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A FOURTH-ORDER EQUATION WITH CRITICAL GROWTH:

THE EFFECT OF THE DOMAIN TOPOLOGY

Jéssyca Lange Ferreira Melo — Ederson Moreira dos Santos

Abstract. In this paper we prove the existence of multiple classical solu-
tions for the fourth-order problem

∆2u = µu+ u2∗−1 in Ω,

u, −∆u > 0 in Ω,

u, ∆u = 0 on ∂Ω,

where Ω is a smooth bounded domain in RN , N ≥ 8, 2∗ = 2N/(N −4) and

µ1(Ω) is the first eigenvalue of ∆2 in H2(Ω)∩H1
0 (Ω). We prove that there

exists 0 < µ < µ1(Ω) such that, for each 0 < µ < µ, the problem has at

least catΩ(Ω) solutions.

1. Introduction

Brézis and Nirenberg [8] investigated the question about the existence of

a classical solution for the second-order problem

(BN)

−∆u = λu+ u2∗−1, u > 0 in Ω,

u = 0 on ∂Ω,
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where 2∗ = 2N/(N − 2), N ≥ 3 and Ω ⊂ RN is a bounded smooth domain. Let

λ1(Ω) be the first eigenvalue of (−∆, H1
0 (Ω)). It was proved in [8] that:

(a) (BN) has no solution for λ ≥ λ1(Ω). If Ω is also starshaped, then the

Pohožaev identity [22] guarantees that (BN) has no solution for λ ≤ 0.

(b) For N ≥ 4 the problem (BN) has a solution for every 0 < λ < λ1(Ω).

(c) In case N = 3, also called the critical dimensional case, the problem

is more complex. Indeed, in case Ω is starshaped, (BN) has no solution

when the parameter λ is positive and small enough and, in the particular

case when Ω is an open ball, (BN) has a solution if, and only if, λ1(Ω)/4 <

λ < λ1(Ω).

In contrast to the case when Ω is starshaped, consider N ≥ 3 and a ring Ω ⊂
RN . We know that the embedding H1

0,rad(Ω) ↪→ L2∗
(Ω) is compact; see Ni [21,

Radial Lemma]. Hence, (BN) has a radial solution for every λ ∈ (−∞, λ1(Ω)).

The above description shows that the shape of Ω and the dimension N in-

terfere in the set of solutions for (BN). Rey [23], [25] observed that the number

of solutions of (BN) is strongly influenced by the topology of Ω. Indeed, us-

ing arguments based on the Lusternik–Schnirelman category, it was proved by

Rey [23] for N ≥ 5, after by Lazzo [17] for N ≥ 4, that (BN) has at least catΩ(Ω)

solutions if the parameter λ > 0 is sufficiently small.

When using the Lusternik–Schnirelman theory to get the existence of mul-

tiple solutions for the problem (BN), the topological arguments applied require

that λ be positive and close to zero. In particular, such procedure only works

for non-critical dimensions.

In this paper, also inspired by the just described results, we study the exis-

tence of multiple classical solutions for the fourth-order problem

(P)


∆2u = µu+ u2∗−1 in Ω,

u, −∆u > 0 in Ω,

u, ∆u = 0 on ∂Ω,

where Ω is a smooth bounded domain in RN , N ≥ 8, 0 < µ < µ1(Ω), µ1(Ω) is

the first eigenvalue of (∆2, E(Ω)), E(Ω) := H2(Ω)∩H1
0 (Ω), and 2∗ = 2N/(N−4)

is the critical exponent for the embedding of E(Ω) into L2∗(Ω).

In [27], van der Vorst proved that if N ≥ 5, µ ≥ µ1(Ω) or, µ ≤ 0 and if the

domain Ω is starshaped, then (P) has no solution. In the same paper, assuming

that Ω is a general bounded regular domain in RN , N ≥ 8 and µ ∈ (0, µ1(Ω)),

it was proved that (P) has a solution. Later, Gazzola et al. [13] proved that

N = 5, 6, 7 are the critical dimensions for the problem (P) in the sense that (P)

has no solution if µ > 0 is small enough and Ω is an open ball in RN .

Our main contribution in this paper is to present a result on the existence of

multiple solutions for (P) for all non-critical dimensions, namely, for all N ≥ 8.
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Theorem 1.1. If Ω is a smooth bounded domain in RN , N ≥ 8, then there

exists 0 < µ < µ1(Ω) such that, for each 0 < µ < µ, the problem (P) has at least

catΩ(Ω) classical solutions.

We mention that El-Mehdi and Selmi [11], inspired by the procedures adopted

in [23]–[25] to deal with (BN), proved that for N > 8 the problem (P) has at

least catΩ(Ω) solutions if the parameter µ > 0 is sufficiently small.

More recently, Abdelhedi [1] used similar techniques to those in [11] to prove

the existence of multiple solutions for a similar problem.

We stress that the condition N > 8 seems essential in the arguments in [1]

and [11] as well as N ≥ 5 was required by Rey in [23]. In particular, it has been

left as open problem the influence of the domain topology on the existence of

multiple solutions for problem (P) in case N = 8; see [11, Remark 1.4].

To prove our result we use a different approach from that in [1, 11], which

seems more direct and works for N ≥ 8. We must also say that instead of pro-

jections we employ suitable extensions; for instance compare [11, p. 419] and

(4.3) in this paper. In addition, we believe that the extension and symmetriza-

tion techniques in this paper for functions in H2(Ω) ∩ H1
0 (Ω) will be useful to

treat other fourth-order problems. In particular, the proofs of Lemmas 4.4, 4.6

and equation (4.9) exemplify how our extension procedure replaces the standard

extension by zero used to deal with second-order problems.

This manuscript is organized as follows. In Section 2 we set the variational

framework. In Section 3 we prove some compactness results and then we prove

Theorem 1.1 in Section 4. We also include an appendix within we prove some

technical results from Sections 3 and 4.

2. Variational framework

We first fix some notations. We consider the space E(Ω) := H2(Ω) ∩H1
0 (Ω)

endowed with the norm ‖u‖ := |∆u|2, induced by the inner product

〈u, v〉 =

∫
Ω

∆u∆v dx, u, v ∈ E(Ω).

In this part we will consider the following general assumptions: Ω ⊂ RN ,

N ≥ 5, is a bounded smooth domain and

0 < µ < µ1(Ω) = inf
u∈E(Ω)
u6=0

|∆u|22
|u|22

= inf
u∈E(Ω)
|u|2=1

|∆u|22.

Consider the Sobolev constant for the embedding E(Ω) ↪→ L2∗(Ω), given by

(2.1) S(Ω) = inf

{∫
Ω

|∆u|2 dx : u ∈ E(Ω),

∫
Ω

|u|2∗dx = 1

}
.
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It is known that S(Ω) does not depend on Ω and S(Ω) is not achieved except

when Ω = RN [26]. Moreover, S(Ω) = S, where

(2.2) S = inf

{∫
RN
|∆u|2dx : u ∈ D2,2(RN ),

∫
RN
|u|2∗ dx = 1

}
,

which is attained precisely by the functions S(4−N)/8ϕδ,a, with

(2.3) ϕδ,a(x) =
[(N − 4)(N − 2)N(N + 2)](N−4)/8δ(N−4)/2

(δ2 + |x− a|2)(N−4)/2

=
CNδ

(N−4)/2

(δ2 + |x− a|2)(N−4)/2
,

for varying a ∈ RN and δ > 0 [13, Lemma 1]. We recall that the functions given

by (2.3) are precisely the positive regular solutions of

∆2u = u2∗−1 in RN .

