steiner et al. (2010).

Blood consists of several components: Red Blood Cells (RBC), plasma and platelets. In addition there are 8
blood groups (types): O+, O−, A+, A−, B+, B−, AB+, AB− (− means Rh negative) where the interrelationship
between the transfusion issuing policies among the 8 types is quite intricate. It turns out that each of the
negative types can satisfy the corresponding + type, but not vice versa. Blood components are perishable as
RBC can be used for only 35 to 42 days and platelets for only 5 days (plasma, however, can be frozen and
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kept for one year). Accordingly, if RBC and particularly platelets are not used for blood transfusion within their
expiration dates then they perish.
In most developed countries demand requirements of about 50,000 blood donations are needed per one

million persons per year. About 95% of these donations are aggregated by CBB’s and the remaining 5% by
LBB’s. Blood units stored at the CBB are usually ordered by LBB’s for planned elective surgeries. However, as
it happens rather frequently, elective surgeries turn out to become emergency ones due to various conditions
of the patient involved. In such cases, hospitals use their own local blood banks to supply the demand, and
they cancel the required demand from the CBB; this is what we refer to as demand impatience. A good review
on supply chain management of blood products appears in Beliën and Forcé (2012) and the references cited
therein. Other relevant studies are Ghandforoush and Sen (2010) and Stanger et al. (2012).

In this paper we consider the analysis of blood perishability and demand impatience, concentrating on only
one blood type. We do this by considering the stochastic inventory processes {Xb(t), t ≥ 0}, with Xb(t) the
amount of blood kept in storage at time t, and {Xd(t), t ≥ 0}, with Xd(t) the amount of demand for blood (the
shortage) at time t. If Xb(t) > 0 then Xd(t)� 0, and if Xd(t) > 0 then Xb(t)� 0. We assume that amounts of blood
arrive according to a Poisson process, and that requests for blood arrive according to another, independent,
Poisson process. The delivered and requested amounts of blood are assumed to be random variables. We
represent the perishability of blood by letting the amount of blood, when positive, decrease in a state-dependent
way: if the amount is v, then the decrement rate is ξb v + αb . The ξb factor is motivated by the fact that a large
amount of blood suggests that some of the blood has been present for quite a while—and hence there is a
relatively high perishability rate when much blood is in inventory. The αb factor provides additional modeling
flexibility. One can in this way represent the blood perishability more accurately; but the αb term could also,
e.g., represent a fluid demand rate of individuals or organizations, which contact the CBB directly, and that
is only satisfied when there is inventory. Similarly, we represent the demand impatience by a decrement rate
ξd v + αd . The ξd factor is motivated by the following fact. When there is a large shortage (demand) of blood,
there are probably many patients waiting for blood, so many patients that might become impatient (i.e., they
could recover, or die, or become in need of emergency surgery) leading to a cancellation of the required demand
from the CBB. Again, the αd factor provides additional modeling flexibility; it not only allows us to represent
demand impatience more accurately, but it could also, e.g., represent additional donations of individuals in
times of blood shortage. To keep things simple, in the remainder of the paper, we shall refer to the ξb v + αb

term as the blood perishability rate, and to the ξd v + αd term as the demand impatience rate.
The inclusion of both the perishability factor ξb v + αb and the demand impatience factor ξd v + αd makes

the analysis of the ensuing model mathematically quite challenging, but leads to a very general model that
contains many well-known models as special cases. Our two-sided stochastic process, with both jumps upward
and jumps downward, and with the rather general slope factors ξv + α, could represent a quite large class of
stochastic phenomena. It should for example be noted that this model is a two-sided generalization of the well-
known shot-noise model that describes certain physical phenomena (cf. Keilson and Mermin 1959). In some of
our calculations we remove either the ξ factors or the α factors, and this results in easier calculations and more
explicit results.
Our main results are: (i) Determination of the steady-state distributions of the amounts of blood and of

demand in inventory; in particular, we present a detailed analysis of the case in which the delivered and
requested amounts of blood are both exponentially distributed. (ii) Expressions for mean amounts of blood
and demand in storage, and for the probability of not being able to satisfy demand. (iii) We obtain the fluid
and diffusion limits of the blood inventory process, showing in particular that the diffusion limit process is an
Ornstein-Uhlenbeck process.

The paper is organized as follows: Section 2 presents a detailed model description. A global analysis of the
densities of demand and of blood amount in storage is contained in Section 3. A detailed analysis of the case of
exponentially distributed delivered and requested blood amounts, when αb � αd � 0 (i.e., pure proportionality)
is provided in Section 4. In Section 5 we treat the case of Coxian distributed delivered and requested blood
amounts, using a Laplace transform approach. Section 6 is devoted to the case ξb � ξd �0. The fluid and diffusion
scalings are discussed in Section 7, and in Section 8 we present numerical results for certain performance
measures like mean net amount of blood and the probability that there is a shortage of blood. These results
indicate, a.o., that the probability that there is a shortage of blood can be accurately approximated via a Normal
approximation, based on the Ornstein-Uhlenbeck process appearance in the diffusion scaling. Section 9 contains
some conclusions and suggestions for further research.
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Figure 1. Sample path of net amount of blood available as a function of time.
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2. Model Description
We consider the following highly simplified model of a blood bank, restricting ourselves to only one type of
blood.
Blood amounts arrive according to a Poisson process with rate λb . The amounts which successively arrive are

independent, identically distributed random variables B1 ,B2 , . . . with distribution Fb( · ); F̄b(x)� 1− Fb(x).
Demands for blood arrive according to a Poisson process with rate λd . The successive demand amounts are

independent, identically distributed random variables D1 ,D2 , . . . with distribution Fd( · ); F̄d(x) � 1 − Fd(x). We
view these amounts as continuous quantities, measured in, e.g., liters.
If there is enough blood to meet demand, then that demand is immediately satisfied. If there is some blood,

but not enough to fully satisfy a demand, then that demand is partially satisfied, using all the available blood;
the remainder of the demand may be satisfied later.

Blood has a finite expiration date. We make the assumption that if the total amount of blood present is x > 0,
then blood is discarded—because of its finite expiration date—at a rate ξb x + αb , so linear in x.

Blood demands have a finite patience. We make the assumption that if the total amount of demand present
is x > 0, then demand disappears—because of its finite patience—at a rate ξd x + αd , so linear in x. This state-
dependent decrement rate results in decay of Xb(t) and Xd(t) that is exponential in time in between arrivals of
blood or demand.
Notice that either the total amount of blood present, or the total amount of demands, is zero, or both are

zero; they cannot be both positive. Hence we can easily in one figure depict the two-sided process {X(t),
t ≥ 0}� {(Xb(t),Xd(t)), t ≥ 0} of total blood and total demand amounts present at any time t, as we have done in
Figure 1, which moreover illustrates the exponential decay of demand (cq. blood) over time. For our purposes,
we are mainly interested in the characteristics of the process described above in stationarity. Let us denote
by Xd the steady-state total amount of demand and by Xb the steady-state total amount of blood present, with
corresponding density functions f ( · ) and g( · ), respectively. Notice that these are defective densities; we have
∫∞0+ f (v)dv � πd � � (demand > 0) and ∫∞0+ g(v)dv � πb � � (blood > 0). If αb � αd � 0, then neither Xb nor Xd has
probability mass at zero, and πb + πd � 1 (when there is only a very small amount x present, the “decay” rate
ξb x or ξd x is very small). However, if αb and/or αd is positive, then there is a positive probability π0 of being
in 0.

When ξd and ξb are positive, existence of these steady-state densities is obvious; otherwise, the conditions
for the existence of the steady-state distributions require some discussion, cf. Section 6.

3. Analysis of the Densities of Demand and of Blood Amount
In this section we present a global approach towards determining f ( · ) and g( · ) in the most general form of our
model. Using the Level Crossing Technique (LCT), we derive two integral equations in f ( · ) and g( · ). Before
attempting to solve these equations, we consider a few important performance measures which can be expressed
in f ( · ) and g( · ), viz., π0 and the mean length of time during which, uninterruptedly, there is a positive amount
of blood (respectively demand). The latter could be viewed as the busy period of the Xb process (respectively
of the Xd process).
First, we consider the density g( · ) of the amount of blood. We equate the rate at which some positive blood

level v is upcrossed and downcrossed, respectively. LCT leads to the following integral equation: for v > 0,

λb

∫ v

0
g(y)F̄b(v − y)dy + λb

∫ ∞

0
f (y)F̄b(v + y)dy + πoλb F̄b(v)� λd

∫ ∞

v
g(y)F̄d(y − v)dy + (ξb v + αb)g(v). (1)
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Here the three terms in the lefthand side represent the rate of crossing level v from below; the first term
corresponds to a jump from a blood inventory level between 0 and v, whereas the second term corresponds
to a jump from a shortage level, and the third term corresponds to a jump from level 0. The two terms in the
righthand side represent the rate of crossing level v from above; the first term corresponds to a jump from
above v, and the second term to a smooth crossing.

Next we consider the density f ( · ) of the amount of demand (shortage). We equate the rate at which some pos-
itive demand level v is upcrossed and downcrossed, respectively. LCT leads to the following integral equation:
for v > 0,

λd

∫ v

0
f (y)F̄d(v − y)dy + λd

∫ ∞

0
g(y)F̄d(v + y)dy + π0λd F̄d(v)� λb

∫ ∞

v
f (y)F̄b(y − v)dy + (ξd v + αd) f (v). (2)

It should be noted that these two, coupled, equations are symmetric (swap f and g, and the b and d parameters).
In general, it appears to be very difficult to solve these integral equations. In Section 4 we assume that

both Fb( · ) and Fd( · ) are exponential. In that case we are able to obtain explicit expressions of f ( · ) and g( · ), in
terms of hypergeometric functions. In Section 5 we consider the case that Fb( · ) and Fd( · ) are Coxian distribu-
tions, a class of distributions that lies dense in the class of all distributions of non-negative random variables,
and that is suitable for handling the above coupled integral equations via Laplace transforms (LT). We are able
to transform (1) and (2) into inhomogeneous first-order differential equations in the LT’s of f ( · ) and g( · ), and
thus to obtain those LT’s.

3.1. A Few Simple Performance Measures
Without solving (1)–(2) explicitly, we are able to deduce some characteristics of the steady-state inventory level.
In Proposition 1, we relate π0 to the densities f ( · ) and g( · ). Subsequently we express the mean length of

time during which there is, uninterruptedly, a positive amount of blood present (we call this the non-emptiness
period of the inventory system), into f ( · ), g( · ) and π0. We do the same for the mean length of time during
which there is, uninterruptedly, a positive demand, i.e., the non-emptiness period of the demand process, see
Proposition 2.
Proposition 1. Let π0 be the steady-state atom probability of the zero period. Then

π0 �
αd f (0)+ αb g(0)

λd + λb
.

Proof. Substitute υ � 0 in (1) and (2) and take the sum. The result is obtained after several steps of elementary
algebra. �

The result introduced in the proposition above is very intuitive. By LCT, αd f (0)+ αb g(0) is the rate at which
level 0 is reached (i.e., the process will now really stay at 0 for a while), so that [αd f (0)+αb g(0)]−1 is the expected
length of time between two successive times level 0 is reached by the fluid. More precisely, the (zero periods,
non-zero periods) generate an alternating renewal process whose expected cycle length is [αd f (0)+αb g(0)]−1. The
expected length of the zero period is [λd + λb]−1, since the end of the zero period is terminated at the moment
of the next jump. But the jump process is a Poisson process with rate λd +λb . Now the renewal reward theorem
simply says that

π0 �
Ɛ[zero period]

Ɛ[cycle] .

