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STANDING WAVES

FOR NONLINEAR SCHRÖDINGER–POISSON EQUATION

WITH HIGH FREQUENCY

Jianqing Chen — Zhengping Wang — Xiaoju Zhang

Abstract. We study the existence of ground state and bound state for the

following Schrödinger–Poisson equation

(P)

−∆u+ V (x)u+ λφ(x)u = µu+ |u|p−1u, x ∈ R3,

−∆φ = u2, lim
|x|→+∞

φ(x) = 0,

where p ∈ (3, 5), λ > 0, V ∈ C(R3,R+) and lim
|x|→+∞

V (x) = ∞. By using

variational method, we prove that for any λ > 0, there exists δ1(λ) > 0
such that for µ1 < µ < µ1 + δ1(λ), problem (P) has a nonnegative ground

state with negative energy, which bifurcates from zero solution; problem

(P) has a nonnegative bound state with positive energy, which can not
bifurcate from zero solution. Here µ1 is the first eigenvalue of −∆ + V .

Infinitely many nontrivial bound states are also obtained with the help of

a generalized version of symmetric mountain pass theorem.
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1. Introduction

In this paper, we consider the nonlinear Schrödinger-Poisson equation

(1.1)


−i∂ψ

∂t
−∆ψ + V (x)ψ + λφ(x)ψ = |ψ|p−1ψ, (t, x) ∈ R× R3,

−∆φ = |ψ|2, lim
|x|→+∞

φ(x) = 0,

where ψ : R × R3 → C denotes the wave function, λ is a positive parameter,

p ∈ (3, 5), and V , φ are real valued functions and represent the effective potential

and the electric potential, respectively. Problem (1.1) arises from semiconductor

theory, see [9], [13] for more physical background.

Recently, there are many papers devoted to looking for standing wave solu-

tions to problem (1.1), that is, ψ(t, x) = e−iµtu(x), where u(x) is a real valued

function and µ ∈ R denotes the frequency. Then u(x) satisfies the following

stationary equation

(1.2)

−∆u+ V (x)u+ λφ(x)u = µu+ |u|p−1u, x ∈ R3,

−∆φ = u2, lim|x|→+∞ φ(x) = 0.

See [2], [6], [7], [10]–[12], [17], [19] and the references therein for all kinds of V

and more general nonlinearities.

Throughout this paper, we assume that V (x) satisfies the following condition

(V1) V ∈ C(R3,R+) and lim
|x|→+∞

V (x) =∞.

Define

H =

{
u ∈W 1,2(R3) :

∫
R3

V (x)u2 dx <∞
}
,

with the norm

‖u‖2 :=

∫
R3

(|∇u|2 + V (x)u2) dx.

It is known that, under the condition (V1), the embedding H ↪→ Lq(R3) (2 ≤
q < 6) is compact. Moreover, there is a sequence of eigenvalues (µn) of −∆ + V

in H such that 0 < µ1 < µ2 ≤ µ3 ≤ . . . ≤ +∞ and H = span{ej : j ≥ 1}, where

ej is the corresponding eigenfunction to µj with ‖ej‖ = 1.

For u ∈ H, we denote the unique solution of −∆φ = u2 in D1,2(R3) by φu,

and

(1.3) φu(x) =
1

4π

∫
R3

u2(y)

|x− y|
dy.

Then equation (1.2) can be rewritten as

(1.4) −∆u+ V (x)u+ λφu(x)u = µu+ |u|p−1u, x ∈ R3.
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Define the energy functional Iµ : H → R by

(1.5) Iµ(u) =
1

2

∫
R3

(|∇u|2 + (V (x)− µ)u2) dx

+
λ

4

∫
R3

φuu
2 dx− 1

p+ 1

∫
R3

|u|p+1 dx.

Then, Iµ ∈ C1(H,R) and for any ϕ ∈ H we have that

(1.6) 〈I ′µ(u), ϕ〉 =

∫
R3

(∇u∇ϕ+ (V (x)− µ)uϕ) dx

+ λ

∫
R3

φuuϕdx−
∫
R3

|u|p−1uϕdx.

