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COEXISTENCE STATES

OF DIFFUSIVE PREDATOR-PREY SYSTEMS

WITH PREYS COMPETITION AND PREDATOR SATURATION

Jun Zhou

Abstract. In this paper, we study the existence, stability, permanence,

and global attractor of coexistence states (i.e. the densities of all the species

are positive in Ω) to the following diffusive two-competing-prey and one-
predator systems with preys competition and predator saturation:

−∆u = u

(
a1 − u− b12v −

c1w

(1 + α1u)(1 + β1w)

)
in Ω,

−∆v = v

(
a2 − b21u− v −

c2w

(1 + α2v)(1 + β2w)

)
in Ω,

−∆w = w

(
e1u

(1 + α1u)(1 + β1w)
+

e2v

(1 + α2v)(1 + β2w)
− d

)
in Ω,

k1∂νu+ u = k2∂νv + v = k3∂νw + w = 0 on ∂Ω,

where ki ≥ 0 (i = 1, 2, 3) and all the other parameters are positive, ν is the

outward unit rector on ∂Ω, u and v are densities of the competing preys,

w is the density of the predator.
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1. Introduction and main results

Continuous models, usually in the form of differential equations, have formed

a large part of the traditional mathematical ecology literature. In these models,

the key terms specifying the outcome of predator-prey interactions are the func-

tional and numerical response, which reflect the relationship between predators

and their prey. In general, a predator-prey system has the following formut = u(a− bu)− g(u)v,

vt = −dv + εg(u)v,

where a, b, d, ε are positive constants and g(u) is the so-called prey-dependent

functional response. And ones usually consider the following two cases.

(I) For the case of monotonic response, the functional response g(u) is taken

as follows (see [10], [12], [38] and the references therein).

(i) g(u) =
mu

e+ u
,

(ii) g(u) =
mu2

e+ εu+ u2
,

(iii) g(u) =
mu2

e+ u2
,

where m, e and ε are positive constants, m denotes the maximal growth rate

of the species and e is the half-saturation constant. The model (i) is called the

Michaelis–Menten or Holling type-II function, (ii) is called the sigmoidal response

function, and (iii) is called the Holling type-III function.

(II) For the case of non-monotonic response, the functional response g(u) is

taken as follows (see [4] and the references therein).

(1.1) g(u) =
mu

e+ εu+ u2
,

which is called the Monod–Haldane function. Collings [20] utilized (1.1) to study

the effects of functional response on the bifurcation behavior of a mite predator-

prey interaction model, and called it a Holling type-IV function. The experi-

ments of Edwards [33] supported the use of the function (1.1) to describe the

dependence of the growth rate on an inhibitory substrate. In experiments on the

uptake of phenol by pure culture of pseudomonas putida, Sokol and Howell [72]

suggested a simplified version of (1.1), namely,

(1.2) g(u) =
mu

e+ u2
.

For details of the background of the response functions (1.1) and (1.2), we refer

to Ruan and Xiao [68].

When predators have to search, share and compete for food, a more suitable

general predator-prey model should be based on the so-called ratio-dependent
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theory, which asserts that the per capita predator growth rate should be a func-

tion of the ratio of prey to predator abundance (see [5]–[8], [20], [36], [37] and

the references therein). The following models was proposed

(1.3)

ut = u(a− bu)− vf(u, v),

vt = −dv + εvf(u, v)),

with functional response

f(u, v) =
mu

u+ ev
,

where a, b, d, ε, m, e are positive constants.

In order to study the destabilizing force of predator saturation and the stabi-

lizing force of competition for prey, Bazykin [9] proposed the following functional

response in model (1.3):

(1.4) f(u, v) =
mu

(1 + αu)(1 + βv)
,

where a, b, d, ε, m, α, β are positive constants.

The qualitative properties about the above ODE models have been studied

extensively in recent years (see [1], [2], [11], [39]–[41], [48], [73], [83] and the

references therein).

The role of diffusion in the modelling of many physical, chemical and bio-

logical processes has been extensively studied. Starting with Turing’s seminal

1952 paper [74], diffusion and cross-diffusion have been observed as causes of

the spontaneous emergence of ordered structures, called patterns, in a vari-

ety of non-equilibrium situations. These include the Gierer–Meinhardt model

[35], [43], [75], [80], [82], the Sel’kov model [28], [76], the Noyes–Field model

for Belousov–Zhabotinskĭı reaction [66], the chemotactic diffusion model [54],

[79], the competition model [19], [27], [56], [57], [58], the predator-prey model

with the above cited functional response [31], [32], [42], [44], [45], [63], [64],

[77], as well as models of semiconductors, plasmas, chemical waves, combus-

tion systems, embryogenesis, etc. see e.g. [15], [18], [22] and references therein.

Diffusion-driven instability, also called Turing instability, has also been verified

empirically [17], [60].

In this paper we are interested in a diffusive two-competing-prey and one-

predator system in spatially inhomogeneous environment, where competing prey

species are in Lotka–Volterra interaction but predator’s functional response is

the type of (1.4). Let u and v be the population densities of two competing

preys, and w be the density of the predator, then the mathematical model is
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given by

(1.5)



ut −∆u = u

(
a1 − u− b12v −

c1w

(1 + α1u)(1 + β1w)

)
in Ω× (0,∞),

vt −∆v = v

(
a2 − b21u− v −

c2w

(1 + α2v)(1 + β2w)

)
in Ω× (0,∞),

wt−∆w=w

(
e1u

(1+α1u)(1+β1w)
+

e2v

(1+α2v)(1+β2w)
−d
)

in Ω× (0,∞),

k1∂νu+ u = k2∂νv + v = k3∂νw + w = 0 on ∂Ω× (0,∞),

where Ω is a bounded domain in RN with smooth boundary ∂Ω, the given

coefficients ai, ci, ei, αi, βi (i = 1, 2), d, b12 and b21 are all positive constants,

ki (i = 1, 2, 3) is nonnegative constant, ν is the outward unit rector on ∂Ω.