In preparation of the next proposition, for the process X � {X(t): t ≥ 0} we define a modified process Xm �

{Xm(t): t ≥ 0} where Xm is constructed by deleting the zero periods (only the zero periods, not the emptiness peri-
ods) from X and gluing together the non-zero periods. The modified process is Xm such that Xm(t)�Xd(t)1{Xd (t)>0}+
Xb(t)1{Xb (t)>0} where by definition of the model {Xd(t) > 0}⇒ {Xb(t)� 0} and {Xb(t) > 0}⇒ {Xd(t)� 0}.
Proposition 2. Let Bb and Ib be the generic non-emptiness period and the emptiness period, respectively, of the inventory
system. Similarly, let Bd and Id be the generic non-emptiness period and the emptiness period, respectively, of the demand
process. Then

(i)


Ɛ[Bb]�

1− π0

αb g(0)+ λd

∫ ∞
0 F̄d(y)g(y)dy

,

Ɛ[Bd]�
1− π0

αd f (0)+ λb

∫ ∞
0 F̄b(y) f (y)dy

and (ii)


Ɛ[Ib]�

1
λb

∫ ∞
0 F̄b(y) f (y) dy + λbπ0

− Ɛ[Bb],

Ɛ[Id]�
1

λd

∫ ∞
0 F̄d(y)g(y)dy + λdπ0

− Ɛ[Bd].
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Proof. (i) Consider the non-emptiness period of the inventory system. The steady state densities of the inventory
system and the demand process of Xm are given by

gm(x)�
g(x)

1− π0
, fm(x)�

f (x)
1− π0

,

respectively. At the end of the non-emptiness period of the inventory system there are two disjoint ways (disjoint
events) to downcross level 0+. Either level 0 is downcrossed by a negative jump or level 0+ is reached by the fluid
reduction (both in Xm). The rate of the first event is λd ∫∞0 F̄d(y)gm(y) dy and by LCT the rate of the second event
is αb gm(0). Since the events are disjoint, the rate of downcrossings of level 0+ is λd ∫∞0 F̄d(y)gm(y) dy + αb gm(0).
That means that the expected length of the non-emptiness period is given by [λd ∫∞0 F̄d(y)gm(y) dy + αb gm(0)]−1.
Thus

Ɛ[Bb]�
1− π0

αb g(0)+ λd

∫ ∞
0 F̄d(y)g(y) dy

.

Ɛ[Bd] is obtained by symmetry.
(ii) Define a cycle in the real process X (not the modified process Xm) as the time between two upcrossings of

level 0+. By definition, the emptiness period plus the non-emptiness period is a cycle in X. That means that the
expected length of the emptiness period is the expected length of the cycle minus the expected length of the
non-emptiness period. The non-emptiness period in X and in Xm are identical and the length of the expected
cycle is [λb ∫∞0 F̄b(y) f (y) dy + λbπ0]−1, since λb ∫∞0 F̄b(y) f (y) dy + λbπ0 is the rate of the upcrossings of level 0+.
We obtain

Ɛ[Ib]+ Ɛ[Bb]�
1

λb

∫ ∞
0 F̄b(y) f (y) dy + λbπ0

,

yielding Ɛ[Ib]. Ɛ[Id] is obtained by symmetry. �
For the special case in which ξb � ξd � ξ and αb � αd � 0, we are able to deduce that the expected steady-state

inventory level Ɛ[X] has a simple form.
Proposition 3. If ξb � ξd � ξ and αb � αd � 0, then

Ɛ[X]� m/ξ, (3)
where m � λbƐ[B] − λdƐ[D].
Proof. We study the discrete-time embedding of the blood inventory process {Xk , k ≥ 1}, where Xk denotes the
blood inventory level just before the kth arrival (either blood or demand). Suppose the process is in steady state.
By the PASTA property, we have that Xk

d
�X for all k ≥ 1. Also, the process {Xk , k ≥ 1} constitutes a Markov

chain, of which the evolution is characterized by the recursion
Xk+1 � (Xk + �k , bBk − �k , dDk) · e−ξAk , (4)

where �k , b and �k , d denote the indicator function of the event that the kth arrival is a blood or demand arrival,
respectively. Remark that the relation holds for both Xk ≥ 0 and Xk < 0. Furthermore, Bk and Dk denote the
amount of blood or demand in the kth jump, respectively, and Ak denotes the interarrival time between the kth
and (k + 1)th arrival. Note that Ak is the minimum of two exponentially distributed random variables with
rate λb and λd , so that Ak is exponentially distributed with rate λb + λd . Next, we take the expectation on both
sides of (4), which gives

Ɛ[Xk+1]�
(
Ɛ[Xk]+

λb

λb + λd
Ɛ[B] − λd

λb + λd
Ɛ[D]

)
Ɛ[e−ξAk ]. (5)

Here, we used independence between Poisson processes and their jump sizes and their memoryless property.
Since Xk

d
�X, we have Ɛ[Xk+1]� Ɛ[Xk]� Ɛ[X], and thus we may rewrite (5) as

Ɛ[X]�
(
Ɛ[X]+ λbƐ[B] − λdƐ[D]

λb + λd

)
· λb + λd

λb + λd + ξ
, (6)

from which we easily deduce Ɛ[X]� (λbƐ[B] − λdƐ[D])/ξ � m/ξ. �

4. The Exponential Case
4.1. Density Functions
We assume in this section that F̄b(x)� e−µb x and F̄d(x)� e−µd x . Let ρd :�λd/µd and ρb :�λb/µb denote the expected
amount of demand requested, and amount of blood delivered into the system, per time unit. Moreover, we take
αb � αd � 0. Under these assumptions, we can solve (2) and (1) explicitly.



Bar-Lev et al.: A Blood Bank Model
242 Stochastic Systems, 2017, vol. 7, no. 2, pp. 237–262, ©2017 The Author(s)

Equations (2) and (1) reduce to:

λd

∫ v

0
f (y)e−µd (v−y) dy + λde−µd v

∫ ∞

0
g(y)e−µd y dy � λb

∫ ∞

v
f (y)e−µb (y−v) dy + ξd v f (v), v > 0; (7)

λb

∫ v

0
g(y)e−µb (v−y) dy + λbe−µb v

∫ ∞

0
f (y)e−µb y dy � λd

∫ ∞

v
g(y)e−µd (y−v) dy + ξb v g(v), v > 0. (8)

In our analysis, we concentrate on the derivation of f (v). Notice that, once f ( · ) has been determined, g( · )
follows by swapping parameters (symmetry).
In Appendix A we show how the integral equations (7)–(8) can be translated into the following decoupled

second order differential equations:

ξd v f ′′(v)+ (2ξd −λd −λb +µdξd v−µbξd v) f ′(v)+ (µdξd −µbξd −µdλb +µbλd −µbµdξd v) f (v)�0, and (9)
ξb v g′′(v)+ (2ξb −λd −λb +µbξb v−µdξb v)g′(v)+ (µbξb −µdξb −µbλd +µdλb −µdµbξb v)g(v)�0, (10)

with the additional constraint (obtained by applying the level crossing identity for level v � 0 in either (7) or (8)):

λb

∫ ∞

0
f (y)e−µb y dy � λd

∫ ∞

0
g(y)e−µd y dy. (11)

Equation (9) describes a known type of second order differential equation, namely the Extended Confluent
Hypergeometric Equation (Slater 1960), which allows an explicit solution. A detailed deduction of the solution
to (9) is given in Appendix B, and yields the following result.

Proposition 4. The probability density functions of the amount of demand Xd and the amount of blood present Xb are
given by

f (v)� πd
Γ(1+ λb/ξd)
Γ((λb + λd)/ξd)

e−µd v

2F1(1− λd/ξd , 1, 1+ λb/ξd ,−µb/µd)
U

(
1− λd

ξd
, 2− λb + λd

ξd
, (µb + µd)v

)
, (12)

g(v)� πb
Γ(1+ λd/ξb)
Γ((λb + λd)/ξb)

e−µb v

2F1(1− λb/ξb , 1, 1+ λd/ξb ,−µd/µb)
U

(
1− λb

ξb
, 2− λb + λd

ξb
, (µb + µd)v

)
, (13)

for v > 0, respectively.

Here, Γ( · ) denotes the gamma function, 2F1(a , b , c , z) is the Gaussian hypergeometric function, defined as

2F1(a , b , c , z)�
∞∑

n�0

(a)n(b)n
(c)n n!

zn (14)

and U(a , b , z) is Tricomi’s confluent hypergeometric function, see Slater (1960)

U(a , b , x)� Γ(b − 1)
Γ(1+ a − b)

∞∑
n�0

(a)n
(b)n n!

xn
+
Γ(b − 1)
Γ(a) x1−b

∞∑
n�0

(1+ a − b)n
(2− b)n n!

xn , (15)

in which (a)n is the Pochhammer symbol, defined as (a)n � a · (a + 1) . . . (a + n − 1). As a direct consequence
of Proposition 4, we obtain expressions for the LTs φ(s) � ∫∞0 e−sv f (v)dv and γ(s) � ∫∞0 e−sv g(v)dv, for <s ≥ 0,
through Slater (1960, Eq. (3.2.51)), which we state here for future use.

Corollary 1. The Laplace transforms for Xd and Xb for <s ≥ 0 are given by

φ(s)� πd
µd

µd + s
2F1(1− λd/ξd , 1, 1+ λb/ξd , (s − µb)/(s + µd))

2F1(1− λd/ξd , 1, 1+ λb/ξd ,−µb/µd)
, (16)

γ(s)� πb
µb

µb + s
2F1(1− λb/ξb , 1, 1+ λd/ξb , (s − µd)/(s + µb))

2F1(1− λb/ξb , 1, 1+ λd/ξb ,−µd/µb)
, (17)

respectively.

Last, we obtain expressions for πd and πb .
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Corollary 2. The probability of positive (cq. negative) inventory is given by,

πb �
ρb 2F1(1− λb/ξb , 1, 1+ λd/ξb ,−µd/µb)

ρd 2F1(1− λd/ξd , 1, 1+ λb/ξd ,−µb/µd)+ ρb 2F1(1− λb/ξb , 1, 1+ λd/ξb ,−µd/µb)
, (18)

πd �
ρd 2F1(1− λd/ξd , 1, 1+ λb/ξd ,−µb/µd)

ρd 2F1(1− λd/ξd , 1, 1+ λb/ξd ,−µb/µd)+ ρb 2F1(1− λb/ξb , 1, 1+ λd/ξb ,−µd/µb)
, (19)

respectively.

Proof. First, we use (11), or equivalently, λbφ(µb)� λdγ(µd). By filling in s � µb in (16),

πd
λbµd

µb + µd
2F1

(
1− λd

ξd
, 1, 1+

λb

ξd
,−
µb

µd

)−1

� πb
λdµb

µb + µd
2F1

(
1− λb

ξb
, 1, 1+

λd

ξb
,−
µd

µb

)−1

, (20)

where we used that 2F1(a , b , c , 0)� 1. Using the normalization equation, the result readily follows. �

Finally, by substituting these expressions into both (12) and (16), we obtain the full pdf for the blood inventory
process in steady-state.