If u ∈ H \ {0} and 〈I ′µ(u), ϕ〉 = 0 for all ϕ ∈ H, we say that u is a bound state

of (1.4). Furthermore, a function u0 is called a ground state of (1.4) if u0 is

a bound state of (1.4) and Iµ(u0) ≤ Iµ(u) for any bound state u of (1.4).

If µ < µ1 in (1.4), we may define the following equivalent norm on H by

‖u‖2µ :=

∫
R3

(|∇u|2 + (V (x)− µ)u2) dx.

Then for any λ > 0, p ∈ (3, 5), and under condition (V1), we can easily prove

that (1.4) has a ground state by Nehari manifold method, see [20].

In this paper, we mainly study the existence of bound state, especially ground

state, to equation (1.4) for µ ≥ µ1, which is the so called high frequency case in

the title. First, we show that (1.4) has a nonnegative bound state with positive

energy.

Theorem 1.1. Let p ∈ (3, 5), λ > 0 and (V1) holds. Then there exists

δ(λ) > 0 such that for any µ ∈ [µ1, µ1 + δ(λ)), problem (1.4) has a nonnegative

bound state u1,µ with Iµ(u1,µ) > 0. Moreover, for any sequence µ(n) ↓ µ1, there

exists uµ1
∈ H with I ′µ1

(uµ1
) = 0 and Iµ1

(uµ1
) > 0, such that u1,µ(n) → uµ1

strongly in H.

On basis of Theorem 1.1, we may define the set of all bound states to (1.4):

N = {u ∈ H \ {0} : I ′µ(u) = 0} 6= ∅.

To get the existence of ground state to (1.4), we consider the following mini-

mization problem

(1.7) c0 = inf{Iµ(u) : u ∈ N}.

If we can prove that c0 > −∞ and c0 6= 0, then by the compactness lemma

(see Lemma 2.1) and solving the above minimization problem, the ground state

to (1.4) can be obtained. But, it seems not obvious that c0 > −∞ and c0 6= 0.
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Here, let us recall that if λ = 0 in (1.4), by the method of Szulkin and

Weth [18] we can prove that c0 > 0. Motivated by Pankov [14], see also [18], we

introduce the set

N1 = {u ∈ H \H1 : I ′µ(u) = 0},

where H1 = span{e1}. We first see that N = N1, that is, N1 contains all bound

states of (1.4). Otherwise, if there exists u ∈ H1 \ {0} such that I ′µ(u) = 0, then

noting that λ = 0 and µ > µ1, we get the following contradiction

0 = 〈I ′µ(u), u〉 = (µ1 − µ)

∫
R3

u2 dx−
∫
R3

|u|p+1 dx < 0.

Then we consider the following minimization problem

c1 = inf{Iµ(u) : u ∈ N1}.

It follows from N = N1 that c0 = c1. Next, we want to show c1 > 0. For

any fixed u ∈ N1, let u = u1 + u2, u1 ∈ H1, u2 ∈ H2, where H2 denotes the

orthogonal complement of H1 in H. By the definition of N1, we have u2 6= 0.

Similar to the proof of Proposition 2.3 in [18], we deduce that for λ = 0,

(1.8) Iµ(u+ w) < Iµ(u), for all w ∈ {su+ v : s ≥ −1, v ∈ H1} \ {0}.

Hence, we get

(1.9) Iµ(u) = max{Iµ(v) : v ∈ H1 ⊕ R+u2}.

Since u2 6= 0, there exists s > 0 such that ‖su2‖ = ρ1, where ρ1 > 0 is given by

Lemma 2.4. Then by (1.9) and Lemma 2.4 we get

Iµ(u) ≥ Iµ(su2) ≥ α1 > 0.

Thus, we have c1 > 0, and then c0 > 0 by c0 = c1.