In order to study the dynamics of (1.5), we are mainly interested in the

steady-state system, that is, we investigate the existence, uniqueness and asymp-

totic stability of positive steady-state solutions of the following elliptic system

corresponding to (1.5):

(1.6)



−∆u = u

(
a1 − u− b12v −

c1w

(1 + α1u)(1 + β1w)

)
in Ω,

−∆v = v

(
a2 − b21u− v −

c2w

(1 + α2v)(1 + β2w)

)
in Ω,

−∆w = w

(
e1u

(1 + α1u)(1 + β1w)
+

e2v

(1 + α2v)(1 + β2w)
− d
)

in Ω,

k1∂νu+ u = k2∂νv + v = k3∂νw + w = 0 on ∂Ω.

The study of positive solutions of elliptic system corresponding to prey-

predator models has attracted many people in recent years, and many good

works have been done (see [16], [29], [30], [46], [50], [52], [55], [61], [66], [67], [70]

and references therein).

Recently, Wang and Wu [78] considered the existence, multiplicity, bifurca-

tion and stability of positive solution to the following prey-predator model with

functional response of type (1.4):
−∆u = u

(
a− u− b v

(1 + αu)(1 + βv)

)
in Ω,

−∆v = v

(
c− v + d

u

(1 + αu)(1 + βv)

)
in Ω,

u = v = 0 on ∂Ω,

where the parameters are all positive constant, and u and v are the densities of

the prey and predator, respectively.

However, the dynamics to three species interaction systems are more com-

plicate than those of two species (see [26], [34], [47], [49], [51], [53], [55]). For
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this reason, the reaction-diffusion systems among three species have not been

well understood. In [26] and [55], using their own developed degree theory, the

existences of positive steady-state solutions of Lotka–Volterra type systems were

investigated.

Motivated by above papers, in the present paper, we study the existence of

the positive solution of (1.6). In order to state our results, let us introduce some

notations. For each q ∈ Cα(Ω) (0 < α < 1) and k ≥ 0, denote the principle

eigenvalue of −∆u+ q(x)u = λu in Ω,

k∂νu+ u = 0 on ∂Ω,

by λ1,k(q) and simply denote λ1,k(0) by λ1,k.

It is well known that λ1,k(q(x)) is strictly increasing in the sense that q1(x) ≤
q2(x) and q1(x) 6≡ q2(x) implies

λ1,k(q1(x)) < λ1,k(q2(x))

(see Proposition 1.1 of [81]).

If λ1,k(−ρ(x)) < 0 and ρ(x) ∈ Cα(Ω) (0 < α < 1) is a positive function, let

Θk[ρ(x)] be the unique positive solution of the following equation−∆φ = φ(ρ(x)− φ) in Ω,

k∂νφ+ φ = 0 on ∂Ω,

and it is easy to see Θk[ρ(x)] ≤ max
x∈Ω

ρ(x). The existence of Θk[ρ(x)] follows from

Theorem 2.3 in Section 2 below.

Throughout this paper, a solution (u, v, w) of (1.6) is called a coexistence

state if u(x) > 0, v(x) > 0, w(x) > 0 for all x ∈ Ω.

Now, we state firstly a result on a priori bound for coexistence states of (1.6).

Theorem 1.1. Any coexistence state (u, v, w) of (1.6) has an a priori bounds

u(x) ≤ Q1, v(x) ≤ Q2, and w(x) ≤ Q3,

where Q1 = a1, Q2 = a2 and Q3 is the positive root of the following equation

with respect to w

e1a1

(1 + α1a1)(1 + β1w)
+

e2a2

(1 + α2a2)(1 + β2w)
− d = 0.

Secondly, by using the fixed point index theory (see [26], [55], [81]), we will

get some sufficient conditions for coexistence state of (1.6). To this, we first
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introduce the following notations:

Γ
(1)
1 = − e1Θk1 [a1]

1 + α1Θk1 [a1]
, Γ

(2)
1 = − e2Θk2 [a2]

1 + α2Θk2 [a2]
,

Γ
(1)
2 = − e1Θk1 [a1 − b12Θk2 [a2]]

1 + α1Θk1 [a1 − b12Θk2 [a2]]
, Γ

(2)
2 = − e2Θk2 [a2 − b21Θk1 [a1]]

1 + α2Θk2 [a2 − b21Θk1 [a1]]
,

Γ
(1)
3 = b12Θk2

[
a2 −

c2
β2

]
+

c1w
(1)
∗

1 + β1w
(1)
∗
, Γ

(2)
3 = b21Θk1

[
a1 −

c1
β1

]
+

c2w
(2)
∗

1 + β2w(2)
,

Γ
(1)
4 = − e1Θk1 [a1−c1/β1]

1+α1Θk1 [a1−c1/β1]
, Γ

(2)
4 = − e2Θk2 [a2 − c2/β2]

1 + α2Θk2 [a2 − c2/β2]
,

where w
(1)
∗ , w

(2)
∗ are the unique positive solution of the following two problem

respectively,

(1.7)

−∆w = w

(
e2Θk2 [a2 − c2/β2]

(1 + α2Θk2 [a2 − c2/β2])(1 + β2w)
− d
)

in Ω,

k3∂νw + w = 0 on ∂Ω,

(1.8)

−∆w = w

(
e1Θk1 [a1 − c1/β1]

(1 + α1Θk1 [a1 − c1/β1])(1 + β1w)
− d
)

in Ω,

k3∂νw + w = 0 on ∂Ω.