Theorem 5. The steady-state pdf of the net inventory level X is given by

h(v)�
{

f (−v), if v < 0,
g(v), if v ≥ 0,

(21)

where

f (v)� C̄−1 Γ(1+ λb/ξd)
Γ((λb + λd)/ξd)

ρd e−µd vU
(
1− λd

ξd
, 2− λb + λd

ξd
, (µb + µd)v

)
, (22)

g(v)� C̄−1 Γ(1+ λd/ξb)
Γ((λb + λd)/ξb)

ρb e−µb vU
(
1− λb

ξb
, 2− λb + λd

ξb
, (µb + µd)v

)
, (23)

with
C̄ � ρd 2F1

(
1− λd

ξd
, 1, 1+

λb

ξd
,−
µb

µd

)
+ ρb 2F1

(
1− λb

ξb
, 1, 1+

λd

ξb
,−
µd

µb

)
. (24)

Remark 1. By applying the Pfaff transformation 2F1(a , b , c , z) � (1 − z)−b
2F1(c − a , b , c , z/(1 − z)), we may refor-

mulate

2F1

(
1− λd

ξd
, 1, 1+

λb

ξd
,−
µb

µd

)
�

µd

µb + µd
2F1

(
λb + λd

ξd
, 1,

λb

ξd
,

µb

µb + µd

)
, (25)

so that

πd �
λd 2F1((λb + λd)/ξd , 1, λb/ξd , µb/(µb + µd))

λd 2F1((λb + λd)/ξd , 1, λb/ξd , µb/(µb + µd))+ λb 2F1((λb + λd)/ξb , 1, λd/ξb , µd/(µb + µd))
. (26)

By also transforming the hypergeometric term in the numerator of (12), we get an equivalent form of (22),
namely

f (v)� C̄−1
alt
Γ(1+ λb/ξd)
Γ((λb + λd)/ξd)

λbµb(µb + µd)
µd

e−µd vU
(
1− λd

ξd
, 2− λb + λd

ξd
, (µb + µd)v

)
, (27)

with
C̄alt � λd 2F1

(
λb + λd

ξd
, 1,

λb

ξd
,

µb

µb + µd

)
+ λb 2F1

(
λb + λd

ξb
, 1,

λd

ξb
,

µd

µb + µd

)
. (28)

As a consequence, (16) is given by

φ(s)� πd
2F1((λb + λd)/ξd , 1, λb/ξd , (µb − s)/(µb + µd))

2F1((λb + λd)/ξd , 1, λb/ξd , µb/(µb + µd))
� C̄−1

altλd 2F1

(
λb + λd

ξd
, 1,

λb

ξd
,
µb − s
µb + µd

)
. (29)

By close inspection of the derived density functions, we can observe the following on the distribution shape
around z � 0. The confluent hypergeometric function U(a , b , z) has limiting form as z→ 0,

U(a , b , z)� Γ(1− b)
Γ(a − b + 1) +

Γ(b − 1)
Γ(a) z1−b

+O(z2−b), b ≤ 2, (30)
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see Olver et al. (2010, Subsec. 13.2). Note that in our model, b � 2− (λb + λd)/ξd < 2 for all parameter settings.
Equation (30) shows that U(a , b , z) has a singularity at z � 0 if Re(b) > 1, which in our case translates to f (v)
and g(v) being analytic at v � 0 if λb + λd > ξd and λb + λd > ξb , respectively. Assuming λb + λd >max{ξb , ξd},
(30) also implies that

lim
v→0

f (v)� C̄−1 Γ(1+ λb/ξd)
Γ((λb + λd)/ξd)

λdµb ·
Γ((λb + λd)/ξd − 1)

Γ(λb/ξd)
� C̄−1 λb/ξd

(λb + λd)/ξd − 1
λdµb � C̄−1 λbλdµb

λb + λd − ξd
. (31)

Similarly,

lim
v→0

g(v)� C̄−1 λbλdµd

λb + λd − ξb
. (32)

The asymptotic behavior of U as z→∞ is given by Slater (1960, p. 60),

U(a , b , z) ∼ z−a , z→∞, (33)

which implies that the density function tail decays as

f (v) ∼ C∗ e−µd v vλd/ξd−1 , v→∞, (34)

for some constant C∗.

4.2. Special Cases
Based on the density functions in Theorem 5, we make some comments on their properties, and discuss param-
eter settings that lead to special cases.
Equation (34) suggests that the case λd � ξd is special. Indeed, then (16) reduces to

φ(s)� C̄−1λdµb
µd

µd + s
� πd

µd

µd + s
, (35)

where we used that 2F1(0, a , b , z)� 1 for all a, b, z. Hence, conditioned on being positive, the amount of demand
present is exponentially distributed with parameter µd , regardless of the values of λd � ξd , as well as λb , ξb ,
and µb . If we moreover let λb � ξb , then

πd �
λd/µd

λb/µb + λd/µd
�

ρd

ρb + ρd
,

and X has exponential distribution both above and below 0, with parameters µb and µd , respectively.
A second special case arises when the process is symmetric, that is, λb � λd � λ, µb � µd � µ and ξb � ξd � ξ.

Obviously, we get πb � πd �
1
2 due to the symmetry. If we define η :� λ/ξ,

f (v)�
Γ(1+ η)µe−µvU(1− η, 2(1− η), 2µv)

2Γ(2η)2F1(2η, 1, 1+ η, 1/2)
�

Γ(1+ η)
2Γ(2η)2F1(2η, 1, 1+ η, 1/2)

µ

2
√
π
(2µv)η−1/2K1/2−η(µv), (36)

where Kα( · ) is the modified Bessel function of the second kind, see Olver et al. (2010, Eq. (13.6.10)).

4.3. Performance Measures
Based on Theorem 5, we can directly derive a couple of characteristics of the process. First, we consider the
mean inventory level.

Corollary 3. The expected amount of demand (blood) present, given that it is positive equals

Ɛ[Xd | Xd > 0]� 1
ξd

[
ρd − ρb + ρb 2F1

(
1− λd

ξd
, 1, 1+

λb

ξd
,−
µb

µd

)−1]
, (37)

Ɛ[Xb | Xb > 0]� 1
ξb

[
ρb − ρd + ρd 2F1

(
1− λb

ξb
, 1, 1+

λd

ξb
,−
µd

µb

)−1]
. (38)

Accordingly, the expected net amount of blood present equals

Ɛ[X]� (ρb − ρd)
(
πb

ξb
+
πd

ξd

)
+
λbλd

C̄

(
1
ξb
− 1
ξd

)
. (39)
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Proof. We derive the expression in (37) through differentiation of (16). Let us use shorthand notation

F(s)�
(
1− λd

ξd
, 1, 1+

λb

ξd
,

s − µb

s + µd

)
,

so that
φ(s)� πd

µb

µb + s
F(s)
F(0) .

Through Olver et al. (2010, (15.5.20)),

d
dz 2F1(a , 1, c , z)�

c − 1
z(1− z) +

1− c + az
z(1− z) 2F1(a , 1, c , z), (40)

where we also used that 2F1(a , 1, c , z)� 1. Then,

φ′(0)
πd

�

[ −µd

(µd + s)2
F(s)
F(0) +

µd

µd + s
F′(s)
F(0)

]
s�0

�− 1
µd

+
F′(0)
F(0) .

By (40), we find

F′(s)�
(

λb/ξd

(s − µb)/(s + µd) · (µb + µd)/(s + µd)
+
−λb/ξd + (1− λd/ξd)(s − µb)/(s + µd)
(s − µb)/(s + µd) · (µb + µd)/(s + µd)

F(s)
)
d
ds

[
s − µb

s + µd

]
�

(
λb

ξd
+

[
−λb

ξd
+

(
1− λd

ξd

)
s − µb

s + µd

]
F(s)

) (s + µd)2
(s − µb)(µb + µd)

·
µb + µd

(s + µd)2

�

(
λb

ξd
+

[
−λb

ξd
+

(
1− λd

ξd

)
s − µb

s + µd

]
F(s)

)
1

s − µb
,

so that

F′(0)�−
λd/µb

ξd
+

(
λd/µb

ξd
+

1
µd
−
λd/µd

ξd

)
F(0)�−

ρb

ξd
+

(
ρb − ρd

ξd
+

1
µd

)
F(0).

Hence, we find

Ɛ[Xd | Xd > 0]�−
φ′(0)
πd

�
1
µd
− 1

F(0)

[
−
ρb

ξd
+

(
ρb − ρd

ξb
+

1
µd

)
F(0)

]
�

1
ξd
(ρd − ρb + ρb/F(0))�

1
ξd
(−m + ρb/F(0)),

which equals (37). The expression for (38) follows by symmetry. Furthermore,

Ɛ[X]� πbƐ[Xb | Xb > 0]+ πdƐ[−Xd | Xd > 0]

� m
[
πb

ξb
+
πd

ξd

]
+

λd

µdξb

πb

2F1(1− λb/ξb , 1, 1+ λd/ξb ,−µd/µb)
− λb

µbξd

πd

2F1(1− λd/ξd , 1, 1+ λb/ξd ,−µb/µd)
.

Note that πd 2F1(1− λd/ξd , 1, 1+ λb/ξd ,−µb/µd)−1 � λdµb C̄−1. Hence,

Ɛ[X]� m
[
πb

ξb
+
πd

ξd

]
+
λbλd

C̄

(
1
ξb
− 1
ξd

)
,

which completes the proof. Note that we could alternatively have obtained (37) through Equation (49) below
with s � 0, since Ɛ[Xd | Xd > 0]�−φ′(0)/φ(0). �
Remark 2. Note that if ξb � ξd � ξ, we get Ɛ[X] � m(πb + πd)/ξ � m/ξ, which is consistent with Proposition 3.
The expression in (37) contains no ξb . Indeed, while the value of ξb influences the probability that Xd > 0, it
does not influence the mean of Xd given that Xd > 0.

In Figure 2, we plot the behavior of the three performance metrics in Corollary 3 while keeping m fixed. In
Figure 2(a) we set λb � 1.2, λd � 1, µb � 1, µd � 1.2, so that m � 11/30 and vary ξb � ξd � ξ between 0 and 1. In
Figure 2(b), we fix ξb � ξd � 0.5 and take λb � 1.2θ, λd � θ, µb � θ, µd � 1.2θ, so that still m � 11/30, and vary θ.
Observe that in Figure 2(b), Ɛ[X] is constant, since the value of m/ξ if unaffected by the parameter θ.
The last relevant performance indicator we consider is the fraction of demand that is immediately satisfied

from stock.



Bar-Lev et al.: A Blood Bank Model
246 Stochastic Systems, 2017, vol. 7, no. 2, pp. 237–262, ©2017 The Author(s)

Figure 2. Expected mean amount of blood, demand, and net blood present.
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Corollary 4. The probability that a demand request can be fully satisfied from stock is given by

� (demand satisfied)� C̄−1λbµd

(
2F1

(
1− λd

ξd
, 1, 1+

λb

ξd
,−
µb

µd

)
−

µb

µb + µd

)
. (41)

Proof. Using the PASTA property of the Poisson process, we get

� (demand satisfied)� � (X > D)� � (Xb > D)�
∫ ∞

0
g(u)(1− e−µd u)du � πb − γ(µd).