Define, for µ ∈ (0, µ1(Ω)), the norm

(2.4) ‖u‖µ := (|∆u|22 − µ|u|22)1/2, for all u ∈ E(Ω),

and observe the equivalence

(2.5) ‖u‖µ ≤ ‖u‖ ≤ c(Ω)‖u‖µ, for all u ∈ E(Ω),

where c(Ω) = (1− µ/(µ1(Ω)))−1/2 > 0.

To study the existence of solutions for the problem (P), we will consider the

functional

(2.6) I(u) :=
1

2

∫
Ω

|∆u|2 dx− µ

2

∫
Ω

(u+)2 dx− 1

2∗

∫
Ω

(u+)2∗ dx, u ∈ E(Ω).

Definition 2.1. Let Ω ⊂ RN , N ≥ 8, be a bounded smooth domain and

0 < µ < µ1(Ω). We say that u ∈ E(Ω) is a weak solution of (P) if u is a critical

point of I, that is, u ∈ E(Ω) satisfies∫
Ω

∆u∆v dx = µ

∫
Ω

(u+)v dx+

∫
Ω

(u+)2∗−1v dx, for all v ∈ E(Ω).

Lemma 2.2. Let Ω ⊂ RN , N ≥ 8, be a bounded smooth domain and 0 < µ <

µ1(Ω). Then the C4(Ω)-classical solutions of (P) are precisely the nontrivial

critical points of the functional I defined by (2.6).

Proof. The results in [26, Appendix B], [2, Theorem 12.7] and [14, Theo-

rems 2.19 and 2.20] guarantee that the nontrivial critical points of I are precisely

the classical solutions of (P). We mention that the arguments in [9, p. 375] can

be used to prove that every nontrivial critical point of I satisfies u,−∆u > 0

in Ω. �
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From now on we will turn our attention to study the functional I, or equi-

valently to study

(2.7) Iµ(u) :=

∫
Ω

|∆u|2 dx− µ
∫

Ω

(u+)2 dx,

restricted to the manifold

(2.8) V := {u ∈ E(Ω) : ψ(u) = 1} where ψ(u) :=

∫
Ω

(u+)2∗ dx.

We also define

(2.9) m(µ,Ω) := inf{Iµ(u);u ∈ V }

and, if Ω = Bρ(0), we denote m(µ, ρ) := m(µ,Bρ(0)).

We will prove that the functional Iµ|V has at least as many critical points as

the Lusternik–Schnirelman category of Ω, which up to suitable multiplicatives

constants are classical solutions for (P).

3. Compactness

The next lemma describes the lack of compactness of the embedding of

D2,2(RN ) into L2∗(RN ). A similar result for the embedding of D1,2(RN ) into

L2∗
(RN ) is proved in [28, Lemma 1.40]; see also [4], [5], [18].

Lemma 3.1 (Concentration and compactness). Let (un) ⊂ D2,2(RN ) be a se-

quence such that

un ⇀ u in D2,2(RN ),(3.1)

|∆(un − u)|2 ∗
⇀ λ in the sense of measures on RN ,(3.2)

|un − u|2∗ ∗
⇀ ν in the sense of measures on RN ,(3.3)

un → u a.e. on RN .(3.4)

Define

λ∞ = lim
R→∞

lim
n→∞

∫
|x|≥R

|∆un|2 dx, ν∞ = lim
R→∞

lim
n→∞

∫
|x|≥R

|un|2∗ dx.

Then it follows that

‖ν‖2/2∗ ≤ S−1‖λ‖,(3.5)

ν2/2∗
∞ ≤ S−1λ∞,(3.6)

lim
n→∞

|∆un|22 = |∆u|22 + ‖λ‖+ λ∞,(3.7)

lim
n→∞

|un|2∗
2∗

= |u|2∗
2∗

+ ‖ν‖+ ν∞.(3.8)

Moreover, if u = 0 and ‖ν‖2/2∗ = S−1‖λ‖, then λ and ν are concentrated at

a common single point.

Proof. See Appendix A. �
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Lemma 3.2. Assume 0 < µ < µ1(Ω). Any (PS)-sequence for I is bounded.

Proof. It follows from standard arguments, since

‖u‖µ =

(∫
Ω

|∆u|2 dx− µ
∫

Ω

(u+)2 dx

)1/2

, u ∈ E(Ω)

is a norm in E(Ω) and 2∗ > 2. �

Lemma 3.3. Assume 0 < µ < µ1(Ω). Any sequence (un) ⊂ E(Ω) such that

I(un)→ d < c∗ :=
2

N
SN/4 and I ′(un)→ 0

contains a convergent subsequence.

Proof. By Lemma 3.2 it follows that, up to a subsequence,

un ⇀ u in E(Ω), un → u in L2(Ω) and un → u a.e. on Ω.

For every ϕ ∈ E(Ω) we have

(3.9)

∫
Ω

∆un∆ϕdx− µ
∫

Ω

(u+
n )ϕdx =

∫
Ω

(u+
n )2∗−1ϕdx+ on(1).

From the continuous embedding E(Ω) ↪→ L2∗(Ω), (u+
n ) is bounded in L2∗(Ω)

and consequently ((u+
n )2∗−1) is bounded in L2∗/(2∗−1)(Ω); we have also u+

n → u+

almost everywhere on Ω. Hence, as a consequence of the Brézis–Lieb lemma, see

for instance [16, Lemma 4.8], (u+
n )2∗−1 ⇀ (u+)2∗−1 in L2∗/(2∗−1)(Ω), and we

obtain

(3.10)

∫
Ω

(u+
n )2∗−1ϕdx→

∫
Ω

(u+)2∗−1ϕdx, for all ϕ ∈ L2∗(Ω),

in particular, (3.10) holds for any ϕ ∈ E(Ω). From un → u in L2(Ω) we get

(3.11)

∫
Ω

(u+
n )ϕdx→

∫
Ω

(u+)ϕdx, for all ϕ ∈ E(Ω).

Now, since un ⇀ u in E(Ω), we obtain

(3.12)

∫
Ω

∆un∆ϕdx =: 〈un, ϕ〉 → 〈u, ϕ〉 :=

∫
Ω

∆u∆ϕdx, for all ϕ ∈ E(Ω).

Thus, taking n→∞ in (3.9) and using (3.10)–(3.12) we obtain

(3.13)

∫
Ω

∆u∆ϕdx− µ
∫

Ω

(u+)ϕdx =

∫
Ω

(u+)2∗−1ϕdx, for all ϕ ∈ E(Ω),

that is, u is a weak solution for the problem∆2u = µ(u+) + (u+)2∗−1 in Ω,

u, ∆u = 0 on ∂Ω,
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and u,−∆u are nonnegative in Ω. Indeed, since −∆: E(Ω) → L2(Ω) is an

isomorphism [15], it follows, from (3.13), that∫
Ω

∆u(−w) dx = µ

∫
Ω

(u+)[(−∆)−1w] dx+

∫
Ω

(u+)2∗−1[(−∆)−1w] dx,

for all w ∈ L2(Ω), and, from the weak maximum principle,

(−∆)−1w ≥ 0, for all w ∈ L2(Ω) and w ≥ 0,

and thus ∫
Ω

∆u(−w) dx ≥ 0, if w ≥ 0.