Remark 1.2. From (c) of Theorem 2.3 in Section 2 below, we see that

if −d > λ1,k3(Γ
(2)
4 ), then there exists a unique positive solution w

(1)
∗ of (1.7).

Similarly, if −d > λ1,k3(Γ
(1)
4 ), then there exists a unique positive solution w

(2)
∗

of (1.8).

Theorem 1.3. Assume that ai > λ1,ki for i = 1, 2. If one of the following

conditions holds, then (1.6) has least one coexistence state

(a)

a1 −
c1
β1

> λ1,k1(b12Θk2 [a2]), a2 −
c2
β2

> λ1,k2(b21Θk1 [a1]),

−d > max
{
λ1,k3(Γ

(1)
1 ), λ1,k3(Γ

(2)
1 ), λ1,k3(Γ

(1)
2 + Γ

(2)
2 )
}

;

(b)

a1 > λ1,k1(b12Θk2 [a2]), a2 −
c2
β2

> λ1,k2(b21Θk1 [a1]),

λ1,k3(Γ
(2)
1 ) > −d > max

{
λ1,k3(Γ

(1)
1 ), λ1,k3(Γ

(1)
2 + Γ

(2)
2 )
}

;

(c)

a1 −
c1
β1

> λ1,k1(b12Θk2 [a2]), a2 > λ1,k2(b21Θk1 [a1]),

λ1,k3(Γ
(1)
1 ) > −d > max

{
λ1,k3(Γ

(2)
1 ), λ1,k3(Γ

(1)
2 + Γ

(2)
2 )
}

;

(d)

a1 > λ1,k1(b12Θk2 [a2]), a2 > λ1,k2(b21Θk1 [a1]),

min
{
λ1,k3(Γ

(1)
1 ), λ1,k3(Γ

(2)
1 )
}
> −d > λ1,k3(Γ

(1)
2 + Γ

(2)
2 );
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(e)


λ1,k1(Γ

(1)
3 ) > a1 > max

{
λ1,k1(b12Θk2 [a2]), λ1,k1 + c1/β1

}
,

λ1,k2(Γ
(2)
3 ) > a2 > max

{
λ1,k2(b21Θk1 [a1]), λ1,k2 + c2/β2

}
,

−d > max
{
λ1,k3(Γ

(1)
4 ), λ1,k3(Γ

(2)
4 ), λ1,k3(Γ

(1)
2 + Γ

(2)
2 )
}

;

(f)


min

{
λ1,k1(Γ

(1)
3 ), λ1,k1(b12Θk2 [a2])

}
> a1 > λ1,k1 + c1/β1,

λ1,k2(Γ
(2)
3 ) > a2 > max

{
λ1,k2(b21Θk1 [a1]), λ1,k2 + c2/β2

}
,

−d > max
{
λ1,k3(Γ

(1)
4 ), λ1,k3(Γ

(2)
4 ), λ1,k3(Γ

(2)
2 )
}

;

(g)


min

{
λ1,k2(Γ

(2)
3 ), λ1,k2(b21Θk1 [a1])

}
> a2 > λ1,k2 + c2/β2,

λ1,k1(Γ
(1)
3 ) > a1 > max

{
λ1,k1(b12Θk2 [a2]), λ1,k1 + c1/β1

}
,

−d > max
{
λ1,k3(Γ

(1)
4 ), λ1,k3(Γ

(2)
4 ), λ1,k3(Γ

(1)
2 )
}

;

(h)


λ1,k1(Γ

(1)
3 ) > a1 > max

{
λ1,k1(b12Θk2 [a2]), λ1,k1 + c1/β1

}
,

min
{
λ1,k2(Γ

(2)
3 ), λ1,k2(b21Θk1 [a1 − b12Θk2 [a2]])

}
> a2 > λ1,k2 + c2/β2,

−d > max
{
λ1,k3(Γ

(1)
4 ), λ1,k3(Γ

(2)
4 )
}

;

(i)


λ1,k2(Γ

(2)
3 ) > a2 > max

{
λ1,k2(b21Θk1 [a1]), λ1,k2 + c2/β2

}
,

min
{
λ1,k1(Γ

(1)
3 ), λ1,k1(b12Θk2 [a2 − b21Θk1 [a1]])

}
> a1 > λ1,k1 + c1/β1,

−d > max
{
λ1,k3(Γ

(1)
4 ), λ1,k3(Γ

(2)
4 )
}
.

Thirdly, by using comparison principle, we obtain some sufficient conditions

for non-existence of coexistence states of (1.6).

Theorem 1.4. If any one of the following conditions holds, then (1.6) has

no coexistence states:

(a) ai ≤ λ1,ki for i = 1 or 2;

(b) ai > λ1,ki for i = 1, 2 and

−d ≤ λ1,k3

(
− e1Θk1 [a1]

1 + α1Θk1 [a1]
− e2Θk2 [a2]

1 + α2Θk2 [a2]

)
;

(c) a2 > λ1,k2 , a1 − c1/β1 > λ1,k1(b12Θk2 [a2]) and

a2 ≤ λ1,k2(b21Θk1 [a1 − b12Θk2 [a2]− c1/β1]);

(d) a1 > λ1,k1 , a2 − c2/β2 > λ1,k2(b21Θk1 [a1]) and

a1 ≤ λ1,k1(b12Θk2 [a2 − b21Θk1 [a1]− c2/β2]).

Next, the results for the uniqueness and stability of coexistence states of (1.6)

are stated as follows.
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Theorem 1.5.

(a) If one of the conditions (a)–(d) in Theorem 1.3 and the following condi-

tion hold:

(1.9) (b221 + b212)`+ 2b12b21 < 4,

where

` = max

{
max
x∈Ω

Θk2 [a2]

Θk1 [a1 − b12Θk2 [a2]]
, max
x∈Ω

Θk1 [a1]

Θk2 [a2 − b21Θk1 [a1]]

}
,

then there exists a positive constant C̃ = C̃(α1, α2, β1, β2) such that

for c1, c2 ≤ C̃, (1.6) has exactly one coexistence state which is non-

degenerate and linearly stable.