Substituting the expressions for πb as in Corollary 2 and γ(µb) as in (17) yields the result. �

5. The General Case—A Laplace Transform Approach
In this section we outline how the integral equations (1) and (2) can be solved using Laplace transforms, when
we make the restriction that Fb( · ) and Fd( · ) are Coxian distributions. This is not a major restriction, because
the class of Coxian distributions lies dense in the class of all distributions of nonnegative random variables (cf.
Asmussen 2003, Section III.4); hence one can approximate Fb( · ) arbitrarily closely by a Coxian distribution.

If Xi , i � 1, 2, . . . ,K are independent, exponentially distributed random variables, and Ɛ[Xi] � 1/βi , i �
1, 2, . . . ,K, then a Coxian amount of blood B can be represented as:

B �

i∑
j�1

X j with probability pi

i−1∏
j�1
(1− p j), i � 1, 2, . . . ,K. (42)

In the above case, it is easily verified that one can represent F̄b(x) as follows:

F̄b(x)� � (B > x)�
K∑

i�1
pi

i−1∏
h�1
(1− ph)

i∑
j�1

e−β j x
i∏

l�1; l, j

βl

βl − β j
, (43)

if all β j are different. If two β j coincide, then a term with xe−β j x (Erlang-2) must be added. We leave this to the
reader, but in Remark 2 of Bar-Lev et al. (2015) we outline how Erlang terms can be handled in solving the
integral equations (2) and (1). The counterpart of (43) for the case that Fd( · ) is Coxian, is

F̄d(x)� � (D > x)�
L∑

i�1
qi

i−1∏
h�1
(1− qh)

i∑
j�1

e−δ j x
i∏

l�1; l, j

δl

δl − δ j
. (44)

Taking Laplace transforms φ(s) � ∫∞0 e−s y f (y)dy and γ(s) � ∫∞0 e−s y g(y)dy in (1) and (2) results in first-order
inhomogeneous differential equations in φ(s) and γ(s), respectively, which can be solved in a straightforwardway.

φ′(s)� AH(s)φ(s)+AI(s), (45)
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with the homogeneous term AH(s) being given by

AH(s) :�−
1
ξd

[
λd

L∑
i�1

qi

i−1∏
h�1
(1− qh)

i∑
j�1

1
δ j + s

i∏
l�1; l, j

δl

δl − δ j
− λb

K∑
i�1

pi

i−1∏
h�1
(1− ph)

i∑
j�1

1
β j − s

i∏
l�1; l, j

βl

βl − β j
− αd

]
, (46)

and the inhomogeneous term AI(s) being given by

AI(s):�−
1
ξd

[
λd

L∑
i�1

qi

i−1∏
h�1
(1−qh)

i∑
j�1

1
δ j+s

[γ(δ j)+π0]
i∏

l�1; l, j

δl

δl−δ j
+λb

K∑
i�1

pi

i−1∏
h�1
(1−ph)

i∑
j�1

1
β j−s

φ(β j)
i∏

l�1; l, j

βl

βl−β j

]
. (47)

The solution of (45) is given by the following expression:

φ(s)� φ(0)e
∫ s

0 AH (z)dz
+

∫ s

0
AI(u)e

∫ s
u AH (z)dz du , s ≥ 0. (48)

γ(s) is given by a mirror expression, where φ(0) is replaced by γ(0) and where AH(s) and AI(s) are replaced
by expressions in which K and L are swapped, and p and q, and βi and δi .

In this Coxian case, AH(s) and AI(s) are rational functions of s, and the exponent in the integral in (48) takes
the shape of a sum of terms ((β j −u)/(β j − s))ζ j ((δ j + s)/(δ j +u))η j , for some constants ζ j , η j . The last term in (48)
thus contains an integral with various cross products of terms like (1/(δi + u))(β j − u)ζ j (1/(δ j + u))η j . In (51)
below we demonstrate this for the special case of exponentially distributed amounts of blood and demand.
It should be noticed that φ(0), γ(0) and π0 still have to be determined. Furthermore, it should be noticed that

AH(s) and AI(s) have singularities at s � β1 , . . . , βK . These singularities are removable, but handling Formula (48)
clearly requires some care. Instead of working out the details, we shall below return to the case of exponentially
distributed amounts of blood and demand—so K � L � 1. For that case we shall not only work out the solution
of the differential equation for φ(s) in detail, including the determination of the missing constants, but we also
relate the results to those obtained in Section 4 without resorting to Laplace transforms. Taking K � 1, p1 � 1, δ1 �

µd , and L � 1, q1 � 1, β1 � µb , we obtain the following two inhomogeneous first order differential equations in
the LTs φ(s) and γ(s):

φ′(s)� φ(s)
[
λb

ξd

1
µb − s

− λd

ξd

1
µd + s

]
− λb

ξd

φ(µb)
µb − s

− λd

ξd

γ(µd)
µd + s

, (49)

γ′(s)� γ(s)
[
λd

ξb

1
µd − s

− λb

ξb

1
µb + s

]
− λd

ξb

γ(µd)
µd − s

− λb

ξb

φ(µb)
µb + s

. (50)

They are routinely solved:

φ(s)�
(
µb

µb − s

)λb/ξd
(
µd

µd + s

)λd/ξd

·
[
φ(0) − λd

ξd
γ(µd)

∫ s

0

(
µb − z
µb

)λb/ξd
(
µd + z
µd

)λd/ξd−1 dz
µd
− λb

ξd
φ(µb)

∫ s

0

(
µb − z
µb

)λb/ξd−1 (µd + z
µd

)λd/ξd dz
µb

]
. (51)

Similarly,

γ(s)�
(
µd

µd − s

)λd/ξb
(
µb

µb + s

)λb/ξb

·
[
γ(0) − λb

ξb
φ(µb)

∫ s

0

(
µd − z
µd

)λd/ξb
(
µb + z
µb

)λb/ξb−1 dz
µb
− λd

ξb
γ(µd)

∫ s

0

(
µd − z
µd

)λd/ξb−1 (µb + z
µb

)λb/ξb dz
µd

]
. (52)

Notice that the exponents in the above integrals have powers which are larger than −1 (e.g., λd/ξd − 1), so that
these integrals do not lead to singularities. We still need to determine the two constants φ(0)� πd and γ(0)� πb .
Together with φ(µb) and γ(µd), we have four unknowns. We determine these unknowns using the following
four equations: (i) From (11), we get λbφ(µb)� λdγ(µd), while (ii) πd +πb � 1. Finally, we take (iii) s � µb in (51)
and (iv) s � µd in (52).

Notice that the identity λbφ(µb) � λdγ(µd) allows us to reduce the two integrals in (51) to one integral (and
similarly in (52)):

φ(s)�
(
µb

µb − s

)λb/ξd
(
µd

µd + s

)λd/ξd
[
φ(0) − λd

ξd
γ(µd)

µb + µd

µbµd

∫ s

0

(
µb − z
µb

)λb/ξd−1 (µd + z
µd

)λd/ξd−1

dz
]
. (53)
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Remark 3. We have numerically verified that the expressions in (51) and (16) coincide.

Remark 4. If λb � 0 then we have a known queueing model or shot-noise model with state-dependent service
rate; cf. Keilson and Mermin (1959) and Bekker et al. (2004) for the so-called shot noise model.

Remark 5. The case λd � ξd is special. Formula (51) now reduces to

φ(s)�
(
µb

µb − s

)λb/λd µd

µd + s

[
φ(0) − γ(µd)

∫ s

0

(
µb − z
µb

)λb/λd dz
µd
− λb

λd
φ(µb)

∫ s

0

(
µb − z
µb

)λb/λd−1 µd + z
µd

dz
µb

]
.

Both integrals are easily evaluated (rewrite, in the last integral, µd + z � µd + µb − (µb − z)). We find:

φ(s)�
(
µb

µb − s

)λb/λd µd

µd + s
·
[
φ(0)+

γ(µd)
µd

λd

λb + λd
µb −φ(µb)

µd + µb

µd
−
φ(µb)
µd

λb

λb + λd
µb

]
+

µd

µd + s

[
γ(µd)
µd

λd(µb − s)
λb + λd

+φ(µb)
µd + µb

µd
−
φ(µb)
µd

λb

λb + λd
(µb − s)

]
. (54)

Now observe, cf. (11), that λbφ(µb) � λdγ(µd). Hence, in both lines of the above formula, two terms cancel.
Moreover, φ(s) should be analytic for s � µb , yielding

φ(0)� φ(µb)
µd + µb

µd
. (55)

Finally we obtain (cf. also (35)):

φ(s)�
µd

µd + s
φ(µb)

µd + µb

µd
� φ(0)

µd

µd + s
� πd

µd

µd + s
, (56)

and hence
f (x)� πdµde−µd x , x > 0; (57)

the shortage (amount of demand present) is exponentially distributed when λd � ξd .
It should be noticed that, if λd � ξd , then the first and last term of (7) are equal when (57) holds; and using (11)
it is also readily verified that the second and third term of (7) are equal. The constant πd will in general still
depend on the parameters λd � ξd , λb , µb and ξb .
We end this remark with the observation that in the one-sided shot-noise process (so λb � 0), Bekker et al. (2004)
also observe that λd � ξd results in an exponential density.

6. A Variant
In this section we assume that the expiration rate of blood and the patience rate of demand are constant; so we
take ξb � ξd � 0. A visualization of a possible sample path is depicted in Figure 3.

We again restrict ourselves to the case of exponentially distributed amounts of demand and of blood deliv-
eries. We now need to impose stability conditions. In the case of positive demand, the drift is towards zero if
λdƐD < αd +λbƐB, while in the case of a positive amount of blood, the drift is towards zero if λbƐB < αb +λdƐD.

Figure 3. Sample path of the net amount of blood present if ξb � ξd � 0.

Xd(t)

Xb(t)

t
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If these two conditions are violated, either the amount of demand or the amount of blood present increases
without bound (see also below). In this case, (9) reduces to

αd f ′′(v)+ (−λd − λb + µdαd − µbαd) f ′(v)+ (−µdλb + µbλd − µbµdαd) f (v)� 0. (58)

Hence f ( · ) is a mixture of two exponential terms: f (v) � R+e−x+v + R−e−x−v , where x+ and x− are the positive
and negative root of the equation

αd x2 − (µdαd − µbαd − λd − λb)x + (−µdλb + µbλd − µbµdαd)� 0. (59)

Notice that the last term in the lefthand side of (59) is negative if the stability condition λdƐD < αd + λbƐB
holds, i.e., if µbλd < µdλb + µbµdαd , thus guaranteeing that the product of the two roots x+ and x− is negative,
and hence that there is a positive and a negative root. One should subsequently observe that R− must be zero
to have a probability density. Hence f (v) is simply (a constant times) an exponential; similarly for g(v). In
addition, the steady-state amounts of demand and of blood have an atom at 0 (since ξd and ξb are no longer
zero, the demand and blood processes can reach 0). Interestingly, the model of this section is closely related to
the model with workload removal that is considered in Boucherie and Boxma (1996). There an M/G/1 queue is
studied with the extra feature that, at Poisson epochs, a stochastic amount of work is removed. In the M/M/1
case with removal of exponential amounts of work (cf. Section 5.1 of Boucherie and Boxma 1996), one has the
model of the present section when we concentrate on the amount of demand present. One difference with
the model in Boucherie and Boxma (1996) is that, when the workload in that model has become zero, the
work becomes positive at rate λd , whereas in the present model the amount of blood can become positive (so
zero demand is present) and the amount of demand does not have to become positive when demands arrive
(because they are immediately satisfied; cf. Figure 3). So the atom at zero is in the present model larger than in
the model of Boucherie and Boxma (1996). In our model a positive demand level may be reached from below
zero (by a jump, i.e., a demand arriving at an epoch that there is some, but not enough, blood present). The
memoryless property of the exponential demand requirement distribution implies that this jump results in a
demand level that is exp(µd), just as if the initial demand level had been zero. In the case of non-exponential
demand requirements, our model becomes equivalent with an M/G/1 queue with exponential amounts of
work removed, and with the special feature that the first service requirement of a busy period has a different
distribution. Lemmas 4.1 and 4.2 of Boucherie and Boxma (1996) present the stability condition of that M/G/1
queue with work removal; it amounts to λdƐD < αd + λbƐB, which indeed is one of the two stability conditions
of the present demand/blood model.
Finally we observe that Formula (5.1) of Boucherie and Boxma (1996) coincides with (59) (take αd � 1, λd � λ+,

λb � λ−, µd � 1/β and µb � 1/γ).