Hence u ∈ E(Ω) and −∆u ≥ 0 in Ω. Consequently, by the weak maximum

principle, u ≥ 0 in Ω.

With ϕ = u in (3.13) we obtain

(3.14) |∆u|22 − µ|u+|22 = |u+|2∗
2∗

and

(3.15) I(u) =
1

2

[
|∆u|22 − µ|u+|22

]
− 1

2∗
|u+|2∗

2∗
=

(
1

2
− 1

2∗

)
|u+|2∗

2∗
≥ 0.

Writing now vn = un − u, see [28, p. 33] the Brézis–Lieb lemma leads to

(3.16) |u+
n |

2∗
2∗

= |u+|2∗
2∗

+ |v+
n |

2∗
2∗

+ on(1).

From un → u in L2(Ω), we also have

(3.17) |u+
n |22 = |u+|22 + |v+

n |22 + on(1).

Using now (3.16) and (3.17) we have

I(un) =
1

2
|∆un|22 −

µ

2
|u+
n |22 −

1

2∗
|u+
n |

2∗
2∗

= I(u) +
1

2
|∆vn|22 −

µ

2
|v+
n |22 −

1

2∗
|v+
n |

2∗
2∗

+ on(1),

because vn ⇀ 0 in E(Ω). Assuming I(un)→ d < c∗, we obtain

(3.18) I(u) +
1

2
|∆vn|22 −

µ

2
|v+
n |22 −

1

2∗
|v+
n |

2∗
2∗
→ d.

Using again (3.16) and (3.17)

I ′(un)un = |∆un|22 − µ|u+
n |22 − |u+

n |
2∗
2∗

= |∆vn|22 + 2〈vn, u〉+ |∆u|22 − µ|u+|22 − µ|v+
n |22 − |u+|2∗

2∗
− |v+

n |
2∗
2∗

+ on(1)

and since I ′(un)un → 0, we conclude, now using (3.14), that

|∆vn|22 − µ|v+
n |22 − |v+

n |
2∗
2∗
→ |∆u|22 − µ|u+|22 − |u+|2∗

2∗
= 0.

So, we may assume that |∆vn|22 − µ|v+
n |22 → b and |v+

n |
2∗
2∗
→ b.
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Since vn → 0 in L2(Ω), in particular, v+
n → 0 in L2(Ω). Then it follows that

|∆vn|22 → b. By the definition of S we have,

|∆vn|22 ≥ S|vn|22∗
≥ S|v+

n |22∗

which implies b ≥ Sb2/2∗ = Sb(N−4)/N . Thus, either b = 0 or b ≥ SN/4.

From (3.18),

I(u) +

(
1

2
− 1

2∗

)
b = I(u) +

2

N
b = d

and from (3.15), d ≥ 2/Nb. If b ≥ SN/4 we obtain

c∗ =
2

N
SN/4 ≤ 2

N
b ≤ d < c∗,

a contradiction. Hence, b = 0, and the proof is complete, because

‖un − u‖2 = ‖vn‖2 = |∆vn|22 → 0, that is, un → u in E(Ω). �

Lemma 3.4. Assume 0 < µ < µ1(Ω). Any sequence (un) ⊂ V such that

(3.19) Iµ(un)→ c < S, ‖I ′µ(un)‖∗ → 0,

contains a convergent subsequence, where ‖·‖∗ denotes the norm of the derivative

of Iµ|V , and is given by

‖I ′µ(u)‖∗ = min
λ∈R
‖I ′µ(u)− λψ′(u)‖, for all u ∈ V.

Proof. If (un) satisfies (3.19), then 0 ≤ Iµ(un)→ c and

‖I ′µ(un)‖∗ = ‖I ′µ(un)− λnψ′(un)‖ → 0, for λn ∈ R.

So, there exists (σn) ⊂ [0,+∞), σn → 0 such that∣∣∣∣ ∫
Ω

∆un∆w dx− µ
∫

Ω

(u+
n )w dx− λn

∫
Ω

(u+
n )2∗−1w dx

∣∣∣∣ ≤ σn‖w‖,
for all w ∈ E(Ω), λn ∈ R. The sequence (un) is bounded in E(Ω). Indeed,

‖un‖2 = ‖un‖2 − µ|u+
n |22 + µ|u+

n |22 = c+ on(1) + µ|u+
n |22,

and from the continuous embedding of L2∗(Ω) into L2(Ω), it follows that (un)

is bounded in E(Ω). Thus∣∣∣∣ ∫
Ω

[|∆un|2 − µ(u+
n )2] dx− λn

∫
Ω

(u+
n )2∗ dx

∣∣∣∣ ≤ σn‖un‖ ⇒ Iµ(un)− λn → 0,

that is, λn → c ≥ 0.

If c = 0, then

0 ≤
(

1− µ

µ1(Ω)

)
‖un‖2 = ‖un‖2 −

µ

µ1(Ω)
‖un‖2

≤‖un‖2 − µ|un|2 ≤ ‖un‖2 − µ|u+
n |2 = Iµ(un)→ 0,

and (un) converges strongly to 0 in E(Ω).
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If c > 0 then λn > 0 for n big enough. So, put vn = λ
1/(2∗−2)
n un. Taking I

given by (2.6),

I(vn) =
1

2

∫
Ω

[
|∆(λ1/(2∗−2)

n un)|2 − µ(λ1/(2∗−2)
n u+

n )2
]
dx

− 1

2∗

∫
Ω

(λ1/(2∗−2)
n u+

n )2∗ dx

=
1

2
λ2/(2∗−2)
n Iµ(un)− 1

2∗
λ2∗/(2∗−2)
n

→ 1

2
c2/(2∗−2)c− 1

2∗
c2∗/(2∗−2) =

2

N
cN/4

and

|I ′(vn)w| =
∣∣∣∣ ∫

Ω

[∆(λ1/(2∗−2)
n un)∆w − µ(λ1/(2∗−2)

n u+
n )w] dx

−
∫

Ω

(λ1/(2∗−2)
n u+

n )2∗−1w dx

∣∣∣∣
=λ1/(2∗−2)

n

∣∣∣∣ ∫
Ω

[∆un∆w − µ(u+
n )w − λn(u+

n )2∗−1w] dx

∣∣∣∣
≤λ1/(2∗−2)

n σn‖w‖,

for all w ∈ E(Ω). Hence

I(vn)→ 2

N
cN/4 <

2

N
SN/4 = c∗ and I ′(vn)→ 0.

From Lemma 3.3, (vn) contains a convergent subsequence, and then (un) also

contains a convergent subsequence. �

4. Multiplicity of solutions

We first recall a classical result in the theory of the Lusternik–Schnirelman

category [19].