(b) Assume that a1 − c1/β1 > λ1,k1(b12Θk2 [a2]),

− d > max

{
λ1,k3

(
− e1Θk1 [a1 − b12Θk2 [a2]− c1/β1]

1 + α1Θk1 [a1 − b12Θk2 [a2]− c1/β1]

)
,

λ1,k3

(
− e2Θk2 [a2]

1 + α2Θk2 [a2]

)}
and a2 − c2/β2 > λ1,k2(b21Θk1 [a1]). In addition, if (1.9) holds, then

there exists a positive constant C̃ = C̃(c2, α1, α2, β1, e2) such that for

1/β2, c1 ≤ C̃, (1.6) has exactly one coexistence state which is non-

degenerate and linearly stable.

(c) Assume that a2 − c2/β2 > λ1,k2(b21Θk1 [a1]),

− d > max

{
λ1,k3

(
− e2Θk2 [a2 − b21Θk1 [a1]− c2/β2]

1 + α2Θk2 [a2 − b21Θk1 [a1]− c2/β2]

)
,

λ1,k3

(
− e1Θk1 [a1]

1 + α1Θk1 [a1]

)}
and a1 − c1/β1 > λ1,k1(b12Θk2 [a2]). In addition, if (1.9) holds, then

there exists a positive constant C̃ = C̃(c1, α1, α2, β2, e1) such that for

1/β1, c2 ≤ C̃, (1.6) has exactly one coexistence state which is non-

degenerate and linearly stable.

Finally, we give some sufficient conditions on the global asymptotic stability

of the trivial and semi-trivial solutions and on global attractor of coexistence

states of time-dependent system (1.5).

Theorem 1.6. Let (u, v, w) be a positive solution of (1.5), then we have

(a) If ai ≤ λ1,ki for i = 1, 2, then (u, v, w)→ (0, 0, 0) as t→∞.

(b) If a1 > λ1,k1 , a2 ≤ λ1,k2 and −d < λ1,k3(−e1Θk1 [a1]/(1 + α1Θk1 [a1])),

then (u, v, w)→ (Θk1 [a1], 0, 0) as t→∞.

(c) If a2 > λ1,k2 , a1 ≤ λ1,k1 and −d < λ1,k3(−e2Θk2 [a2]/(1 + α2Θk2 [a2])),

then (u, v, w)→ (0,Θk2 [a2], 0) as t→∞.
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Remark 1.7. Please see Theorem 5.2 in Section 5 for the dynamics of other

semi-trivial solutions of (1.5), i.e. the solutions with the density of one specie is

zero and the densities of other two species are positive in Ω.

Theorem 1.8. If

(1.10)


a1 −

c1
β1

> λ1,k1(b12Θk2 [a2]),

a2 −
c2
β2

> λ1,k2(b21Θk1 [a1]),

−d > λ1,k3

(
− e1u

∗

1 + α1u∗
− e2v

∗

1 + α2v∗

)
,

where u∗ = Θk1 [a1 − b12Θk2 [a2]− c1/β1] and v∗ = Θk2 [a2 − b21Θk1 [a1]− c2/β2].

Then there exists a pair of functions (ũ, ṽ, w̃) and (û, v̂, ŵ) in C2(Ω) ∩ C1(Ω)

such that

−∆ũ = ũ

(
a1 − ũ− b12v̂ −

c1ŵ

(1 + α1ũ)(1 + β1ŵ)

)
in Ω,

−∆û = û

(
a1 − û− b12ṽ −

c1w̃

(1 + α1û)(1 + β1w̃)

)
in Ω,

−∆ṽ = ṽ

(
a2 − b21û− ṽ −

c2ŵ

(1 + α2ṽ)(1 + β2ŵ)

)
in Ω,

−∆v̂ = v̂

(
a2 − b21ũ− v̂ −

c2w̃

(1 + α2v̂)(1 + β2w̃)

)
in Ω,

−∆w̃ = w̃

(
e1ũ

(1 + α1ũ)(1 + β1w̃)
+

e2ṽ

(1 + α2ṽ)(1 + β2w̃)
− d
)

in Ω,

−∆ŵ = ŵ

(
e1û

(1 + α1û)(1 + β1ŵ)
+

e2v̂

(1 + α2v̂)(1 + β2ŵ)
− d
)

in Ω,

k1∂ν ũ+ ũ = 0 = k1∂ν û+ û on ∂Ω,

k2∂ν ṽ + ṽ = 0 = k2∂ν v̂ + v̂ on ∂Ω,

k3∂νw̃ + w̃ = 0 = k3∂νŵ + ŵ on ∂Ω,

and satisfying the following estimates

u∗ ≤ û ≤ ũ ≤ Θk1 [a1], v∗ ≤ v̂ ≤ ṽ ≤ Θk1 [a2],

w(u∗,v∗) ≤ ŵ ≤ w̃ ≤ w(Θk1
[a1],Θk1

[a2]),

where w(u,v) is the unique positive solution of the equation−∆w = w

(
e1u

(1 + α1u)(1 + β1w)
+

e2v

(1 + α2v)(1 + β2w)
− d
)

in Ω,

k3∂νw + w = 0 on ∂Ω.

Furthermore, [û, ũ]× [v̂, ṽ]× [ŵ, w̃] is a positive global attractor of (1.5).