7. Asymptotic Analysis
We finally study the model with αb � αd � 0 from an asymptotic perspective, by obtaining the fluid and diffusion
limits of the blood inventory process. That is, we will create a sequence of processes, indexed by n � 1, 2, . . . ,
in which we let the rates of blood and demand arrivals grow large. If we then scale the process in a proper
manner, we are able to deduce a non-degenerate limiting process, that provides insight in the overall behavior
of the arrival volume when the system grows large, which only relies on the first two moments of the blood
and demand distributions.

7.1. Identification of the Limiting Process
First, we introduce some additional notation. Let Xb(t) and Xd(t) denote the amount of blood and demand,
respectively, at time t > 0. Let

X(t) :� Xb(t) −Xd(t), (60)
be the net amount of blood available at time t. Remember that Xb(t),Xd(t) ≥ 0, and Xb(t)> 0 or Xd(t)> 0 for all t,
since αd � αb � 0. Let Nb(t), Nd(t) be the two independent Poisson processes counting the number of arrivals of
blood and demand, respectively. Then the following integral representation holds for X(t),

X(t)� X(0) − ξb

∫ t

0
Xb(s)ds + ξd

∫ t

0
Xd(s)ds +

Nb (t)∑
i�1

Bi −
Nd (t)∑
i�1

Di . (61)

For the sake of exhibition, we will concentrate on the case ξb � ξd �: ξ. Our analysis may be extended to the
general case. A sketch of this generalization is given at the end of this section without going into the technical
difficulties that arise when rigorously proving these limits.
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Define

Z(t)�
Nb (t)∑
i�1

Bi −
Nd (t)∑
i�1

Di , (62)

that is, the difference between two compound Poisson processes, so that (61) reduces to

X(t)� X(0) − ξ
∫ t

0
X(s)ds +Z(t). (63)

The first step in the definition of the sequence of processes under investigation is defining the asymptotic
scheme we are interested in. As mentioned above, we intend to let the arrival rates grow to infinity. Therefore,
in the nth process Xn(t), we replace the rates of the arrival processes by nλb and nλd . This induces Poisson
processes N (n)b and N (n)d with arrival rates nλb and nλd , respectively. However, we have for its marginals

N (n)b (t)
d
�Nb(nt) and N (n)d (t)

d
�Nd(nt), (64)

so that the term Z(t) in (63) in this asymptotic scheme can be replaced by

Zn(t)�
Nb (nt)∑

i�1
Bi −

Nd (nt)∑
i�1

Di . (65)

The first step in our analysis is obtaining the fluid limit of the process. Bearing in mind application of the
Functional Law of Large Numbers (FLLN), we scale the process as X̄n(t)� Xn(t)/n, so that with (63)

X̄n(t)� X̄n(0) − ξ
∫ t

0
X̄n(s)ds + Z̄n(t), (66)

where Z̄n(t)� Zn(t)/n.
The essential step in establishing a result on the convergence of X̄n is the application of (Pang et al. 2007,

Thm. 4.1), which we cite here for completeness, slightly rewritten to fit our setting.

Theorem 6 (Pang et al. (2007, Thm. 4.1)). Let D[0,∞) be the space of all one-dimensional real-valued càdlàg functions
defined on [0,∞), endowed with the usual J1-Skorohod topology. Consider the integral representation

x(t)� y(t)+
∫ t

0
u(x(s))ds , t ≥ 0, (67)

where u: �→� satisfies u(0)� 0 and is Lipschitz continuous. The integral representation in (67) has a unique solution x,
so that the integral representation constitutes a function Hu : D[0,∞)→D[0,∞) mapping y into x ≡Hu(y). In addition,
the function Hu is continuous, and if y is continuous, then so is x.

In our case, we set u(x)�−ξx, to be able to write X̄n � Hu(X̄n(0)+ Z̄n). Since u is clearly Lipschitz continuous,
the mapping Hu is indeed continuous. Let us rewrite (66), by observing

ƐZ̄n(t)�
1
n
(Ɛ[Nb(nt)]Ɛ[B] − Ɛ[Nd(nt)]Ɛ[D])� λbƐ[B]t − λdƐ[D]t , (68)

where the expectation is taken with respect to the compound Poisson processes. Since m � λbƐB − λdƐD,

X̄n(t)� X̄n(0) − ξ
∫ t

0

(
X̄n(s) −

m
ξ

)
ds + Ȳn(t), (69)

where Ȳn(t) :� Z̄n(t) −mt is now a centered process. This allows us to state the next result.

Proposition 7 (Fluid Limit). Let Ɛ[B], Ɛ[D] <∞ and X̄n(0)� Xn(0)/n→ q0 ∈ �, as n→∞. Then for n→∞,

X̄n
d⇒q , (70)

where
q(t)� m

ξ
+

(
q0 −

m
ξ

)
e−ξt . (71)
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Proof. First, we concentrate on the process Ȳn . Observe that, by the FLLN for renewal-reward processes, which
follows from (Whitt 2002, Thm. 7.4.1), we have

1
nt

Nb (nt)∑
i�1

Bi
d⇒λbƐ[B],

1
nt

Nd (nt)∑
i�1

Di
d⇒λdƐ[D], (72)

for n→∞ and for all t > 0. Hence, Z̄n(t)
d⇒λbƐ[B]t − λdƐ[D]t � mt. By definition of Ȳn and the assumption of

convergence of X̄n(0), this implies
Ȳn + X̄n

d⇒q0 (73)

as n→∞. Next, note X̄n � Hu(X̄n(0)+ Z̄n) � Hu(X̄n(0)+ Ȳn + mI), where I denotes the identity map, i.e., I(t) ≡ t
for all t ≥ 0. Due to Lipschitz continuity of u, Hu constitutes a continuous mapping, and hence we can apply
the Continuous Mapping Theorem (CMT), to find

X̄n � Hu(X̄n(0)+ Ȳn + mt)⇒Hu(q0 + mt) ≡ q , (74)

for all t ≥ 0, where q( · ) is the solution of

q(t)� q0 +

∫ t

0
u(q(s))ds � q0 + mt − ξ

∫ t

0
q(s)ds � q0 − ξ

∫ t

0

(
q(s) − m

ξ

)
ds .

The unique solution of this integral equation is given in (71). �

According to Proposition 7, the fluid limit approaches Ɛ[X]� m/ξ exponentially fast. To obtain an expression
for the diffusion limit of the process, we analyze the fluctuations of the process around the fluid limit in (70),
again by scaling the process in a proper manner. First, we subtract q(t) on both sides of (69), and multiply
by
√

n:
√

n(X̄n(t) − q(t))�
√

n(X̄n(0) − q0) − ξ
∫ t

0

√
n(X̄n(s) − q(s))ds +

√
n Ȳn(t). (75)

Let X̂n ≡
√

n(X̄n − q) and Ŷn ≡
√

n Ȳn , then this reduces to

X̂n(t)� X̂n(0) − ξ
∫ t

0
X̂n(s)ds + Ŷn(t). (76)

Again the process Ŷn needs special attention.

Lemma 1. Let Ɛ[B2],Ɛ[D2] < ∞. Then Ŷn
d⇒σW as n →∞, where σ2 :� λbƐ[B2] + λdƐ[D2] and W is a standard

Brownian motion.

Proof. Recall that

Ŷn(t)
d
�
√

n
[(

1
n

Nb (nt)∑
i�1

Bi − λbƐ[B]t
)
−

(
1
n

Nd (nt)∑
i�1

Di − λdƐ[D]t
)]
. (77)

By the Functional Central Limit Theorem (FCLT) for renewal-reward processes given in (Whitt 2002, Thm. 7.4.1),
the process

Ŷb
n (t)�

√
n
(

1
n

Nb (nt)∑
i�1

Bi − λbƐ[B]t
)
, (78)

converges weakly to σbWb , where Wb is a standard Brownian motion, and

σ2
b � λb Var B + λb(E[B])2 � λbƐ[B2]. (79)

Similarly Ŷd
n ⇒ σdWd , with the obvious parameter switches and Wd is standard Brownian motion. Since the

processes Ŷb
n and Ŷd

n are independent, so are their limits, and

Ŷn⇒
√
λbƐ[B2]Wb +

√
λdƐ[D2]Wd

d
�

√
λbƐ[B2]+ λdƐ[D2]W, (80)

for n→∞ and W a standard Brownian motion. �

Now, we are ready to prove the diffusion counterpart of Proposition 7.
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Proposition 8 (Diffusion Limit). Let Ɛ[B2], Ɛ[D2] <∞. If X̂n(0)→ X̂(0), then X̂n⇒ X̂ as n⇒∞, where X̂ satisfies the
integral equation

X̂(t)� X̂(0) − ξ
∫ t

0
X̂(s)ds + σW(t). (81)

In other words, X̂ is an Ornstein-Uhlenbeck diffusion process with infinitesimal mean ξ and infinitesimal variance σ2 :�
λbƐ[B2]+ λdƐ[D2].
Proof. We again rely on the result that the mapping Hu as in the proof of Proposition 7 is continuous if u
is Lipschitz continuous. Here, we set u(x) � −ξx which again clearly satisfies this condition. We have X̂n ≡
Hu(X̂n(0)+ Ŷn). From Lemma 1, we know

X̂n(0)+ Ŷn⇒ X̂(0)+ σW, (82)

for n→∞. As a consequence of the CMT, we conclude

X̂n � Hu(X̂n(0)+ Ŷn)⇒Hu(X̂(0)+ σW) ≡ X̂, (83)

where X̂ solves (81). �

7.2. Generalization for ξb , ξd
We now sketch the scaling approach towards fluid and diffusion limits for the general case in which ξb may
differ from ξd . In case ξb , ξd , the integral equation for X̄n as in (66) becomes

X̄n(t)� X̄n(0)+
∫ t

0
(−ξbX̄+

n (s)+ ξdX̄−n (s) −m)ds + Ȳn(t)