In case λ > 0 in (1.4), at least for λ > 0 small enough, it can be seen as

a small perturbation at λ = 0. So, it seems natural to look for a ground state of

(1.4) with positive energy, that is, to get c0 > 0. Following the argument of [18],

we find that (1.8) does not hold for λ > 0. This motivates us to doubt that the

ground state of (1.4) with positive energy does not exist. In other words, c0 > 0

may do not hold any more. Another main result of the present paper is to prove

that (1.4) has a nonnegative ground state with negative energy.

Theorem 1.2. Let p ∈ (3, 5), λ > 0 and (V1) hold. Then there is a δ1(λ) > 0

and δ1(λ) ≤ δ(λ) such that for any µ ∈ (µ1, µ1 + δ1(λ)), problem (1.4) has

a nonnegative ground state u0,µ with Iµ(u0,µ) < 0. Moreover, for any sequence

µ(n) ↓ µ1, u0,µ(n) → 0 strongly in H.

To prove Theorem 1.1 and Theorem 1.2, by delicate analysis of the nonlocal

term in (1.5) we first observe that the energy functional Iµ satisfies mountain

pass geometry for µ > µ1 and near µ1. Then using Ekeland’s variational principle



Standing Waves for Nonlinear Schrödinger–Poisson Equation 605

we show that (1.4) has a bound state with negative energy, which also means

that c0 < 0. Finally we show that c0 > −∞ by the condition (V1).

Next, as a comparison, we recall some known results of (1.4) in the case of

λ = 0, i.e.

(1.10) −∆u+ V (x)u = µu+ |u|p−1u, u ∈ H.

Using the positivity of e1, we know that problem (1.10) can not possess any

nonnegative bound states for µ > µ1. Furthermore, by the method of Szulkin

and Weth [18] we can prove that problem (1.10) has a ground state with positive

energy and the ground state must be sign-changing for µ > µ1. Theorem 1.1

and Theorem 1.2 show a quite different phenomenon for the problem (1.4) in

the case of λ > 0 and µ > µ1. On the other hand, by using the symmetric

property of (1.10) and the condition (V1), problem (1.10) may have infinitely

many nontrivial bound states for any µ ∈ R and 1 < p < 5. Our next theorem

shows that problem (1.4) with λ > 0 also possesses infinitely many nontrivial

bound states for any µ ∈ R and p ∈ (3, 5).

Theorem 1.3. Let p ∈ (3, 5), λ > 0 and (V1) hold. Then for any µ ∈ R,

problem (1.4) has infinitely many nontrivial bound states.

Remark 1.4. We remark here that the condition (V1) was first introduced by

Rabinowitz [15], which guarantees the compact embedding of H ↪→ Lq(R3) (2 ≤
q < 6). A weaker version has been given by Bartsch and Wang [8]. We emphasize

here that all theorems in the present paper will be still true if the condition (V1)

is replaced by the weaker condition given by Bartsch and Wang [8].

This paper is organized as follows. In Section 2, we will prove Theorem 1.1.

A key step is to prove that the functional Iµ satisfies mountain pass geometry

for µ in a small right neighborhood of µ1. In Section 3, we will study a suitable

minimization problem and then use Ekeland variational principle to prove The-

orem 1.2. In Section 4, we will use a generalized version of symmetric mountain

pass theorem of Rabinowitz [16] to prove Theorem 1.3.

2. Nonnegative bound state with positive energy

This section is devoted to the proof of Theorem 1.1. First, we prove a com-

pactness lemma to the functional Iµ on H.

Lemma 2.1. Let p ∈ (3, 5), λ, µ > 0 and (V1) hold. Assume that a sequence

(un) ⊂ H satisfies |Iµ(un)| ≤ M < +∞ for all n ∈ N and I ′µ(un)
n−→ 0, then

(un) has a strongly convergent subsequence in H.

Remark 2.2. In view of Lemma 2.1, we say that Iµ satisfies Palais–Smale

((PS) in short) condition.
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Proof. By compactness of the embedding H ↪→ Lq(R3)(2 ≤ q < 6), it is

sufficient to show that (un) is bounded in H. Choosing β ∈ (1/(p+ 1), 1/4),

then for n large enough we have

(2.1) M + ‖un‖ ≥ Iµ(un)− β〈I ′µ(un), un〉

≥
(

1

2
− β

)
‖un‖2 −

(
1

2
− β

)
µ

∫
R3

u2
n dx+

(
β − 1

p+ 1

)∫
R3

|un|p+1 dx.