Remark 1.9. (a) We point out such functions (ũ, ṽ, w̃) and (û, v̂, ŵ) are

called quasi-solutions of (1.6) in this paper.
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(b) Since

−d > λ1,k3

(
− e1u

∗

1 + α1u∗
− e2v

∗

1 + α2v∗

)
> λ1,k3

(
− e1Θk1 [a1]

1 + α1e1Θk1 [a1]
− e2Θk2 [a2]

1 + α2e2Θk2 [a2]

)
by comparison property of principle eigenvalue, the existence of w(u∗,v∗) and

w(Θk1
[a1],Θk1

[a2]) follows by (c) of Theorem 2.3 in Section 2.

(c) For more results about the positive global attractor of (1.5), please see

Theorem 5.2 in Section 5.

This paper is organized as follows: In Section 2, we give some fundamental

theorems, which play an important role in this paper. In Section 3, the necessary

and sufficient conditions for coexistence states of (1.6) are investigated, and

Theorems 1.1, 1.3, 1.4 are proved. In Section 4, we show that the stability and

uniqueness of coexistence states of (1.6) depend on some parameters, and prove

Theorem 1.5. Finally, the proofs of Theorems 1.6 and 1.8 are given in Section 5.

2. Preliminaries

In this section, we give some fundamental theorems, especially some degree

theorems, which play an important role in this paper. The following theorem fol-

lows from Proposition 1.4 of [81]) (see also Proposition 1 of [23] and Lemmas 2.1

and 2.3 of [52]).

Theorem 2.1. For q ∈ Cα(Ω) (0 < α < 1) and P be a sufficiently large

number such that P > q(x) for all x ∈ Ω, define an positive compact operator

L :=(−∆+P )−1(P−q(x)) : C1
k(Ω)→ C1

k(Ω) = {u ∈ C1(Ω) : k∂νu+u=0 on ∂Ω}
for k ≥ 0 a constant. Denote the spectral radius of L by rk(L). Then we have:

(a) λ1,k(q) > 0⇔ rk(L) < 1;

(b) λ1,k(q) < 0⇔ rk(L) > 1;

(c) λ1,k(q) = 0⇔ rk(L) = 1.

From Theorem 2.1, we see that it is crucial to determine the eigenvalue

λ1,k(q). The following theorem is stated in Theorem 2.4 of [3] and Theorem 11.10

of [71] (see also [13], [14], [23], [24], [61]):

Theorem 2.2. Let q(x) ∈ L∞(Ω) and φ ≥ 0, φ 6≡ 0 in Ω with k∂νφ+ φ = 0

on ∂Ω for k ≥ 0 a constant. Then we have:

(a) If 0 6≡ −∆φ+ q(x)φ ≤ 0, thenλ1,k(q) < 0;

(b) If 0 6≡ −∆φ+ q(x)φ ≥ 0, then λ1,k(q) > 0;

(c) If −∆φ+ q(x)φ ≡ 0, then λ1,k(q) = 0.
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Consider the following single equation:

(2.1)

−∆u = uf(x, u) in Ω,

k∂νu+ u = 0 on ∂Ω,

where Ω is a bounded domain in RN with smooth boundary ∂Ω, k is nonne-

gative constant, ν is the outward unit rector on ∂Ω. Assume that the function

f(x, u) : Ω× [0,∞)→ R satisfies the following hypotheses:

(H1) f(x, u) is Cα-function in x, where 0 < α < 1.

(H2) f(x, u) is C1-function in u with fu(x, u) < 0 for all (x, u) ∈ Ω× [0,∞).

(H3) f(x, u) ≤ 0 in Ω× [C,∞) for some positive constant C.

Theorem 2.3 (see [13], [61]).

(a) The nonnegative solution u(x) of (2.1) satisfies u(x) ≤ C for all x ∈ Ω.

(b) If λ1,k(−f(x, 0)) ≥ 0, then (2.1) has no positive solutions. Moreover, the

trivial solution u(x) = 0 is globally asymptotically stable.

(c) If λ1,k(−f(x, 0)) < 0, then (2.1) has a unique positive solution which is

globally asymptotically stable. In this case, the trivial solution u(x) = 0

is unstable.

Now, we state the fixed point index theory, which is a fundamental tool in

our proofs.

Let E be a Banach space and W ⊂ E is a closed convex set. W is called

a total wedge if γW ⊂W for all γ ≥ 0 and W −W = E. For y ∈ W, define

Wy = {x ∈ E : y + γx ∈ W for some γ > 0},

Sy = {x ∈ Wy : −x ∈ Wy}.

Then Wy is a wedge containing W, y, −y, while Sy is a closed subset of E

containing y. Let T be a compact linear operator on E which satisfies T (Wy) ⊂
Wy. We say that T has property α onWy if there is a t ∈ (0, 1) and a ω ∈ Wy\Sy
such that (I − tT )ω ∈ Sy. Let A : W → W is a compact operator with a fixed

point y ∈ W and A is Fréchet differentiable at y. Let L = A′(y) be the Fréchet

derivative of A at y. Then L mapsWy into itself. We denote by degW(I−A,D)

the degree of I −A in D relative to W, indexW(A, y) the fixed point index of A

at y relative to W and

degW(I −A,Φ) =
∑
y∈Φ

indexW(A, y),

where indexW(A, y) the fixed point index of A at y relative to W and Φ only

contains discrete point.

Theorem 2.4 (see [25], [52], [69]). Assume that I − L is invertible on Wy.

Then, we have:
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(a) If L has property α on Wy, then indexW(A, y) = 0.

(b) If L does not have property α on Wy, then indexW(A, y) = (−1)σ, where

σ is the sum of multiplicities of all eigenvalues of L which is greater

than 1.

3. Existence and no-existence of coexistence states

3.1. Existence of coexistence states. To give some sufficient conditions

for the existence of positive steady-state solutions of (1.6) by using fixed point

index theory, we need an a priori estimates for coexistence states of (1.6). So,

we first give the proof of Theorem 1.1.