� X̄n(0) −
∫ t

0
([ξb�{X̄n (s)≥0} + ξd�{X̄n (s)<0}]X̄n(s)+ m)ds + Ȳn(t), (84)

where Ȳn(t) is defined as before. Note that X̄n ≡Hu(X̄n(0)+ Ȳn), where we now have

u(x)�−[ξb�{x≥0} + ξd�{x<0}]x + m , (85)

which is still Lipschitz continuous. Therefore, following the reasoning of the proof of Proposition 7, we obtain
the fluid limit X̄n

d⇒q, where q is the solution of

q(t)� q0 −
∫ t

0
([ξb�{q(s)≥0} + ξd�{q(s)<0}]q(s) −m)ds . (86)

The solution to this integral equation is more elaborate than (70) and depends on the sign of m and q0. Assuming
m ≥ 0, one can check that,

q(t)� m
ξb

+

(
q0 −

m
ξb

)
e−ξb t , if q0 ≥ 0, (87)

q(t)�


m
ξd

+

(
q0 −

m
ξd

)
e−ξd t , if 0 ≤ t < t∗d ,

m
ξb
(1− e−ξb (t−t∗d )), if t ≥ t∗d ,

if q0 < 0, (88)

where
t∗d �−

1
ξd

log
(

m/ξd

m/ξd − q0

)
. (89)

If m < 0,

q(t)� m
ξd

+

(
q0 −

m
ξd

)
e−ξd t , if q0 ≤ 0, (90)

q(t)�


m
ξb

+

(
q0 −

m
ξb

)
e−ξb t , if 0 ≤ t < t∗b ,

m
ξd
(1− e−ξd (t−t∗b )), if t ≥ t∗b ,

if q0 > 0, (91)



Bar-Lev et al.: A Blood Bank Model
Stochastic Systems, 2017, vol. 7, no. 2, pp. 237–262, ©2017 The Author(s) 253

where
t∗b �−

1
ξb

log
(

m/ξb

m/ξb − q0

)
. (92)

Note that the equilibrium of the fluid limit also depends on the sign of m:

lim
t→∞

q(t)�
{

m/ξb , if m ≥ 0,
m/ξd , if m < 0.

(93)

In the remainder, without loss of generality m ≥ 0. Furthermore, set q0 � m/ξb so that q ≡m/ξb . Subtracting q(t)
on both sides of (84) yields,

(X̄n(t) − q(t))� (X̄n(0) − q0) −
∫ t

0
{[ξb�{X̄n (s)≥0} + ξd�{X̄n (s)<0}]X̄n(s) − ξb q(s)}ds + Ȳn(t) (94)

� (X̄n(0) − q0) −
∫ t

0
ξb(X̄n(s) − q(s))ds +

∫ t

0
�{X̄n (s)<0}(ξb − ξd)X̄n(s)ds . (95)

Let X̂n(t)�
√

n(X̄n(t) − q(t)). Then

X̂n(t)� X̂n(0) − ξb

∫ t

0
X̂n(s)ds +

∫ t

0
�{X̄n (s)<0}(ξb − ξd)X̂n(s)ds + Ŷn(t) (96)

Now, we argue non-rigorously that the one-but-last term vanishes as n→∞. Namely, by defining the function
G: D[0,∞)→D[0,∞) by the integration operator:

G(u)�
∫ t

0
�{u(s)<0}(ξb − ξd)u(s)ds , (97)

this term can be expressed as G(X̂n). Hence by the fact that X̂n
d⇒m/ξb and the CMT we see G(X̂n)⇒ 0.

Under this claim, we deduce by the approach of Proposition 8, that if X̂n⇒ X̂ for n→∞, then X̂ satisfies the
stochastic integral equation

X̂(t)� X̂(0) − ξb

∫ t

0
X̂(s)ds + σW(t), (98)

which implies that X̂ is an Ornstein-Uhlenbeck process with infinitesimal mean ξb and variance σ2 :� λbƐ[B2]+
λdƐ[D2].
The result that the scaled process converges to an Ornstein-Uhlenbeck process can be intuitively justified by
the so-called mean-reverting behavior of the original process. That is, the further the process is away from its
mean, the greater the drift towards that equilibrium. This is the defining feature of the OU diffusion process.
The decay rates ξb and ξd are responsible for the original process being “forced” towards 0 and therefore the
similarities should not be surprising. However, note that in the diffusion limit X̂n has drift ξb (cq. ξd) towards
m/ξb (cq. m/ξd), if m > 0 (cq. <0) at any position of the process. This implies that if Xn ∈ (0, nm/ξb), it has an
upward drift, which is at first sight counter-intuitive. However, we can argue that in case Xn(t)� v ∈ (0, nm/ξb),
the mean upward drift of the process Xn equals nλbƐ[B], and the mean downward drift equals nλdƐ[D]+ ξb v,
since v > 0. Rewrite v � nm/ξb −w

√
n for some w ∈ (0,

√
nm/ξb). Then, the mean net drift equals

nλbƐ[B] − nλdƐ[D] − ξb

(
nm
ξb
−w
√

n
)
� ξb w

√
n > 0,

which explains both the sign and magnitude of the drift factor in the scaled process.

7.3. Related Literature
The Ornstein-Uhlenbeck process is a diffusion process that often arises as the limit of a sequence of stochastic
systems, in which the system size tends to infinity. Particularly in queueing settings with mean reverting behav-
ior, the OU process appears in so-called heavy traffic, i.e., the arrival rate grows without bound. We mention a
couple of models that exhibit limiting behavior that is similar to ours.
First, it is well-known that the properly normalized M/M/∞ queue length process converges weakly to a OU

process as the arrival rate tends to infinity, see e.g., (Whitt 2002, Sec. 10.3). This limiting behavior continues to
hold in case the queueing process is modulated by a Markovian background process, see Anderson et al. (2016).
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Another well-known queueing model in which a (piecewise) OU process appears in the limit is the multi-
server queue with abandonments. For the M/M/s +M queue, where +M denotes the exponentially distributed
patience of customers, Garnett et al. showed that in the Halfin-Whitt regime, the queue length process, centered
and scaled around the number of servers s, approaches a hybrid OU process, of which the drift parameter
depends on the current state: If the queue length is larger (cq. smaller) than zero, then the drift is governed by
the abandonment rate (cq. service rate). Dai et al. (2010) find a similar piecewise diffusion process under more
general assumptions on the model primitives.
For the single-server queue with abandoning customers, Ward and Glynn (2003, 2005) showed that in con-

ventional heavy traffic, the queue length process converges to a OU process with reflecting barrier 0.
Since we in our setting assumed both demand impatience and perishability of inventory (which can be seen

as a kind of impatience as well), it should not come as a surprise that we also find our limiting process to be a
OU process. Observe however that in our model, unless m � 0, we find a OU process with constant, rather than
piecewise, parameters, and no reflection barrier, since our (scaled) inventory process can go both positive and
negative.
Last, we mention that there is a connection between our blood inventory process and the work of Reed and

Zwart (2011). Rather than looking at the OU process as the limit of a sequence of stochastic processes, Reed
and Zwart (2011) study a stochastic differential equation that is closely related to Equation (61), in the sense
that the process has a different (constant) drift term in the upper and lower half plane. Under the assumption
that the input process is a Lévy process with only one-sided jumps, they develop a methodology to derive the
invariant distribution of the solution of the SDE. Unfortunately, the input in our scenario exhibits both positive
and negative jumps, which prevents us from applying their results directly to (61).

8. Numerical Evaluation
8.1. Approximation Scheme
The asymptotic results of the previous section regarding the fluid and diffusion limits allude to the fact that for
large arrival rates, the normalized inventory process {X̂n(t) | t ≥ 0}, resembles that of the Ornstein-Uhlenbeck
process. Indeed, the sample paths of the scaled process X̄n for increasing values of n in Figures 4 and 5 show
that the mean-reverting behavior around m/ξ∗, that is typical of OU processes, kicks in rather quickly. Moreover,
the fluid limits q(t) as presented by Proposition 7 and (88)–(91) predict the mean well for both ξb � ξd and
ξb , ξd . Furthermore, we observe that steady state is attained fairly quickly. This is suggestive of the claim that
the steady-state distribution of the normalized process X̂n is well-described by the steady-state distribution of
the OU process X̂. Since the OU process with mean 0, infinitesimal variance σ2 and drift ξ∗ is known to be
normally distributed with mean 0 and variance σ2/2ξ∗ in steady-state, this leads to a simpler approximation
scheme based on the first two moments of B and D only. In non-rigorous mathematical terms, we use the
approximation that

X̂n �
Xn − nm/ξ∗
√

n
d≈ Z∗ , (99)

where Z∗ is a normally distributed random variable with mean 0 and variance σ2/2ξ∗.
Note that justification of the conjecture that the normal approximation is indeed an asymptotically correct

approximation for systems with large arrival rates requires proof that the interchange-of-limits between t→∞

Figure 4. Sample paths of the scaled inventory process X̄n(t)� Xn(t)/n with X̄n(0)� 5, λb � 1.2, λd � 1, ξb � ξd � 0.5 and
µb � 0.5 and µd � 1. The fluid limit is depicted by the dashed line.
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Figure 5. Sample paths of the scaled inventory process X̄n(t)� Xn(t)/n with X̄n(0)�−2, λb � 2, λd � 1, ξb � 0.5, ξd � 0.1 and
µb � 1 and µd � 1. The fluid limit is depicted by the dashed line.
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and n→∞ is indeed valid. Rather than going into the technical details, we provide in the remainder of this
section numerical evidence that this interchange indeed holds, and that the normal approximation is able to
capture characteristics of processes with exponential jumps as well as generally distributed jumps.

8.2. Distribution Functions
Since we obtained an explicit expression for the steady-state density function of the net inventory process X
in case B and D are exponential, see Theorem 5, we will exploit this formula for numerical comparison to the
normal approximation arising from the OU process.
Let h( · ) as in Theorem 5 be the pdf of X with parameters λb , λd , µb , µd , ξb and ξd , and the corresponding

cdf H, defined as H(v) � ∫ v
−∞ h(x)dx. We denote by hn and Hn the pdf and cdf, respectively, of the inventory

process Xn with arrival rates nλb and nλd , and the remaining parameters unchanged. Then, the pdf and cdf of
the normalized process are given by ĥn(v)�

√
n hn(vn) and Ĥn(v)� Hn(vn), respectively, with vn � nm/ξ∗ + v

√
n

for all v ∈ �. By the normal approximation scheme, we expect

ĥn(v) ≈
√

2ξ∗
σ

ϕ

(√
2ξ∗
σ

v
)
, and Ĥn(v) ≈Φ

(√
2ξ∗
σ

v
)
. (100)

We perform this numerical comparison of probability functions in Figure 6 for three cases: ξb � ξd , ξb > ξd and
ξb < ξd .
From Figure 6, in which m � 1, so that ξ∗ � ξb , the convergence of the pdf and cdf is evident. For n � 10,

the distribution functions of the scaled processes are almost aligned with the normal distribution already. For
ξb � ξd , the convergence is fastest. This can be explained by observing that in cases where ξb , ξd , the parameter
ξd still plays a role in pre-limit systems, whereas it does not appear in the normal limit. In the cases where
ξb , ξd we furthermore see that the functions are not smooth around vn � 0 or v∗ � −

√
nm/ξ∗, which is the

zero-inventory level in the original (unscaled) process. As n increases, this point of irregularity goes to −∞ and
therefore disappears.