For µ > 0, by (V1) there exists R(µ) > 0 such that V (x) ≥ 2µ for all |x| ≥ R(µ).

Then

(2.2)

∫
|x|≥R(µ)

u2
n dx ≤

∫
|x|≥R(µ)

V (x)

2µ
u2
n dx ≤

1

2µ
‖un‖2.

On the other hand, by Young’s inequality we get for any ε > 0,∫
|x|≤R(µ)

u2
n dx ≤ C(µ)

(∫
|x|≤R(µ)

|un|p+1 dx

)2/(p+1)

(2.3)

≤ ε
∫
R3

|un|p+1 dx+ C(ε, µ).

Taking ε = (β − 1/(p+ 1))/((1/2− β)µ) in (2.3) and combining (2.1)–(2.3) we

deduce that

(2.4) M + ‖un‖ ≥
1

2

(
1

2
− β

)
‖un‖2 − C(β, µ).

Thus, (un) is bounded in H. �

Remark 2.3. The proof of (2.4) will play a crucial role to show that c0 >

−∞, where c0 is defined by (1.7), see the proof of Theorem 1.2, step 2, in Sec-

tion 3.

In order to prove Theorem 1.1, we use the following classical mountain pass

Lemma due to Ambrosetti and Rabinowitz [3].

Lemma 2.4. Let E be a real Banach space and the functional I ∈ C1(E,R).

Suppose that I(0) = 0 and

(a) there are constants ρ, α > 0 such that I|∂Bρ ≥ α; and

(b) there is u ∈ E \Bρ such that I(u) < 0.

Let c be defined by

c = inf
g∈Γ

max
u∈g[0,1]

I(u) with Γ = {g ∈ C([0, 1], E) : g(0) = 0, g(1) = u}.

If I satisfies the (PS) condition, then I possesses a critical value c ≥ α.

In view of Lemma 2.1, a key step of applying Lemma 2.4 is to verify that the

functional Iµ satisfy mountain pass geometry, i.e. (a) and (b) in Lemma 2.4. In

the case of 0 < µ < µ1, it is easy to prove that the functional Iµ defined on H
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satisfies mountain pass geometry. However, for µ > µ1, it is a difficult issue

to prove that the mountain pass geometry holds for Iµ. We have to analyze

the structure of the functional Iµ delicately and find that the competing of

the Poisson term
∫
R3 φuu

2 dx and the nonlinear term
∫
R3 |u|p+1 dx may produce

a new phenomenon to the geometric structure of the functional Iµ. And we

manage to get the mountain pass geometry of the functional Iµ for µ in a small

right neighbourhood of µ1. The more precise statement is the following lemma.

Lemma 2.5. Let p ∈ (3, 5), λ > 0 and (V1) hold. Then we have the following

conclusions:

(a) If 0 < µ < µ1, then 0 is a local minimum of Iµ.

(b) There are positive constants δ(λ), ρ(λ) and α(λ) such that, for any µ ∈
[µ1, µ1 + δ(λ)), Iµ|∂Bρ(λ) ≥ α(λ).

(c) There is u ∈ H1(R3) with ‖u‖ > ρ(λ) such that Iµ(u) < 0 for any µ > 0.

Proof. (a) For any u ∈ H \ {0}, from p ∈ (3, 5), λ > 0, 0 < µ < µ1 and the

continuity of the Sobolev embedding of H in Lp+1(R3), we deduce that

Iµ(u) =
1

2
‖u‖2 +

λ

4

∫
R3

φuu
2 dx− 1

p+ 1

∫
R3

|u|p+1 dx− µ

2

∫
R3

u2 dx

≥ 1

2
‖u‖2 − C‖u‖p+1 − µ

2µ1
‖u‖2 = ‖u‖2

(
1

2
− µ

2µ1
− C‖u‖p−1

)
.