Theorem 4.1 ([28, Theorem 5.20]). Let X be a Banach space, ϕ ∈ C1(X,R),

ψ ∈ C2(X,R), V = {v ∈ X : ψ(v) = 1} and for all v ∈ V , ψ′(v) 6= 0. If ϕ|V
is bounded from below and satisfies the (PS)c-condition for any c ∈

[
inf
V
ϕ, d

]
,

then ϕ|V has a minimum and the set ϕd := {v ∈ V : ϕ(v) ≤ d} contains at least

catϕd(ϕd) critical points of ϕ|V .

In our context, X = E(Ω), ψ(u) =
∫

Ω
(u+)2∗ dx and ϕ = Iµ.

Lemma 4.2. Let N ≥ 8 and 0 < µ < µ1(Ω). There exists v ∈ E(Ω)\{0},
with v > 0 in Ω such that

(4.1)
‖v‖2µ
|v|22∗

=
|∆v|22 − µ|v|22
|v|22∗

< S.

Proof. See Appendix B. �
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Lemma 4.3. If 0 < µ < µ1(Ω) and N ≥ 8, then m(µ,Ω) < S and there exists

u ∈ V , such that u,−∆u > 0 in Ω and Iµ(u) = m(µ,Ω), with m(µ,Ω) as defined

by (2.9).

Proof. By Lemma 4.2, there exists v ∈ E(Ω)\{0} nonnegative such that

|∆v|22 − µ|v|22
|v|22∗

< S.

Setting w = v/|v|2∗ , we have w ∈ V and

Iµ(w) = |∆w|22 − µ|w+|22 = |∆w|22 − µ|w|22 =
|∆v|22 − µ|v|22
|v|22∗

< S,

and therefore

m(µ,Ω) = inf
u∈V

Iµ(u) ≤ Iµ(w) < S.

By Lemma 3.4, Iµ|V satisfies the (PS)c-condition, with c = m(µ,Ω). By

Theorem 4.1, Iµ|V has a minimum, that is, there exists u ∈ V such that

Iµ(u) = m(µ,Ω) = min
u∈V

Iµ(u).

Now we show that u,−∆u > 0 in Ω. Since u is such that

|u+|2∗
2∗

= 1, Iµ(u) = |∆u|22 − µ|u+|22 = m(µ,Ω) > 0,

it follows from Lagrange multipliers theorem that u satisfies∫
Ω

∆u∆v dx = µ

∫
Ω

(u+)v dx+m(µ,Ω)

∫
Ω

(u+)2∗−1v dx, for all v ∈ E(Ω).

So,∫
Ω

∆u(−w) dx = µ

∫
Ω

(u+)[(−∆)−1w] dx+m(µ,Ω)

∫
Ω

(u+)2∗−1[(−∆)−1w] dx,

for all w ∈ L2(Ω) and (−∆)−1w ≥ 0, for all w ∈ L2(Ω), w ≥ 0. Thus,∫
Ω

∆u(−w)dx ≥ 0, for all w ≥ 0,

and therefore −∆u ≥ 0 and consequently u ≥ 0. Since u is nontrivial, it follows

by the strong maximum principle that u,−∆u > 0 in Ω. �

Lemma 4.4. If Ω1 and Ω2 are regular bounded domains in RN , N ≥ 8, such

that Ω1 ⊂⊂ Ω2 and 0 < µ < µ1(Ω2), then m(µ,Ω1) > m(µ,Ω2).

Proof. First we recall that Ω1 ⊂⊂ Ω2 implies that µ1(Ω2) < µ1(Ω1). So,

let u ∈ E(Ω1) be a function such that u,−∆u > 0 in Ω1 and∫
Ω1

(u+)2∗ dx = 1,

∫
Ω1

[|∆u|2 − µ(u+)2] dx = m(µ,Ω1),
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and take w as the solution for−∆w = −̃∆u in Ω2,

w = 0 on ∂Ω2,

where ∼ denotes the zero extension outside Ω1. Note that w ≥ 0 in Ω2 and

w > u in Ω1. Set w = w/|w|2∗,Ω2 . Then |w+|2∗,Ω2 = 1 and

m(µ,Ω2) ≤
∫

Ω2

[|∆w|2 − µ(w+)2] dx =
1

|w|22∗,Ω2

∫
Ω2

[|∆w|2 − µ(w+)2] dx

<

∫
Ω2

[|∆w|2 − µ(w+)2] dx <

∫
Ω1

[|∆u|2 − µ(u+)2] dx = m(µ,Ω1). �

Lemma 4.5. If Ω = Bρ(0) ⊂ RN , N ≥ 8 and 0 < µ < µ1(Ω), then m(µ, ρ) is

attained by a function u such that u,−∆u > 0 in Bρ(0) and u,−∆u are radially

symmetric. Moreover, such a solution u is unique.

Proof. Let u be a function such that u,−∆u > 0 in Bρ(0) and that realizes

m(µ, ρ). Denote by u∗ and (−∆u)∗ the Schwarz symmetrization of u and −∆u,

respectively. If v is the solution of−∆v = (−∆u)∗ in Bρ(0),

v = 0 on ∂Bρ(0),

then v = v∗. We just need to prove that u = v. By [3], see also [6, Lemma 2.8],

we have v ≥ u∗ and

|v > u∗| = 0⇔ −∆u = (−∆u)∗.

If |v > u∗| > 0, set w = v/|v|2∗ . So |w+|2∗ = 1 and

m(µ, ρ) ≤
∫
Bρ(0)

[|∆w|2 − µ(w+)2] dx =
1

|v|22∗

∫
Bρ(0)

[|∆v|2 − µ(v+)2] dx

<
1

|v|22∗

∫
Bρ(0)

[|(−∆u)∗|2 − µ(u∗)2] dx

<
1

|u∗|22∗

∫
Bρ(0)

[|(−∆u)∗|2 − µ(u∗)2] dx

=
1

|u+|22∗

∫
Bρ(0)

[| −∆u|2 − µ(u+)2] dx = m(µ, ρ),

which is a contradiction. Thus, −∆u = (−∆u)∗ and since u and v are solutions

for the problem −∆w = (−∆u)∗ in Bρ(0),

w = 0 on ∂Bρ(0),

it follows that u = v.

Finally we mention that the uniqueness of u can be proved arguing as in [12,

Section 3] by means of comparison principle for radial function [20]. �
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Now define β : V → RN by

(4.2) β(u) =

∫
Ω

|∆u|2x dx∫
Ω

|∆u|2 dx
.

Lemma 4.6. If (un) ⊂ V is such that ‖un‖2 = |∆un|22 → S, then

dist(β(un),Ω)→ 0.

Proof. Suppose, by contradiction, that dist(β(un),Ω) 6→ 0. So, there exists

r > 0 such that, up to a subsequence, dist(β(un),Ω) > r.

Set vn = un/|∆un|2 ∈ E(Ω) and wn as the Newtonian potential of ˜| −∆vn| ∈
L2(RN ), where ∼ denotes the zero extension outside Ω. Then, by [15, Theo-

rem 9.9], we know that wn ∈ D2,2(RN ) and

(4.3) −∆wn = ˜| −∆vn| a.e. in RN .