Proof of Theorem 1.1. Since u satisfies−∆u = u

(
a1 − u− b12v −

c1w

(1 + α1u)(1 + β1w)

)
≤ u(a1 − u) in Ω,

k1∂νu+ u = 0 on ∂Ω,

we get u(x) ≤ a1 by maximum principle. Similarly, we get v(x) ≤ a2. Since

e1u/((1 + α1u)(1 + β1w)) is increasing in u and e2v/((1 + α2v)(1 + β2w)) is in-

creasing in v, then w satisfies
−∆w = w

(
e1u

(1 + α1u)(1 + β1w)
+

e2v

(1 + α2v)(1 + β2w)
− d
)

≤ w
(

e1a1

(1 + α1a1)(1 + β1w)
+

e2a2

(1 + α2a2)(1 + β2w)
− d
)

in Ω,

k3∂νw + w = 0 on ∂Ω,

we get w(x) ≤ Q3 by maximum principle. �

We introduce the following notations:

• E = C1
k1

(Ω)× C1
k2

(Ω)× C1
k3

(Ω),

where C1
ki

(Ω) = {φ ∈ C1(Ω) : ki∂νφ+ φ = 0, on ∂Ω}, i = 1, 2, 3,

• W = K1 ×K2 ×K3,

where Ki = {φ ∈ C1
ki

(Ω) : φ ≥ 0 on Ω}, i = 1, 2, 3,

• D = {(u, v, w) ∈ W : u < Q1 + 1, v < Q2 + 1, w < Q3 + 1},
where Q1, Q2, Q3 are defined in Theorem 1.1.

From Theorem 1.1, we see that the nonnegative solutions of (1.6) must be

in D. Take P sufficiently large positive constant with

P > max{a1 + b12a2 + c1/β1, a2 + b21a1 + c2/β2, d}

such that

u

(
a1 − u− b12v −

c1w

(1 + α1u)(1 + β1w)

)
+ Pu,

v

(
a2 − b21u− v −

c2w

(1 + α2v)(1 + β2w)

)
+ Pv,
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and

w

(
e1u

(1 + α1u)(1 + β1w)
+

e2v

(1 + α2v)(1 + β2w)
− d
)

+ Pw

are respectively monotone increasing with respect to u, v and w for all (u, v, w) ∈
[0, Q1]× [0, Q2]× [0, Q3].

Define a positive compact operator A : D →W by

A(u, v, w)

= (−∆+P )−1



u

(
a1 − u− b12v −

c1w

(1 + α1u)(1 + β1w)

)
+ Pu

v

(
a2 − b21u− v −

c2w

(1 + α2v)(1 + β2w)

)
+ Pv

w

(
e1u

(1+α1u)(1+β1w)
+

e2v

(1+α2v)(1+β2w)
−d
)

+Pw


.

Remark 3.1. Note that (1.6) is equivalent to (u, v, w) = A(u, v, w), and

therefore it is sufficient to prove A has a positive fixed point in D to show that

(1.6) has a positive solution.

The following lemma give the degree of I − A in D relative to W and the

fixed point index of A at the trivial solution (0, 0, 0) of (1.6) relative to W.

Lemma 3.2. Assume that ai > λ1,ki for i = 1, 2, then we have:

(a) degW(I −A,D) = 1,

(b) indexW(A, (0, 0, 0)) = 0.

Proof. (a) It is easy to see that A has no fixed point on ∂D, so the degW(I−
A,D) is well defined. For θ ∈ [0, 1], we define a positive and compact operator

Aθ : E → E by

Aθ(u, v, w)

= (−∆+P )−1



θu

(
a1 − u− b12v −

c1w

(1 + α1u)(1 + β1w)

)
+ Pu

θv

(
a2 − b21u− v −

c2w

(1 + α2v)(1 + β2w)

)
+ Pv

θw

(
e1u

(1+α1u)(1+β1w)
+

e2v

(1+α2v)(1+β2w)
−d
)

+Pw


,

then A1 = A.
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For each θ, a fixed point of Aθ is a solution of the following problem:

(3.1)



−∆u = θu

(
a1 − u− b12v −

c1w

(1 + α1u)(1 + β1w)

)
in Ω,

−∆v = θv

(
a2 − b21u− v −

c2w

(1 + α2v)(1 + β2w)

)
in Ω,

−∆w = θw

(
e1u

(1+α1u)(1+β1w)
+

e2v

(1+α2v)(1+β2w)
−d
)

in Ω,

k1∂νu+ u = k2∂νv + v = k3∂νw + w = 0 on ∂Ω.

As in Theorem 1.1, we see that the fixed point of Aθ satisfies u(x) ≤ Q1,

v(x) ≤ Q2, w(x) ≤ Q3 for each θ ∈ [0, 1]. So Aθ has no fixed point on ∂D,

the degW(I − Aθ, D) is well defined and degW(I − Aθ, D) is independent of θ.

Therefore

degW(I −A,D) = degW(I −A1, D) = degW(I −A0, D).

Note that (3.1) has only the trivial solution (0, 0, 0) when θ = 0. Set

L = A′0(0, 0, 0) = (−∆ + P )−1

 P 0 0

0 P 0

0 0 P

 .

Assume that L(ξ1, ξ2, ξ3) = (ξ1, ξ2, ξ3) for some (ξ1, ξ2, ξ3) ∈ W(0,0,0) = K1×
K2 × K3. It is easy to see (ξ1, ξ2, ξ3) = (0, 0, 0). Thus I − L is invertible on

W(0,0,0). Since λ1,ki > 0, we see that rki((−∆ + P )−1(P )) < 1 for i = 1, 2, 3 by

Theorem 2.1. This implies that L does not have property α. So, by Theorem 2.4,

we get

degW(I −A,D) = degW(I −A0, D) = indexW(A0, (0, 0, 0)) = 1.