Choosing ρ0 = ‖u‖ small enough such that Cρp−1
0 ≤ (1 − µ/µ1)/4, we obtain

that

Iµ(u) ≥ 1

4

(
1− µ

µ1

)
ρ2

0.

Therefore the conclusion (a) follows.

(b) Our goal is to prove that for any λ > 0, there exist ρ(λ), α(λ), δ(λ) > 0

such that for any µ1 ≤ µ < µ1 + δ(λ),

(2.5) Iµ(u) ≥ α(λ), for all u ∈ H with ‖u‖ = ρ(λ).

We first show that for any λ > 0, there exist constants ρ(λ), α(λ) > 0 such that

(2.6) Iµ1
(u) ≥ α(λ), for all u ∈ H with ‖u‖ = ρ(λ).

Define

F (u) =

∫
R3

φuu
2 dx for u ∈ H.

Then for any u ∈ H, there exists t = t(u) ∈ R and v ∈ H2 such that u = te1 + v

and ‖u‖2 = t2 + ‖v‖2.
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By the mean value theorem we have

|F (u)− F (te1)| ≤ |〈F ′(te1 + θv), v〉|, for θ ∈ [0, 1](2.7)

= 4

∣∣∣∣ ∫
R3

φte1+θv(te1 + θv)v dx

∣∣∣∣
≤ 4‖φte1+θv‖L6‖te1 + θv‖L3‖v‖L2

≤C‖te1 + θv‖3‖v‖ ≤ C(|t|3‖v‖+ ‖v‖4).

Therefore,

Iµ1
(u) =

1

2
‖u‖2 − µ1

2

∫
R3

u2 dx(2.8)

+
λ

4
(F (u)− F (te1) + F (te1))− 1

p+ 1

∫
R3

|u|p+1 dx

≥ 1

2
(t2 + ‖v‖2)− 1

2
(t2 +

µ1

µ2
‖v‖2)− C1λ(|t|3‖v‖+ ‖v‖4)

+
λ

4
t4
∫
R3

φe1e
2
1 dx− C

∫
R3

(|te1|p+1 + |v|p+1) dx

=
1

2

(
1− µ1

µ2

)
‖v‖2 − C1λ(|t|3‖v‖+ ‖v‖4)

+ C2λt
4 − C3|t|p+1 − C4‖v‖p+1.

Setting ε1 = (1− µ1/µ2)/(4C1λ), then

1

2

(
1− µ1

µ2

)
‖v‖2 − C1λ|t|3‖v‖(2.9)

≥ 1

2

(
1− µ1

µ2

)
‖v‖2 − C1λ

(
ε1‖v‖2 +

1

ε1
t6
)

=
1

4

(
1− µ1

µ2

)
‖v‖2 − C5λ

2t6.

Noting that 3 < p < 5, for

|t| ≤ min

{
1,

(
C2λ

2(C3 + C5λ2)

)1/(p−3)}
, ξ,

and

‖v‖ ≤ min

{
1,

(
(1− µ1/µ2)/8

C1λ+ C4

)1/2}
, η,

we have

(2.10) −C5λ
2t6 + C2λt

4 − C3|t|p+1 ≥ C2λt
4 − (C3 + C5λ

2)|t|p+1 ≥ C2

2
λt4,
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and

1

4

(
1− µ1

µ2

)
‖v‖2 − C1λ‖v‖4 − C4‖v‖p+1(2.11)

≥ 1

4

(
1− µ1

µ2

)
‖v‖2 − C1λ‖v‖4 − C4‖v‖4

≥ 1

8

(
1− µ1

µ2

)
‖v‖2 ≥ 1

8

(
1− µ1

µ2

)
‖v‖4.

Combining (2.8)–(2.11) we get

(2.12) Iµ1(u) ≥ C2

2
λt4 +

1

8

(
1− µ1

µ2

)
‖v‖4 ≥ C(λ)(t2 + ‖v‖2)2 = C(λ)‖u‖4.