In particular, (wn) is a bounded sequence in D2,2(RN ). Then, up to a subse-

quence,

wn ⇀ w in D2,2(RN ),

|∆(wn − w)|2 ∗
⇀ λ in the sense of measures on RN ,

|wn − w|2∗ ∗
⇀ ν in the sense of measures on RN ,

wn → w a.e. on RN .

We have by Lemma 3.1, taking into account that λ∞ = 0 and wn ≥ |ṽn| in RN ,

1 = |∆w|22 + ‖λ‖,(4.4)

1

S2∗/2
≤ |w|2∗

2∗
+ ‖ν‖,(4.5)

and

(4.6) ‖ν‖2/2∗ ≤ 1

S
‖λ‖, |w|22∗

≤ 1

S
|∆w|22.

It follows that the pair (|∆w|22, ‖λ‖) ∈ {(1, 0), (0, 1)}. Indeed, from (4.6)

‖ν‖ ≤ 1

S2∗/2
‖λ‖2∗/2, |w|2∗

2∗
= (|w|22∗

)2∗/2 ≤ 1

S2∗/2
|∆w|2∗

2 ,

and so
1

S2∗/2
≤ |w|2∗

2∗
+ ‖ν‖ ≤ 1

S2∗/2
[|∆w|2∗

2 + ‖λ‖2∗/2],

that is

(4.7) |∆w|2∗
2 + ‖λ‖2∗/2 ≥ 1.

From (4.4), (4.7) and since 2∗/2 > 1, we get that the pair (|∆w|22, ‖λ‖) ∈
{(1, 0), (0, 1)}.
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Suppose now that |∆w|22 = 1 and ‖λ‖ = 0. So, by (4.6), ‖ν‖ = 0 which

implies, by (4.5),
1

S
≤ |w|22∗

≤ 1

S
|∆w|22 =

1

S

and so |∆w|22/|w|22∗
= S. Then, up to a multiple, w is a non-negative non-trivial

solution of the equation

∆2w = w2∗−1 in RN ,

and therefore, w,−∆w > 0 in RN . But, for all ϕ ∈ C∞c (RN ) we have∫
RN
|∆wn −∆w|2ϕdx→

∫
RN

ϕdλ = 0

which implies, in particular,∫
Ω

|∆wn −∆w|2ϕdx+

∫
RN\Ω

|∆w|2ϕdx→ 0, for all ϕ ∈ C∞c (RN \ Ω),

and then −∆w = 0 in RN \ Ω, which leads a contradiction.

Thus, |∆w|22 = 0 (and from (4.6), it follows that w = 0) and ‖λ‖ = 1. From

(4.5) and (4.6), we get ‖ν‖2/2∗ = S−1‖λ‖. Therefore, by Lemma 3.1, it follows

that λ concentrates at a single point y ∈ RN .

We infer that y ∈ Ω. Indeed, by contradiction suppose y ∈ RN \ Ω. Take

ψ ∈ C∞c (RN ) such that ψ ≡ 1 in BR(y), for some R > 0, and supp(ψ) ∩ Ω = ∅.
So,

1 = λ({y}) =

∫
RN

ψ dλ = lim
n→∞

∫
RN

ψ|∆wn|2 dx = 0,

which is clearly a contradiction. Hence, y ∈ Ω and taking η ∈ C∞c (RN ), η ≡ 1

in Ω, we have

β(un) =

∫
Ω

|∆un|2x dx∫
Ω

|∆un|2 dx
=

∫
Ω

|∆vn|2x dx

=

∫
RN
|∆wn|2xη(x) dx→

∫
RN

xη(x) dλ = yη(y) = y ∈ Ω,

which contradicts our initial hypothesis. �

Without loss of generality we can assume that 0 ∈ Ω. Let r > 0 be small

enough such that

Ω+
r := {u ∈ RN : dist(u,Ω) ≤ r} and Ω−r := {u ∈ Ω : dist(u, ∂Ω) ≥ r}

are homotopically equivalent to Ω and such that Br(0) ⊂⊂ Ω. We also set

Im(µ,r)
µ := {u ∈ V : Iµ(u) ≤ m(µ, r)},

which is nonempty; see Lemma 4.4.
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Lemma 4.7. There exists 0 < µ < µ1(Ω) such that, for 0 < µ < µ,

u ∈ Im(µ,r)
µ ⇒ β(u) ∈ Ω+

r .

Proof. If u ∈ V , then by the Hölder inequality,

(4.8) |u+|22 ≤ |u+|22∗
|Ω|(2∗−2)/2∗ = |Ω|4/N .

By Lemma 4.6, there exists ε > 0 such that

u ∈ V, ‖u‖2 ≤ S + ε⇒ β(u) ∈ Ω+
r .

Set µ := ε/|Ω|4/N , for ε > 0 sufficiently small such that 0 < µ < µ1(Ω). Hence,

if 0 < µ < µ and u ∈ Im(µ,r)
µ , we obtain, from (4.8) and Lemma 4.3,

‖u‖2 = ‖u‖2 − µ|u+|22 + µ|u+|22 = Iµ(u) + µ|u+|22

≤m(µ, r) + µ|u+|22 < S +
ε

|Ω|4/N
|Ω|4/N = S + ε,

so that β(u) ∈ Ω+
r . �

Let µ as in Lemma 4.7. For each 0 < µ < µ we define γµ : Ω−r → I
m(µ,r)
µ by

(4.9) γµ(y) : Ω→ R, x 7→ γµ(y)(x) =
wy(x)

|wy|2∗

,

where wy is the solution for the problem−∆wy = zy in Ω,

wy = 0 on ∂Ω,
with zy(x) =

−∆vµ(x− y) if x ∈ Br(y),

0 if x ∈ Ω \Br(y),

where, see Lemma 4.5, vµ is radially symmetric with respect to zero, vµ,−∆vµ >

0 in Br(0) and∫
Br(0)

(v+
µ )2∗ dx = 1,

∫
Br(0)

[
|∆vµ|2 − µ(v+

µ )2
]
dx = m(µ, r).

Remark 4.8. Arguing as in the proof of Lemma 2.2, we get that vµ ∈
C4(Br(0)).

Lemma 4.9. Let 0 < µ < µ, where µ is given in Lemma 4.7. Then γµ : Ω−r →
I
m(µ,r)
µ is well defined, continuous and

(4.10) (β ◦ γµ)(y) = y, for all y ∈ Ω−r .

Proof. First observe that [15, Theorem 9.15] guarantees that γµ(y) ∈ E(Ω)

and, by the strong maximum principle, we have wy(x) > vµ(x − y), for all

x ∈ Br(y) and y ∈ Ω−r . Then∫
Ω

|∆wy|2 dx =

∫
Br(0)

|∆vµ|2 dx,∫
Ω

|wy|2 dx >

∫
Br(0)

|vµ|2 dx,
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Ω

|wy|2∗ dx >

∫
Br(0)

|vµ|2∗ dx = 1.