8.3. Approximations to Performance Metrics
The plots in the previous section indicate that the normal approximation gives simple yet accurate approx-
imations to the stationary distribution of the inventory process. We now assess if this also translates to the
performance measures. Again, we choose to fix the parameters λb and λd , and evaluate the system with arrival
rates nλb and nλd for increasing n. First, the normal approximation in (99) yields the following approximation
for the expected inventory level:

Ɛ[Xn] ≈
nm
ξ∗

�
n(λbƐ[B] − λdƐ[D])

ξ∗
. (101)

For the probability of negative inventory, we have

πd � � (Xn < 0) ≈ � (Z∗ < −
√

nm/ξ∗)�Φ(−
√

n/2ξ∗m/σ). (102)

Last, the probability of demand being satisfied immediately is approximately

� (demand satisfied)� � (Xn > D) ≈ 1−
∫ ∞

0
Φ

(
−
√

2ξ∗
σ

x − nm/ξ∗√
n

)
dFd(x). (103)
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Figure 6. Steady-state density (left) and distribution (right) function of the normalized inventory process X̂n for n � 1, 5
and 10 with λb � 1, λd � 0.5 and µb � µd � 1, and of the OU process.
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Remark 6. Note that if λb and λd are large themselves, the parameter n can be eliminated from (101)–(103),
so that

Ɛ[X] ≈ m
ξ∗
, πd ≈Φ(−m/(σ

√
2ξ∗)), � (demand satisfied) ≈ 1−

∫ ∞

0
Φ

(
−
√

2ξ∗ x −m/ξ∗
σ

)
dFd(x),

where m � λbƐ[B] − λdƐ[D] and σ2 � λbƐ[B2]+ λdƐ[D2].
We will now test these approximations under various assumptions on the distribution of B and D. In

Tables 1–3 we compare the values obtained through the normal approximation against the true values obtained
through numerical evaluation (for exponential jump sizes only) and simulation. All simulation results are accu-
rate up to a 95% confidence interval of width 10−4. We set λb � 1 and λd � 0.5 and let the mean jump sizes
be equal to 1, i.e., Ɛ[B] � 1 and Ɛ[D] � 1 in all numerical experiments. In Table 1, we let the jump sizes be
deterministic, so that Var B � Var D � 0. Table 2 shows the results in case of exponential jump sizes, so that
Var B � Var D � 1. Last, in Table 3 we investigate the quality of the approximation for jump sizes that follow
a Gamma(0.25, 0.25) distribution, yielding Var B � Var D � 4. With this set-up we cover jump distributions of
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Table 1. Accuracy of diffusion approximation for the mean blood inventory level Ɛ[Xn], the probability of
negative inventory πd and the probability of demand being fully satisfied immediately � (dem. sat.), with
arrival rates nλb � n and nλd � 0.5n and deterministic jump sizes, B ≡ 1 and D ≡ 1.

Ɛ[Xn] πd � (dem. sat.)

n Sim. (101) Sim. (102) Sim. (103)

(a) ξb � 1, ξd � 1
1 0.500 0.500 0.2702 0.2819 0.2598 0.2819
2 1.000 1.000 0.2014 0.2071 0.4859 0.5000
5 2.500 2.500 0.0943 0.0984 0.7814 0.7807
10 5.000 5.000 0.0316 0.0339 0.9306 0.9279
20 10.000 10.000 0.0043 0.0049 0.9908 0.9899
50 25.000 25.000 0.0000 0.0000 1.0000 1.0000

(b) ξb � 1, ξd � 2
1 0.584 0.500 0.2522 0.2819 0.2712 0.2819
2 1.086 1.000 0.1809 0.2071 0.5020 0.5000
5 2.558 2.500 0.0837 0.0984 0.7911 0.7807
10 5.024 5.000 0.0286 0.0339 0.9335 0.9279
20 10.006 10.000 0.0040 0.0049 0.9912 0.9899
50 25.000 25.000 0.0000 0.0000 1.0000 1.0000

(c) ξb � 2, ξd � 1
1 0.158 0.250 0.3308 0.3415 0.1006 0.1103
2 0.397 0.500 0.2973 0.2819 0.2465 0.2819
5 1.164 1.250 0.1952 0.1807 0.5482 0.5724
10 2.447 2.500 0.1036 0.0984 0.7729 0.7807
20 4.980 5.000 0.0340 0.0339 0.9283 0.9279
50 12.497 12.500 0.0017 0.0019 0.9964 0.9960

increasing variance, so that we are able to study the impact of increased variability on the accuracy of the
approximations. Moreover, we investigate the influence of the decay parameters ξb and ξd by considering the
scenarios ξb � ξd , ξb < ξd and ξb > ξd .
We make a couple of observations based on the numbers in Tables 1–3. First, we see that the approximation

for the mean blood inventory level Ɛ[Xn] is exact if ξb � ξd , see Proposition 3. This obviously does not extend

Table 2. Accuracy of diffusion approximation for the mean blood inventory level Ɛ[Xn], the probability of
negative inventory πd and the probability of demand being fully satisfied immediately � (dem. sat.), with
arrival rates nλb � n and nλd � 0.5n and exponentially distributed jump sizes, B ∼ exp(1) and D ∼ exp(1).

Ɛ[Xn] πd � (dem. sat.)

n Exact (101) Exact (102) Exact (103)

(a) ξb � 1, ξd � 1
1 0.500 0.500 0.2929 0.3415 0.3536 0.3925
2 1.000 1.000 0.2500 0.2819 0.5000 0.5135
5 2.500 2.500 0.1642 0.1807 0.7062 0.7009
10 5.000 5.000 0.0898 0.0984 0.8491 0.8418
20 10.000 10.000 0.0307 0.0339 0.9506 0.9467
50 25.000 25.000 0.0017 0.0019 0.9974 0.9970

(b) ξb � 1, ξd � 2
1 0.621 0.500 0.2589 0.3415 0.3705 0.3925
2 1.153 1.000 0.2164 0.2819 0.5224 0.5135
5 2.656 2.500 0.1414 0.1807 0.7254 0.7009
10 5.113 5.000 0.0784 0.0984 0.8598 0.8418
20 10.050 10.000 0.0275 0.0339 0.9538 0.9467
50 25.004 25.000 0.0016 0.0019 0.9975 0.9970

ξb � 2, ξd � 1
1 0.125 0.250 0.3548 0.3864 0.2168 0.2942
2 0.333 0.500 0.3333 0.3415 0.3333 0.3925
5 1.059 1.250 0.2647 0.2593 0.5264 0.5570
10 2.333 2.500 0.1856 0.1807 0.6881 0.7009
20 4.893 5.000 0.0995 0.0984 0.8400 0.8418
50 12.475 12.500 0.0198 0.0206 0.9692 0.9678
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Table 3. Accuracy of diffusion approximation for the mean blood inventory level Ɛ[Xn], the probability of
negative inventory πd and the probability of demand being fully satisfied immediately � (dem. sat.), with
arrival rates nλb � n and nλd � 0.5n and Gamma distributed jump sizes, B∼Gamma (0.25, 0.25) and
D∼Gamma (0.25, 0.25).

Ɛ[Xn] πd � (dem. sat.)

n Sim. (101) Sim. (102) Sim. (103)

ξb � 1, ξd � 1
1 0.500 0.500 0.3118 0.3981 0.4412 0.4636
2 1.000 1.000 0.2894 0.3575 0.5343 0.5288
5 2.500 2.500 0.2375 0.2819 0.6590 0.6381
10 5.000 5.000 0.1785 0.2071 0.7592 0.7385
20 10.000 10.000 0.1090 0.1241 0.8593 0.8454
50 25.000 25.000 0.0303 0.0339 0.9624 0.9583

ξb � 1, ξd � 2
1 0.667 0.500 0.2695 0.3981 0.4636 0.4636
2 1.253 1.000 0.2469 0.3575 0.5632 0.5288
5 2.863 2.500 0.2009 0.2819 0.6895 0.6381
10 5.385 5.000 0.1518 0.2071 0.7834 0.7385
20 10.328 10.000 0.0938 0.1241 0.8739 0.8454
50 25.124 25.000 0.0269 0.0339 0.9658 0.9583

ξb � 2, ξd � 1
1 0.081 0.250 0.3694 0.4276 0.3270 0.4104
2 0.238 0.500 0.3593 0.3981 0.4137 0.4636
5 0.857 1.250 0.3237 0.3415 0.5311 0.5528
10 2.045 2.500 0.2739 0.2819 0.6282 0.6381
20 4.568 5.000 0.2039 0.2071 0.7361 0.7385
50 12.231 12.500 0.0966 0.0984 0.8797 0.8779

to πd and � (demand satisfied), since these performance measures are based on the entire distribution of Xn
rather than the mean. Nonetheless, the normal approximation appears to be most accurate in the case ξb � ξd .
We may explain this by observing that in the approximations (101)–(103), only ξ∗ appears. In our setting, we
have m � λb − λd � 0.5, so that ξ∗ � ξb . If ξb , ξd , then the value of ξd plays a role in pre-limit systems, which
induces inaccuracies in the approximation of performance measures. In case ξb � ξd , we have ξ∗ � ξb � ξd , so
that this discrepancy is overcome.
Moreover, since m > 0, we see that πd → 0 and � (demand satisfied) → 1 as n increases. This is due to the

observation that as n grows large, the inventory process concentrates around the level nm with fluctuations
of order

√
n, so that the process stays away from level zero, see Figure 4. The approximations (102)–(103)

adequately capture this convergence.
As expected, the accuracy of the approximations increases with n. Moreover, increased variability in the

jump distributions appears to cause a decrease in accuracy. However, for all cases considered in Tables 1–3,
the normal approximations (101)–(103) seem to yield relatively sharp estimates for the relevant performance
measures under various assumptions on the distributions of the jump sizes.

9. Conclusions and Suggestions for Further Research
In this paper we have studied a stochastic model for a blood bank. We have presented a global approach to the
model in its full generality, and we have obtained very detailed exact expressions for the densities of amount of
inventory and amount of demand (shortage) in special cases (exponential amounts of donated and requested
blood; and either αb � αd � 0 or ξb � ξd � 0). Moreover, we have shown how an appropriate scaling, for the
model in full generality, leads to an Ornstein-Uhlenbeck diffusion process, which can be used as a tool to obtain
simple yet accurate approximations for some key performance measures.
Our model is a two-sided model, in the sense that we simultaneously consider the amount of blood in

inventory and the amount of demand (shortage), one of the two at any time being zero. Such two-sided processes
arise in many different settings, and thus are of considerable interest. The present setting is reminiscent of an
organ transplantation problem, where there is either a queue of persons waiting to receive an organ, or a queue
of donor organs. The perishability/impatience aspect features there, too; Boxma et al. (2011). A quite different



Bar-Lev et al.: A Blood Bank Model
Stochastic Systems, 2017, vol. 7, no. 2, pp. 237–262, ©2017 The Author(s) 259

setting is that of insurance risk. We refer to Albrecher and Lautscham (2013) who extend the classical Cramér-
Lundberg insurance risk model by allowing the capital of an insurance company to become negative—a situation
that is usually indicated by “ruin” in the insurance literature. Their process thus becomes two-sided. The capital
might become positive again; however, at a rate ω(x) when the capital has a negative value −x, bankruptcy
is declared and the process ends. Interestingly, similar special functions (like hypergeometric functions) play a
role in Albrecher and Lautscham (2013) and in the present study.
Our results are restricted to one type of blood. It would be very interesting to extend the analysis to multiple

types of blood. Another important extension would be to use our results to facilitate the decision process that
is faced by the CBB on a daily basis: Which amounts of blood, and of which types, should today be sent to the
local blood banks (hospitals)? Knowing that, e.g., blood types O−, A−, B−, AB− can satisfy the corresponding +

type (but not vice versa), one may try to optimize the blood allocation process on the basis of actual amounts
of blood present.
Finally, we mention a significant open research question regarding the process limits that we derived in