Let ρ(λ) = min{ξ, η}. Then by (2.12) we see that (2.6) holds.

For µ > µ1, we have

Iµ(u) = Iµ1
(u)− 1

2
(µ− µ1)

∫
R3

u2 dx ≥ Iµ1
(u)− (µ− µ1)C‖u‖2.

This and (2.6) imply that there is δ(λ) > 0 such that (2.5) holds.

(c) Let e0 ∈ H \ {0} and s > 0. Then we have that

Iµ(se0) =
s2

2

(
‖e0‖2 − µ

∫
R3

e2
0 dx

)
+
λs4

4

∫
R3

φe0e
2
0 dx−

sp+1

p+ 1

∫
R3

|e0|p+1 dx

≤ s2

2
‖e0‖2 +

λs4

4

∫
R3

φe0e
2
0 dx−

sp+1

p+ 1

∫
R3

|e0|p+1 dx.

Since ‖e0‖2,
∫
R3 φe0e

2
0 dx and

∫
R3 |e0|p+1 dx are fixed and positive, the fact of

p ∈ (3, 5) implies that there exists s0 > 0 such that

‖s0e0‖ > ρ(λ) and Iµ(s0e0) < 0.

The conclusion (c) follows from choosing u = s0e0. �

Proof of Theorem 1.1. We denote

c1,µ = inf
γ∈Γ

max
t∈[0,1]

Iµ(γ(t)) with Γ = {γ ∈ C([0, 1], H) : γ(0) = 0, γ(1) = s0e0}.

By Lemmas 2.1 and 2.5, the mountain pass Lemma 2.4 implies that c1,µ is

a critical value of Iµ and c1,µ > 0. The proof of nonnegativity for at least one

of the corresponding critical point is inspired by the idea of [1]. In fact, since

Iµ(u) = Iµ(|u|) in H, for every n ∈ N, there exists γn ∈ Γ with γn(t) ≥ 0 (almost

everywhere in R3) for all t ∈ [0, 1] such that

(2.13) c1,µ ≤ max
t∈[0,1]

Iµ(γn(t)) < c1,µ +
1

n
.
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Consequently, by means of Ekeland’s principle (see for instance [5]), there exists

γ∗n ∈ Γ with the following properties:

(2.14)



c1,µ ≤ max
t∈[0,1]

Iµ(γ∗n(t)) ≤ max
t∈[0,1]

Iµ(γn(t)) < c1,µ +
1

n
;

max
t∈[0,1]

‖γn(t))− γ∗n(t))‖ < 1√
n

;

there exists tn ∈ [0, 1] such that zn = γ∗n(tn) satisfies:

Iµ(zn) = max
t∈[0,1]

Iµ(γ∗n(t)), and ‖I ′µ(zn)‖ ≤ 1√
n
.

By Lemma 2.1 we get a convergent subsequence (still denoted by (zn)n∈N). We

may assume that zn → z in H1(R3) as n → ∞. On the other hand, by (2.14),

we also arrive at γn(tn)→ z in H1(R3) as n→∞. Since γn(t) ≥ 0, we conclude

that z ≥ 0, z 6≡ 0 in R3 with Iµ(z) > 0 and it is a nonnegative bound state of

problem (1.4).

Let u1,µ be the nonnegative bound state given by the above proof, that is,

I ′µ(u1,µ) = 0 and Iµ(u1,µ) = c1,µ.

We claim that for any sequence µ(n) ↓ µ1, there exists uµ1 ∈ H with I ′µ1
(uµ1) = 0

and Iµ1(uµ1) > 0, such that u1,µ(n) → uµ1 strongly inH. In fact, by the definition

of c1,µ and the proof of Lemma 2.5(c), we deduce that for n large enough,

0 < α(λ) ≤ c1,µ(n) ≤ max
s≥0

Iµ(n)(se0)

≤ max
s≥0

{
s2

2
‖e0‖2 +

λs4

4

∫
R3

φe0e
2
0 dx−

sp+1

p+ 1

∫
R3

|e0|p+1 dx

}
.