So,

Iµ(γµ(y)) = Iµ

(
wy(x)

|wy|2∗

)
=

1

|wy|22∗

[

∫
Ω

|∆wy|2 dx− µ
∫

Ω

(w+
y )2 dx]

<

∫
Ω

|∆wy|2 dx− µ
∫

Ω

(w+
y )2 dx

≤
∫
Br(0)

|∆vµ|2 dx− µ
∫
Br(0)

(v+
µ )2 dx = m(µ, r),

that is, γµ(y) ∈ Im(µ,r)
µ for every y ∈ Ω−r and so γµ : Ω−r → I

m(µ,r)
µ is well defined.

The continuity of γµ is a consequence of the regularity of vµ. To prove

that γµ is continuous, it is enough to prove that γµ : Ω−r → E(Ω), defined by

γµ(y)(x) = wy(x), is continuous. If yn → y in Ω−r , then

‖γµ(yn)− γµ(y)‖2 = |∆(γµ(yn)− γµ(y))|22
= |∆wyn −∆wy|22 = |zyn − zy|22

= |zyn |22 − 2

∫
Ω

zyn(x)zy(x)dx+ |zy|22

= 2

[ ∫
Br(0)

|∆vµ(z)|2dz −
∫

Ω

zyn(x)zy(x) dx

]
→ 0,

because ∆vµ : Br(0)→ R is continuous. Finally, for every y ∈ Ω−r ,

(β ◦ γµ)(y) =

∫
Ω

∣∣∣∣∆( wy
|wy|2∗

)∣∣∣∣2x dx∫
Ω

∣∣∣∣∆( wy
|wy|2∗

)∣∣∣∣2 dx
=

∫
Ω

|∆wy|2x dx∫
Ω

|∆wy|2 dx

=

∫
Br(y)

|∆vµ(x− y)|2x dx∫
Br(y)

|∆vµ(x− y)|2 dx
=

∫
Br(0)

|∆vµ(z)|2(z + y) dz∫
Br(0)

|∆vµ(z)|2 dz

=

∫
Br(0)

|∆vµ(z)|2z dz∫
Br(0)

|∆vµ(z)|2 dz
+

y

∫
Br(0)

|∆vµ(z)|2 dz∫
Br(0)

|∆vµ(z)|2 dz
= y,

because ∆vµ is radially symmetric. �

Lemma 4.10. If N ≥ 8 and 0 < µ < µ, where µ is given in Lemma 4.7, then

cat
I
m(µ,r)
µ

(Im(µ,r)
µ ) ≥ catΩ(Ω).
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Proof. If cat
I
m(µ,r)
µ

(I
m(µ,r)
µ ) =∞, then there is nothing to do.

If cat
I
m(µ,r)
µ

(I
m(µ,r)
µ ) = n, then I

m(µ,r)
µ = A1 ∪ . . . ∪ An, where Aj is closed

and contractible in I
m(µ,r)
µ , for all j = 1, . . . , n.

For each j = 1, . . . , n, let hj : [0, 1]×Aj → I
m(µ,r)
µ be a continuous map and

wj ∈ Im(µ,r)
µ such that

(4.11) hj(0, u) = u, hj(1, u) = wj , for all u ∈ Aj .

Consider Bj = γ−1
µ (Aj), where γµ is given by (4.9). The sets Bj are closed and

Ω−r = B1 ∪ . . . ∪Bn. Define, for 0 < µ < µ, the deformation

gj : [0, 1]×Bj → Ω+
r , (t, y) 7→ gj(t, y) = β(hj(t, γµ(y))).

By Lemma 4.7, the deformation gj is well defined, and from (4.10) and (4.11)

gj(0, y) = β(hj(0, γµ(y))) = β(γµ(y)) = y, for all y ∈ Bj ,

gj(1, y) = β(hj(1, γµ(y))) = β(wj), for all y ∈ Bj .

Hence, the sets Bj are contractible in Ω+
r , and so

catΩ(Ω) = catΩ+
r

(Ω−r ) ≤ n = cat
I
m(µ,r)
µ

(Im(µ,r)
µ ). �

Proof of Theorem 1.1 (completed). By Lemmas 3.4 and 4.3, for c ≤
m(µ,Ω) ≤ m(µ, r) < S, Iµ|V satisfies the (PS)c-condition. By Theorem 4.1,

with d = m(µ, r), it follows that I
m(µ,r)
µ has at least cat

I
m(µ,r)
µ

(I
m(µ,r)
µ ) critical

points of Iµ|V . Then, by Lemma 4.10, for 0 < µ < µ, we have that Iµ|V has at

least n = catΩ(Ω) different critical points, say v1, . . . , vn ∈ V .

For each j = 1, . . . , n, there exists λj ∈ R such that vj satisfies∆2vj = µ(v+
j ) + λj(v

+
j )2∗−1, in Ω,

vj , ∆vj = 0 on ∂Ω.

Since vj ∈ V we have vj 6= 0, and

λj = λj

∫
Ω

(v+
j )2∗ dx = Iµ(vj) =

∫
Ω

[|∆vj |2 − µ(v+
j )2] dx > 0.

Hence, for each j = 1, . . . , n, we have that uj := λ
1/(2∗−2)
j vj is a nontrivial

solution of

(4.12)

∆2u = µu+ + (u+)2∗−1 in Ω,

u, ∆u = 0 on ∂Ω,

that is, uj is a critical point of I. Since vj 6= vi if j 6= i, it follows that uj 6= ui
if j 6= i. Then, we apply Lemma 2.2 to end this proof. �
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Appendix A. Proof of Lemma 3.1

Proof. Particular case: Assume first u = 0.

For every h ∈ C∞c (RN ), we infer from (2.2) that

(A.1)

(∫
RN
|hun|2∗ dx

)2/2∗

≤ S−1

∫
RN
|∆(hun)|2 dx.

Using (3.2) and (3.3) we get

(A.2)

(∫
RN
|h|2∗ |un|2∗ dx

)2/2∗

→
(∫

RN
|h|2∗ dν

)2/2∗

and

(A.3)

∫
RN
|h|2|∆un|2 dx→

∫
RN
|h|2 dλ.

Note that

(A.4) ∆(hun)− h∆un = un∆h+ 2∇h.∇un.

We have

|un∆h|22 =

∫
BR(0)

|∆h|2|un|2 dx ≤ C
∫
BR(0)

|un|2 dx,

where R > 0 is such that supp(h) ⊂ BR(0) and C = max
BR(0)

|∆h|2. Then

(A.5) |un∆h|22 → 0,

because un → 0 in L2
loc(RN ). We also have

|∇h.∇un|22 ≤
∫
BR(0)

|∇h|2|∇un|2 dx ≤ C
∫
BR(0)

|∇un|2 dx,

where C = max
BR(0)

|∇h|2, and consequently

(A.6) |∇h.∇un|22 → 0,

because ∇un → 0 in [L2
loc(RN )]N . From (A.4)–(A.6) follows that

||∆(hun)|2 − |h∆un|2| ≤ |∆(hun)− h∆un|2
= |un∆h+ 2∇h.∇un|2 ≤ |un∆h|2 + 2|∇h.∇un|2 → 0,

that is,

lim
n→∞

∫
RN
|∆(hun)|2 dx = lim

n→∞

∫
RN
|h∆un|2 dx =

∫
RN
|h|2dλ.