Section 7, of which the steady-state distributions were used to approximate steady-state performance measures
in pre-limit systems. As we pointed out earlier, the justification that the steady-state distribution of the scaled
inventory process indeed converges to the steady-state distribution of the fluid (cq. diffusion) limit requires a
rigorous argument why the order of limits n→∞ and t→∞ may be interchanged. Proving interchange-of-
limits statements typically raises many technical challenges, see e.g., Dai et al. (2014), Gamarnik and Goldberg
(2013), Gurvich (2014), Gamarnik and Zeevi (2006) for works tackling this issue in the context of queues in
heavy traffic. The usual approach is to prove tightness of the sequence of steady-state distributions of pre-limit,
followed by applying Prokhorov’s theorem, see e.g., Billingsley (1999, Sec. 1.5). For our model, such an approach
seems to be straightforward for the fluid scaling, since our inventory process can be upper (cq. lower) bounded
by a shot-noise process with only positive (cq. negative) jumps. Of the latter, the steady-state behavior is known.
This allows us to derive a uniform bound on the absolute mean of the stationary fluid-scaled process, which
gives tightness. The final step uses the deterministic nature of the differential equation governing the dynamics
of the fluid limit, by which the steady-state distribution must be unique. For the diffusion-scaled process, the
steps towards proving the interchange-of-limits are not obvious and hence this needs further investigation. Our
numerical results for various jump size distributions, however, support the conjecture that this interchange is
indeed valid.
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Appendix A. Transformation of Integral Equation (7)
In this appendix we show how integral equation (7) can be transformed into a second-order differential equation, in the
case of exponential Fb( · ) and Fd( · ). Differentiate (7) w.r.t. v:

λd f (v) − µd

[
λd

∫ v

0
f (y)e−µd (v−y) dy + λd

∫ ∞

0
g(y)e−µd (v+y) dy

]
�−λb f (v)+ λbµb

∫ ∞

v
f (y)e−µb (y−v) dy + ξd f (v)+ ξd v f ′(v). (A.1)

Using (7) once more, now to replace the term between square brackets in (A.1), we get:

ξd v f ′(v)� (λd + λb − ξd) f (v) − µd

(
λb

∫ ∞

v
f (y)e−µb (y−v) dy + ξd v f (v)

)
− µbλb

∫ ∞

v
f (y)e−µb (y−v) dy , (A.2)

and once more differentiating w.r.t. v then gives:

ξd v f ′′(v)+ ξd f ′(v) − (λd + λb − ξd − µdξd v) f ′(v)

�−µdξd f (v)+ (µb + µd)λb f (v) − µb(µb + µd)λb

∫ ∞

v
f (y)e−µb (y−v) dy. (A.3)

The integral that appears in (A.3) can be eliminated by using (A.2), and we thus finally obtain the following second order
homogeneous differential equation:

ξd v f ′′(v)+ (2ξd − λd − λb + µdξd v − µbξd v) f ′(v)+ (µdξd − µbξd − µdλb + µbλd − µbµdξd v) f (v)� 0. (A.4)
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Appendix B. Proof of Proposition 4
In the proof, we concentrate on the derivation of f (v), which is the solution to

ξd v f ′′(v)+ (2ξd − λd − λb + µdξd v − µbξd v) f ′(v)+ (µdξd − µbξd − µdλb + µbλd − µbµdξd v) f (v)� 0 (B.1)

The expression for g(v) follows directly from exchanging λb with λd , µb with µd , ξb with ξd , and πb with πd in f (v). We
rewrite (B.1) as follows:

v f ′′(v)+ (A+ Bv) f ′(v)+ (C +Dv) f (v)� 0, (B.2)

where
A � 2− λb + λd

ξd
, B � µd − µb , C � µd − µb +

λdµb − λbµd

ξd
, D �−µbµd .

Note that we divided both sides of Equation (9) by ξd here. We will try to transform the differential equation into one for
which the solution is easily derived. In order to do so, we first guess f to be of the form f (v)� eβv h(v), where β is a constant
and h another real-valued function. Substituting this into (B.2) gives

vh′′(v)+ [(2β+ B)v +A]h′(v)+ [(β2
+ Bβ+D)v +Aβ+C]h(v)� 0. (B.3)

Next, we would like to choose β such that β2 + Bβ+D � 0, that is

β �
−B ±

√
B2 − 4D
2 , (B.4)

which equals either −µd or µb . Since the solution of (B.2) we are looking for is a density, and necessarily f (v)� eβv h(v)→ 0
as v→∞, we set β equal to the negative root −µd . Lastly, we apply a change of variable, x � δv, and h(v) � w(x), so that
(B.3) is transformed into

xw′′(x)+ [(2β+ B)δ−1x +A]w′(x)+ δ−1[Aβ+C]w(x)� 0. (B.5)

By choosing (2β+ B)δ−1 �−1, i.e.,
δ �−(2β+ B)� µb + µd , (B.6)

we obtain
xw′′(x)+ [A− x]w′(x)+ δ−1[Aβ+C]w(x)� 0, (B.7)

which is known as Kummer’s equation, xw′′(x)+ (b − x)w′(x) − aw(x)� 0, see Slater (1960), with parameters

a �−δ−1[Aβ+C]� 1− λd

ξd
, b � A � 2− λb + λd

ξd
.

Kummer’s equation has two linearly independent solutions, namely w(x)� M(a , b , x), where M is Kummer’s hypergeometric
function, also denoted by 1F1(a , b , x), and U(a , b , x), Tricomi’s hypergeometric function. These are defined as, see (Slater
1960, Eq. (1.3.1)),

M(a , b , x)�
∞∑

n�0

(a)n
(b)n n!

xn , (B.8)

U(a , b , x)� Γ(b − 1)
Γ(1+ a − b)M(a , b , x)+

Γ(b − 1)
Γ(a) x1−b M(1+ a − b , 2− b , x), (B.9)

where ( · )n is the Pochhammer symbol, which is used to represent (y)n � y · (y + 1) · · · · · (y + n − 1). We can therefore deduce
that f (v) is of the form

eβv[c1M(a , b , δv)+ c2U(a , b , δv)], (B.10)

or

e−µd v

[
c1M

(
1− λd

ξd
, 2− λb + λd

ξd
, (µb + µd)v

)
+ c2U

(
1− λd

ξd
, 2− λb + λd

ξd
, (µb + µd)v

)]
, (B.11)

where c1 and c2 are constants. From Slater (1960, p. 60), we have

M(a , b , x) ∼ Γ(b)
Γ(a) e

x xa−b , as x→∞. (B.12)

Hence,

e−µd v M
(
1− λd

ξd
, 2− λb + λd

ξd
, (µb + µd)v

)
∼ Γ(2− (λb + λd)/ξd)

Γ(1− λd/ξd)
eµb v((µb + µd)v)λb/ξd−1→∞, (B.13)
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for all µb > 0, which leads us to conclude c1 � 0. We deduce c2 by exploiting the restriction that∫ ∞

0
f (v) dv � πd , (B.14)

where πd is the probability of positive demand. Hence

πd c−1
2 �

∫ ∞

0
e−µd vU

(
1− λd

ξd
, 2− λb + λd

ξd
, (µb + µd)v

)
dv. (B.15)

By slightly transforming (Slater 1960, (3.2.51)), we find

c−1
2 �

1
πd

Γ((λb + λd)/ξd)
Γ(1+ λb/ξd) 2F1

(
1− λd

ξd
, 1, 1+

λb

ξd
,−
µb

µd

)
, (B.16)

where 2F1(a1 , a2 , a3 , x) :�
∑∞

n�0((a1)n(a2)n/((a3)n n!))xn is the hypergeometric function of Gauss. This proves (12).

Appendix C. Laplace Transforms for Cox Jump Sizes
In this appendix we outline how the differential equation (45) is obtained. We take Laplace transforms in (2), considering
its five terms and calling them T1 ,T2 ,T3 ,T4 and T5, successively. Formula (2) then translates into

T1 +T2 +T3 � T4 +T5 , (C.1)

where

T1 � λd

∫ ∞

v�0
e−sv

∫ v

y�0
f (y)F̄d(v − y)dydv � λdφ(s)

1− Ɛ[e−sD]
s

, (C.2)

T2 � λd

∫ ∞

v�0
e−sv

∫ ∞

y�0
g(y)F̄d(v + y)dydv � λd

∫ ∞

y�0
es y g(y)

∫ ∞

z�y
e−sz F̄d(z)dzdy , (C.3)

T3 � π0λd

∫ ∞

0
e−s y F̄d(y)dy , (C.4)

T4 � λb

∫ ∞

v�0
e−sv

∫ ∞

y�v
f (y)F̄b(y − v)dydv � λb

∫ ∞

y�0
e−s y f (y)

∫ y

z�0
esz F̄b(z)dzdy , (C.5)

T5 � ξd

∫ ∞

v�0
ve−sv f (v)dv + αdφ(s)�−ξdφ

′(s)+ αdφ(s). (C.6)

We now evaluate the terms appearing in the righthand sides of (C.2)–(C.5) for the Coxian case of (43) and (44):∫ y

z�0
esz F̄b(z)dz �

K∑
i�1

pi

i−1∏
h�1
(1− ph)

i∑
j�1

i∏
l�1; l, j

βl

βl − β j

1
β j − s

(1− e(s−β j )y), (C.7)∫ ∞

z�y
e−sz F̄b(z)dz �

K∑
i�1

pi

i−1∏
h�1
(1− ph)

i∑
j�1

i∏
l�1; l, j

βl

βl − β j

1
β j + s

e−(s+β j )y , (C.8)

Ɛ[e−sB]�
K∑

i�1
pi

i−1∏
h�1
(1− ph)

i∑
j�1

i∏
l�1; l, j

βl

βl − β j

β j

β j + s
, (C.9)

and hence
1− Ɛ[e−sB]

s
�

K∑
i�1

pi

i−1∏
h�1
(1− ph)

i∑
j�1

i∏
l�1; l, j

βl

βl − β j

1
β j + s

. (C.10)

Combining (C.1) with (C.2)–(C.6), and using (C.7) and the counterparts of (C.8) and (C.10) for F̄d( · ), we find:

λdφ(s)
K∑

i�1
qi

i−1∏
h�1
(1− qh)

i∑
j�1

i∏
l�1; l, j

δl

δl − δ j

1
δ j + s

+ λd

L∑
i�1

qi

i−1∏
h�1
(1− qh)

i∑
j�1

i∏
l�1; l, j

δl

δl − δ j

1
δ j + s

[γ(δ j)+ π0]

� λb

K∑
i�1

pi

i−1∏
h�1
(1− ph)

i∑
j�1

i∏
l�1; l, j

βl

βl − β j

1
β j − s

(φ(s) −φ(β j)) − ξdφ
′(s)+ αdφ(s), (C.11)

which is readily rewritten into (45).

Remark 7. If ξd � 0, then φ(s) is obtained from (C.11) in a standard manner; see also Section 6.
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