Thus, the critical value sequence {c1,µ(n)} is bounded from above and below.

Then by the proof of Lemma 2.1 we see that the claim holds. �

3. Nonnegative ground state with negative energy

In this section, we prove another main result of this paper, that is, problem

(1.4) has a nonnegative ground state with negative energy.

Proof of Theorem 1.2. We divide the proof into three steps.

Step 1. We claim that there exists w ∈ H such that

I ′µ(w) = 0 and Iµ(w) < 0.

For ρ(λ) > 0 given in the proof of Lemma 2.5, we set

(3.1) c2,µ = inf{Iµ(u) : ‖u‖ ≤ ρ(λ)}.

It is clear that c2,µ > −∞.
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We will show that c2,µ < 0. In fact, since µ > µ1 we have for t > 0 small

enough,

Iµ(te1) =
t2

2

(
‖e1‖2 − µ

∫
R3

e2
1 dx

)
(3.2)

+
λ

4
t4
∫
R3

φe1e
2
1 dx−

1

p+ 1
tp+1

∫
R3

|e1|p+1 dx

=
t2

2

(
1− µ

µ1

)
+ Cλt4 − Ctp+1 < 0.

This implies that c2,µ < 0. Note that if (un) is a minimizing sequence of c2,µ, then

(|un|) is also a minimizing of c2,µ. Therefore by (3.1) and Ekeland’s variational

principle there exists a sequence (un) in H and un ≥ 0 such that

Iµ(un)
n−→ c2,µ and I ′µ(un)

n−→ 0.

It follows from Lemma 2.1 that there exists w ∈ H and w ≥ 0 such that I ′µ(w) = 0

and Iµ(w) < 0.

Step 2. We claim that there exists u0,µ ∈ H such that

I ′µ(u0,µ) = 0 and Iµ(u0,µ) = c0,µ < 0,

where

c0,µ = inf{Iµ(u) : u ∈ N}, N = {u ∈ H \ {0} : I ′µ(u) = 0}.

By Step 1 we know that N 6= ∅ and c0,µ < 0. We will show that c0,µ > −∞.

For any u ∈ N , similar to the proof of (2.4), we have that

Iµ(u) = Iµ(u)− β〈I ′µ(u), u〉 ≥ 1

2

(
1

2
− β

)
‖u‖2 − C(β, µ),

where β ∈ (1/(p+ 1), 1/4). Thus c0,µ > −∞. Choosing un ∈ N such that

Iµ(un)
n−→ c0,µ and I ′µ(un)

n−→ 0, then by Lemma 2.1 there exists u0,µ ∈ H

such that I ′µ(u0,µ) = 0 and Iµ(u0,µ) = c0,µ, which means that problem (1.4) has

a ground state u0,µ with Iµ(u0,µ) < 0.

Step 3. We claim that the solutions given by Steps 1 and 2 coincide. The

proof is divided into two steps. In the first place, for any u 6= 0 and u is a solution

of (1.4) with µ = µ1, we have that

‖u‖2 − µ1

∫
R3

|u|2 dx+

∫
R3

φuu
2 dx =

∫
R3

|u|p+1 dx,

and hence

Iµ1(u) =

(
1

2
− 1

p+ 1

)(
‖u‖2 − µ1

∫
R3

|u|2 dx
)

+

(
1

4
− 1

p+ 1

)∫
R3

φuu
2 dx.

Since ‖u‖2 ≥ µ1

∫
R3 |u|2 dx for any u ∈ H,

Iµ1
(u) ≥

(
1

4
− 1

p+ 1

)∫
R3

φuu
2 dx > 0.
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In the second place, let u0,µ be the ground state given by the above Step 2. For

any sequence µ(n) ↓ µ1, by the proof of Lemma 2.1 we deduce that u0,µ(n) must

converge to a critical point of Iµ1
with non-positive energy, that is, 0. Hence there

is δ1(λ) > 0 and δ1(λ) ≤ δ(λ) such that for µ ∈ (µ1, µ1 + δ1(λ)), ‖u0,µ‖ < ρ(λ),

which implies that c0,µ = c2,µ. Hence we can conclude that w = u0,µ, which

is a nonnegative ground state of (1.4) for µ ∈ (µ1, µ1 + δ1(λ)). The proof of

Theorem 1.2 is complete. �

Remark 3.1. (a) Combining Theorems 1.1 and 1.2, we know that (1.4) has

at least two nonnegative bound states u0,µ and u1,µ for µ ∈ (µ1, µ1 + δ1(λ)).