(b) Observe that A(0, 0, 0) = (0, 0, 0). Let L = A′(0, 0, 0), then

L = A′(0, 0, 0) = (−∆ + P )−1

 a1 + P 0 0

0 a2 + P 0

0 0 −d+ P

 .

Assume that L(ξ1, ξ2, ξ3) = (ξ1, ξ2, ξ3) for some (ξ1, ξ2, ξ3) ∈ W(0,0,0), then−∆ξ1 = a1ξ1 in Ω,

k1∂νξ1 + ξ1 = 0 on ∂Ω,

−∆ξ2 = a2ξ2 in Ω,

k2∂νξ2 + ξ2 = 0 on ∂Ω,−∆ξ3 = −dξ3 in Ω,

k3∂νξ3 + ξ3 = 0 on ∂Ω.

Since d > 0, we see ξ3 = 0. If ξi ≥ 0, ξi 6≡ 0, then ai = λ1,ki for i = 1, 2, which

is contradicts to λ1,ki < ai. So (ξ1, ξ2, ξ3) = (0, 0, 0). Thus I − L is invertible

on W(0,0,0).
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Since a1>λ1,k1 , by Theorem 2.1, we see that r = rk1((−∆+P )−1(a1+P )) > 1

and r is the principle eigenvalue of (−∆ + P )−1(a1 + P ) with a corresponding

eigenfunction φ > 0.

Since S(0,0,0) = {(0, 0, 0)}, we see that (φ, 0, 0) ∈ W(0,0,0) \ S(0,0,0). Set

t = 1/r ∈ (0, 1), then (I − tL)(φ, 0, 0) = (0, 0, 0) ∈ S(0,0,0). This shows that L
has property α. Thus indexW(A, (0, 0, 0)) = 0 by Theorem 2.4. �

Next two lemmas give the index of the semi-trivial solutions (Θk1 [a1], 0, 0)

and (0,Θk2 [a2], 0) of (1.6), respectively.

Lemma 3.3. Let a1 > λ1,k1 , a2 6= λ1,k2(b21Θk1 [a1]) and

−d 6= λ1,k3

(
− e1Θk1 [a1]

1 + α1Θk1 [a1]

)
.

Then we have:

(a) If a2 > λ1,k2(b21Θk1 [a1]) or

−d > λ1,k3

(
− e1Θk1 [a1]

1 + α1Θk1 [a1]

)
,

then, indexW(A, (Θk1 [a1], 0, 0)) = 0.

(b) If a2 < λ1,k2(b21Θk1 [a1]) and

−d < λ1,k3

(
− e1Θk1 [a1]

1 + α1Θk1 [a1]

)
,

then, indexW(A, (Θk1 [a1], 0, 0)) = 1.

Proof. Observe A(Θk1 [a1], 0, 0) = (Θk1 [a1], 0, 0). Let L = A′(Θk1 [a1], 0, 0),

then

L=A′(Θk1 [a1], 0, 0)

=(−∆+P )−1


a1+P−2Θk1 [a1] −b12Θk1 [a1] − c1Θk1 [a1]

1 + α1Θk1 [a1]
0 a2+P−b21Θk1 [a1] 0

0 0 −d+P+
e1Θk1 [a1]

1 + α1Θk1 [a1]

.
Let (ξ1, ξ2, ξ3) = L(ξ1, ξ2, ξ3) for some (ξ1, ξ2, ξ3) ∈W(Θk1

[a1],0,0) =C1
k1

(Ω)×
K2 ×K3. Then

(3.2)



−∆ξ1 + (2Θk1 [a1]− a1)ξ1

= −b12Θk1 [a1]ξ2 −
c1Θk1 [a1]

1 + α1Θk1 [a1]
ξ3 in Ω,

−∆ξ2 + (b21Θk1 [a1]− a2)ξ2 = 0 in Ω,

−∆ξ3 +

(
d− e1Θk1 [a1]

1 + α1Θk1 [a1]

)
ξ3 = 0 in Ω,

k1∂νξ1 + ξ1 = k2∂νξ2 + ξ2 = k3∂νξ3 + ξ3 = 0 on ∂Ω.
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Since ξ2 ∈ K2, ξ3 ∈ K3, a2 6=λ1,k2(b21Θk1 [a1]) and

−d 6= λ1,k3

(
− e1Θk1 [a1]

1 + α1Θk1 [a1]

)
,

we see ξ2 = ξ3 = 0. So, we get from the first equation of (3.2) that−∆ξ1 + (2Θk1 [a1]− a1)ξ1 = 0 in Ω,

k1∂νξ1 + ξ1 = 0 on ∂Ω.

If ξ 6≡ 0, then λ1,k1(2Θk1 [a1] − a1) = 0, by Theorem 2.2. On the other hand,

λ1,k1(2Θk1 [a1]−a1) > λ1,k1(Θk1 [a1]−a1) = 0, we get a contradiction. Therefore,

(ξ1, ξ2, ξ3) = (0, 0, 0), i.e. I − L is invertible on W(Θk1
[a1],0,0). Let us first

prove (a).

Case 1. a2 > λ1,k2(b21Θk1 [a1]). Since a2 > λ1,k2(b21Θk1 [a1]), by Theo-

rem 2.1, we have r = rk2((−∆ + P )−1(P + a2 − b21Θk1 [a1])) > 1 is an eigen-

value of (−∆ + P )−1(P + a2 − b21Θk1 [a1]) with a corresponding eigenfunction

φ > 0. SinceS(Θk1
[a1],0,0) = C1

k1
(Ω)×{0}×{0}, we see (0, φ, 0) ∈ W(Θk1

[a1],0,0) \
S(Θk1

[a1],0,0). Set t = 1/r ∈ (0, 1), then

(I − tL)

 0

φ

0

 =

 0

φ

0

− t(−∆ + P )−1

 −b12Θk1 [a1]φ

(P + a2 − b21Θk1 [a1])φ

0


=

 (−∆ + P )−1tb12Θk1 [a1]φ

0

0

 ∈ S(Θk1
[a1],0,0).