Hence, from (A.1)–(A.2) we get

(A.7)

(∫
RN
|h|2∗ dν

)2/2∗

≤ S−1

∫
RN
|h|2 dλ.
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Taking now the sequence (hn) ⊂ C∞c (RN ) such that

hn ≡ 1 in Bn(0), supp(hn) ⊂ Bn+1(0), 0 ≤ hn ≤ 1,

it follows by dominated convergence theorem that

lim
n→∞

∫
RN
|hn|2∗ dν =

∫
RN

1 dν = ‖ν‖ and lim
n→∞

∫
RN
|hn|2 dλ =

∫
RN

1 dλ = ‖λ‖.

Then we obtain (3.5) using (hn) in (A.7) and taking n→∞.

Now we proceed to prove (3.6). Fix R > 0 and let ψR ∈ C∞(RN ) be such

that ψR(x) = 1 for |x| ≥ R + 1, ψR(x) = 0 for |x| ≤ R and 0 ≤ ψR ≤ 1 on RN .

By the Sobolev inequality, we have

(A.8) lim
n→∞

(∫
RN
|ψRun|2∗ dx

)2/2∗

≤ S−1 lim
n→∞

∫
RN
|∆(ψRun)|2 dx.

We have

0 ≤
∫
RN
|un∆ψR|2 dx ≤

∫
|x|≤R+1

|∆ψR|2|un|2 dx ≤ CR
∫
|x|≤R+1

|un|2 dx,

where CR = max
BR+1(0)

|∆ψR|2, and

0 ≤
∫
RN
|∇ψR.∇un|2 dx ≤

∫
|x|≤R+1

|∇ψR|2|∇un|2 dx ≤ DR

∫
|x|≤R+1

|∇un|2 dx,

where DR = max
BR+1(0)

|∇ψR|2. Thus

||∆(ψRun)|2 − |ψR∆un|2| ≤ |unψR|2 + |2∇ψR.∇un|2 → 0,

because un,∇un → 0 in L2
loc(RN ), [L2

loc(RN )]N , respectively. From (A.8) we

conclude

(A.9) lim
n→∞

(∫
RN

ψ2∗
R |un|

2∗ , dx

)2/2∗

≤ S−1 lim
n→∞

∫
RN

ψ2
R|∆un|2 dx.

On the another hand, we have∫
RN
|∆un|2ψ2

R dx =

∫
|x|≥R

|∆un|2ψ2
R dx ≤

∫
|x|≥R

|∆un|2 dx

and ∫
|x|≥R+1

|un|2∗ dx =

∫
|x|≥R+1

|un|2∗ψ2∗
R dx ≤

∫
RN
|un|2∗ψ2∗

R dx

and from (A.9) follows that

ν2/2∗
∞ = lim

R→∞
lim
n→∞

(∫
|x|≥R+1

|un|2∗ dx

)2/2∗

≤ S−1 lim
R→∞

lim
n→∞

(∫
|x|≥R

|∆un|2 dx
)

= S−1λ∞,

which proves (3.6).
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Assume moreover, that ‖ν‖2/2∗ = S−1‖µ‖. We will show that λ and ν are

concentrated at a common single point. Given h ∈ C∞c (RN ) we have, from (A.7),

(A.10)

(∫
RN
|h|2∗ dν

)1/2∗

≤ S−1/2

(∫
RN
|h|2 dλ

)1/2

,

and from Hölder inequality we get

(A.11)

∫
RN
|h|2∗ dν ≤ S−2∗/2‖λ‖4/(N−4)

∫
RN
|h|2∗ dλ, for all h ∈ C∞c (RN ),

which implies

ν(Ω) ≤ S−2∗/2‖λ‖4/(N−4)λ(Ω), for all Ω ⊂ RN measurable.

We prove now that ν(Ω) = S−2∗/2‖λ‖4/(N−4)λ(Ω), for all Ω ⊂ RN measurable.

Assume that there exists Ω0 ⊂ RN such that ν(Ω0) < S−2∗/2‖λ‖4/(N−4)λ(Ω0).

By hypothesis, ‖ν‖2/2∗ = S−1‖λ‖, which implies

(A.12) ν(RN ) = S−2∗/2‖λ‖4/(N−4)λ(RN ).

Note that

ν(RN ) = ν(Ω0) + ν(RN\Ω0)

< S−2∗/2‖λ‖4/(N−4)λ(Ω0) + S−2∗/2‖λ‖4/(N−4)λ(RN \ Ω0)

= S−2∗/2‖λ‖4/(N−4)[λ(Ω0) + λ(RN \ Ω0)] = S−2∗/2‖λ‖4/(N−4)λ(RN ),

which contradicts (A.12). It follows from (A.10), ν(Ω) = S−2∗/2‖λ‖4/(N−4)λ(Ω)

and ‖ν‖2/2∗ = S−1‖λ‖ that(∫
RN
|h|2∗ dν

)1/2∗

‖ν‖2/N ≤
(∫

RN
|h|2 dν

)1/2

, for all h ∈ C∞c (RN ).

Then, for each open set Ω ⊂ RN ,

ν(Ω)1/2∗ν(RN )2/N ≤ ν(Ω)1/2.

Since 1/2− 1/2∗ = 2/N , we have

ν(Ω) = 0 or ν(Ω) ≥ ν(RN ), for any open set Ω ⊂ RN .

Hence, ν is concentrated at a single point, which is the same point where λ

concentrates, because ν = S−2∗/2‖λ‖4/(N−4)λ.

General case: u is not necessarily zero and we prove (3.5)–(3.8).

Write vn := un − u. So, vn ⇀ 0 in D2,2(RN ), |∆vn|2
∗
⇀ λ and |vn|2∗ ∗⇀ ν in

the sense of measures on RN , and vn → 0 almost everywhere on RN , and thus,

from the previous case, (3.5) holds.
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We have∫
|x|≥R

|∆un|2 dx =

∫
|x|≥R

|∆vn + ∆u|2 dx

=

∫
|x|≥R

|∆vn|2 dx+ 2

∫
|x|≥R

∆vn∆u dx+

∫
|x|≥R

|∆u|2 dx

which implies

lim
n→∞

∫
|x|≥R

|∆un|2 dx

= lim
n→∞

∫
|x|≥R

|∆vn|2 dx+ 2 lim
n→∞

∫
|x|≥R

∆vn∆u dx+

∫
|x|≥R

|∆u|2 dx

and, since vn ⇀ 0 in D2,2(RN ), we conclude that

(A.13) lim
n→∞

∫
|x|≥R

|∆un|2 dx = lim
n→∞

∫
|x|≥R

|∆vn|2 dx+

∫
|x|≥R

|∆u|2 dx.

So, (A.13) implies that

λ∞ = lim
R→∞

lim
n→∞

∫
|x|≥R

|∆un|2 dx = lim
R→∞

lim
n→∞

∫
|x|≥R

|∆vn|2 dx.

By the Brézis–Lieb lemma [7],∫
|x|≥R

|u|2∗ dx = lim
n→∞

(∫
|x|≥R

|un|2∗ dx−
∫
|x|≥R

|vn|2∗ dx

)
,

and therefore

ν∞ = lim
R→∞

lim
n→∞

∫
|x|≥R

|un|2∗ dx = lim
R→∞

lim
n→∞

∫
|x|≥R

|vn|2∗ dx.