Theorem 1.2 implies that the ground state u0,µ bifurcates from zero solution.

But Theorem 1.1 implies that the bound state u1,µ can not bifurcate from zero

solution.

(b) In the proof of Step 2 of Theorem 1.2, we do not use the Nehari manifold

method, that is, we do not consider the following minimization problem

c0 = inf{Iµ(u) : u ∈M}, M = {u ∈ H \ {0} : 〈I ′µ(u), u〉 = 0}.

This is because for µ > µ1, we cannot deduce that 0 6∈ ∂M.

4. Infinitely many nontrivial bound states

In this section, we will prove Theorem 1.3 by using the condition (V1) and

the fact that the problem (1.4) is symmetric with respect to u ∈ H. We start

with the following Theorem 4.1 from Rabinowitz [16].

Theorem 4.1. Let E be an infinite dimensional Banach space and let I ∈
C1(E,R) be even and I satisfies (PS) conditions. Suppose that I(0) = 0 and

E = Y ⊕X, where Y is finite dimensional and I satisfies:

(a) there are constants ρ, α > 0 such that I|∂Bρ∩X ≥ α and

(b) for each finite dimensional subspace Ẽ ⊂ E, there is an R = R(Ẽ) such

that I ≤ 0 on Ẽ \BR(Ẽ).

Then I possesses an unbounded sequence of critical values.

We are now in a position to use this theorem to prove that the problem (1.4)

has infinitely many nontrivial bound states.

Proof of Theorem 1.3. If µ < µ1, then we may use standard symmetric

mountain pass theorem [3], [16] to get the conclusion. In the following, we may

assume without loss of generality that µk ≤ µ < µk+1, where µk is the k-th

eigenvalue of −∆ + V in H. From Lemma 2.1, we know that Iµ satisfies (PS)

condition. Clearly Iµ(0) = 0. Choosing E = H, Y = span{e1, . . . , ek} and

X = Y ⊥, we are in a position to verify (a) and (b) of Theorem 4.1.
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(a′) For any u ∈ X, since µk ≤ µ < µk+1, we have that∫
R3

(|∇u|2 + V (x)u2) dx ≥ µk+1

∫
R3

u2 dx.

Therefore

Iµ(u) ≥ 1

2

(
1− µ

µk+1

)
‖u‖2 +

λ

4

∫
φuu

2 dx− Cp+1

p+ 1
‖u‖p+1

≥ 1

2

(
1− µ

µk+1

)
‖u‖2

(
1− 2µk+1Cp+1

(p+ 1)(µk+1 − µ)
‖u‖p−1

)
.

Hence there is a ρ > 0 such that for ‖u‖ = ρ,

Iµ(u) ≥ 1

4

(
1− µ

µk+1

)
ρ2.

(b′) For each finite dimensional Ẽ ⊂ H and for any v ∈ Ẽ,

Iµ(v) =
1

2
‖v‖2 − µ

2

∫
v2 dx+

λ

4

∫
φvv

2 dx− 1

p+ 1

∫
|v|p+1 dx

≤ 1

2
‖v‖2 − µ

2

∫
v2 dx+

λC

4
‖v‖4 − 1

p+ 1

∫
|v|p+1 dx.

Since Ẽ is finite dimensional and p ∈ (3, 5), we see that there is R := R(Ẽ)

such that for all v ∈ Ẽ \BR(Ẽ), Iµ(v) ≤ 0.

Now using Theorem 4.1 we know that Iµ possesses an unbounded sequence of

critical values and hence the problem (1.4) has infinitely many nontrivial bound

states. �
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