From the previous particular case, it follows (3.6).

Now we proceed to prove (3.7). First we prove that

(A.14) |∆un|2
∗
⇀ λ+ |∆u|2.

Indeed, from the identity |∆un|2 = |∆vn + ∆u|2 = |∆vn|2 + 2∆vn∆u + |∆u|2,

we have∫
RN

ϕ|∆un|2 dx =

∫
RN

ϕ|∆vn|2 dx+ 2

∫
RN

∆vn∆uϕdx+

∫
RN

ϕ|∆u|2 dx,

for all ϕ ∈ C0(RN ). Since vn ⇀ 0 in D2,2(RN ) and |∆vn|2
∗
⇀ λ we obtain

lim
n→∞

∫
RN

ϕ|∆un|2 dx =

∫
RN

ϕdλ+

∫
RN

ϕ|∆u|2 dx,

for all ϕ ∈ C0(RN ), which is precisely (A.14).
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Fix R > 0 and let ψR ∈ C∞(RN ) be such that ψR(x) = 1 for |x| ≥ R + 1,

ψR(x) = 0 for |x| ≤ R and 0 ≤ ψR ≤ 1 on RN . From (A.14) we have

lim
n→∞

∫
RN
|∆un|2 dx

= lim
n→∞

∫
RN

ψR|∆un|2 dx+

∫
RN

(1− ψR)dλ+

∫
RN

(1− ψR)|∆u|2 dx.

Taking now R→∞, it follows from the dominated convergence theorem that

lim
R→∞

lim
n→∞

∫
RN
|∆un|2 dx = λ∞ +

∫
RN

1 dλ+

∫
RN
|∆u|2 dx

and thus

lim
n→∞

|∆un|22 = |∆u|22 + ‖λ‖+ λ∞,

which is precisely (3.7).

To prove (3.8), first observe that

(A.15) |un|2∗ ∗⇀ ν + |u|2∗ .

Indeed, for any f ∈ C0(RN ) we have, from the Brézis–Lieb [7] lemma applied to

f+ and f−,∫
RN

f |u|2∗dx = lim
n→∞

(∫
RN

f |un|2∗ dx−
∫
RN

f |vn|2∗ dx

)
,

from where (A.15) follows since |vn|2∗ ∗⇀ ν.

Fix R > 0 and let ψR ∈ C∞(RN ) be such that ψR(x) = 1 for |x| ≥ R + 1,

ψR(x) = 0 for |x| ≤ R and 0 ≤ ψR ≤ 1 on RN . Then

lim
n→∞

∫
RN
|un|2∗ dx = lim

n→∞

∫
RN
ψR|un|2∗ dx+

∫
RN

(1−ψR)dν+

∫
RN

(1−ψR)|u|2∗ dx.

Taking R→∞, it follows from the dominated convergence theorem that

lim
R→∞

lim
n→∞

∫
RN
|un|2∗ dx = ν∞ +

∫
RN

1 dν +

∫
RN
|u|2∗ dx

and thus

lim
n→∞

|un|2∗
2∗

= |u|2∗
2∗

+ ‖ν‖+ ν∞. �

Appendix B. Proof of Lemma 4.2

Proof. Without loss of generality, suppose 0 ∈ Ω. Let ξ ∈ C∞c (RN ) be a

function such that 0 ≤ ξ(x) ≤ 1, for all x ∈ RN , ξ ≡ 1 in B(0, ρ/2), ξ ≡ 0 in

B(0, ρ)c, and B(0, ρ) ⊂⊂ Ω, ρ > 0. Set

Uδ(x) := ξ(x)ψδ(x), x ∈ RN , 0 < δ < ρ,

where ψδ = S(4−N)/8ϕδ and ϕδ(x) = ϕδ,0(x) is given by (2.3). Then∫
RN
|∆ψδ|2 dx = S and

∫
RN
|ψδ|2∗ dx = 1,



572 J.L.F. Melo — E. Moreira dos Santos

and, see [10, (6.4) and (6.3)] respectively, we have

|∆Uδ|22,Ω = S +O(δN−4),(B.1)

|Uδ|2∗
2∗,Ω

= 1 +O(δN ).(B.2)

In order to get (4.1), we will estimate |Uδ|22,Ω. We have

|Uδ|22,Ω =

∫
Ω

|ξ(x)ψδ(x)|2 dx =

∫
B(0,ρ)

|ψδ(x)|2 dx+

∫
B(0,ρ)

[|ξ(x)|2−1]|ψδ(x)|2 dx.

Note that∫
B(0,ρ)

||ξ(x)|2 − 1||ψδ(x)|2 dx

=

∫
B(0,ρ)\B(0,ρ/2)

||ξ(x)|2 − 1||ψδ(x)|2 dx ≤
∫
B(0,ρ)\B(0,ρ/2)

|ψδ(x)|2 dx

=

∫
B(0,ρ)\B(0,ρ/2)

CδN−4

(δ2 + |x|2)N−4
dx ≤

∫
B(0,ρ)\B(0,ρ/2)

CδN−4

|x|2(N−4)
dx = O(δN−4).

So, we obtain

(B.3)

∫
Ω

|Uδ(x)|2 dx =

∫
B(0,ρ)

|ψδ(x)|2 dx+O(δN−4).

Now,

(B.4)

∫
B(0,ρ)

|ψδ(x)|2 dx =

∫
B(0,δ)

|ψδ(x)|2 dx+

∫
δ<|x|<ρ

|ψδ(x)|2 dx.

Note that ∫
B(0,δ)

|ψδ(x)|2 dx =

∫
B(0,δ)

CδN−4

(δ2 + |x|2)N−4
dx(B.5)

≥
∫
B(0,δ)

CδN−4

(2δ2)N−4
dx = Cδ4,

and∫
δ<|x|<ρ

|ψδ(x)|2 dx =

∫
δ<|x|<ρ

CδN−4

(δ2 + |x|2)N−4
dx ≥

∫
δ<|x|<ρ

CδN−4

(2|x|2)N−4
dx

= CδN−4

∫
δ<|x|<ρ

1

|x|2(N−4)
dx = CδN−4

∫ ρ

δ

∫
Sr

1

r2(N−4)
dS dr,

which implies

(B.6)

∫
δ<|x|<ρ

|ψδ(x)|2dx ≥ CδN−4


log r|ρδ if N = 8,

− 1

N − 8

1

rN−8

∣∣∣∣ρ
δ

if N > 8.

Finally, combining (B.3)–(B.6), we conclude that

(B.7) |Uδ|22,Ω ≥

Cδ4| log δ|+O(δ4) if N = 8,

Cδ4 +O(δN−4) if N > 8.
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Then, from (B.1), (B.2) and (B.7), there exists a constant C = C(N) > 0 such

that

|∆Uδ|22 − µ|Uδ|22
|Uδ|22∗

≤

{
S − µCδ4| log δ|+O(δ4), N = 8,

S − µCδ4 +O(δN−4), N > 8,

}
< S

for N ≥ 8 and δ > 0 small. �
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[16] O. Kavian, Introduction à la théorie des points critiques: et applications aux problèmes
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