So, L has property α onW(Θk1
[a1],0,0). Therefore, indexW(A, (Θk1 [a1], 0, 0)) = 0

according to Theorem 2.4.

Case 2. −d > λ1,k3(−e1Θk1 [a1]/(1 + α1Θk1 [a1])).

Similar to the proof of Case 1, we can see L has property α on W(Θk1
[a1],0,0)

since −d > λ1,k3(−e1Θk1 [a1]/(1 + α1Θk1 [a1])). Therefore,

indexW(A, (Θk1 [a1], 0, 0)) = 0

according to Theorem 2.4.

Next, we prove (b). First, we prove that L does not have property α on

W(Θk1
[a1],0,0). Since a2 < λ1,k2(b21Θk1 [a1]), from Theorem 2.1, we have

rk2((−∆ + P )−1(P + a2 − b21Θk1 [a1])) < 1.

On the contrary, we suppose that L has property α onW(Θk1
[a1],0,0). Then there

exist t ∈ (0, 1) and (φ1, φ2, φ3) ∈ W(Θk1
[a1],0,0) \ S(Θk1

[a1],0,0) such that

(I − tL)(φ1, φ2, φ3) ∈ S(Θk1
[a1],0,0).
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So,

(−∆ + P )−1(P + a2 − b21Θk1 [a1])φ2 =
1

t
φ2.

Since φ2 ∈ K2�{0}, it follows that 1/t > 1 is an eigenvalue of the operator

(−∆+P )−1(P +a2−b21Θk1 [a1]), which is contradiction to rk2((−∆+P )−1(P +

a2 − b21Θk1 [a1])) < 1. So, L does not have property α on W(Θk1
[a1],0,0). By

Theorem 2.4, we have

indexW(A, (Θk1 [a1], 0, 0)) = (−1)σ,

where σ is the sum of the multiplicities of all real eigenvalues of L which are

greater that 1.

Next we will prove σ = 0. Suppose 1/ρ > 1 is an eigenvalue of L with

corresponding eigenvalue function (ξ1, ξ2, ξ3), then

(−∆ + P )−1


a1+P−2Θk1 [a1] −b12Θk1 [a1] − c1Θk1 [a1]

1 + α1Θk1 [a1]
0 a2+P−b21Θk1 [a1] 0

0 0 −d+P+
e1Θk1 [a1]

1 + α1Θk1 [a1]



·

 ξ1
ξ2
ξ3

 =
1

ρ

 ξ1
ξ2
ξ3

 ,

equivalently,

(3.3)



−∆ξ1 + Pξ1 = ρ

(
(a1 + P − 2Θk1 [a1])ξ1

−b12Θk1 [a1]ξ2 −
c1Θk1 [a1]

1 + α1Θk1 [a1]
ξ3

)
in Ω,

−∆ξ2 + Pξ2 = ρ(a2 + P − b21Θk1 [a1])ξ2 in Ω,

−∆ξ3 + Pξ3 = ρ

(
− d+ P +

e1Θk1 [a1]

1 + α1Θk1 [a1]

)
ξ3 in Ω,

k1∂νξ1 + ξ1 = k2∂νξ2 + ξ2 = k3∂νξ3 + ξ3 = 0 on∂Ω.

If ξ2 6≡ 0, it follows from the second equation of (3.3) and Theorem 2.2 that

0 =λ1,k2(P (1− ρ)− ρ(a2 − b21Θk1 [a1]))

>λ1,k2(b21Θk1 [a1]− a2) = λ1,k2(b21Θk1 [a1])− a2,

which is contradict to a2 < λ1,k2(b21Θk1 [a1]), and so ξ2 = 0. Similarly, we can

prove ξ3 = 0 since −d < λ1,k3(−e1Θk1 [a1]/(1 + α1Θk1 [a1])). If ξ1 6≡ 0, it follows

from the first equation of (3.3) that

0 =λ1,k1(P (1− ρ)− ρ(a1 − 2Θk1 [a1]))

≥λ1,k1(2Θk1 [a1]− a1) > λ1,k1(Θk1 [a1]− a1) = 0.
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This contradiction shows that ξ1 = 0. So, (ξ1, ξ2, ξ3) = (0, 0, 0), which implies

that L has no eigenvalues being greater than 1. Consequently, σ = 0. Hence,

indexW(A, (Θk1 [a1], 0, 0)) = 1. �

Similar to the proof of the above lemma, we have the following lemma about

the index of the semi-trivial solution (0,Θk2 [a2], 0) of (1.6):

Lemma 3.4. Let a2 > λ1,k2 , a1 6= λ1,k1(b12Θk2 [a2]) and

−d 6= λ1,k3

(
− e2Θk2 [a2]

1 + α2Θk2 [a2]

)
.

Then we have:

(a) If a1 > λ1,k1(b12Θk2 [a2]) or

−d > λ1,k3

(
− e2Θk2 [a2]

1 + α2Θk2 [a2]

)
,

then, indexW(A, (0,Θk2 [a2], 0)) = 0.

(b) If a1 < λ1,k1(b12Θk2 [a2]) and

−d < λ1,k3

(
− e2Θk2 [a2]

1 + α2Θk2 [a2]

)
,

then indexW(A, (0,Θk2 [a2], 0)) = 1.

In order to study the other semi-trivial solutions of (1.6), let us consider the

following three sub-systems:

(3.4)



−∆v = v

(
a2 − v −

c2w

(1 + α2v)(1 + β2w)

)
in Ω,

−∆w = w

(
e2v

(1 + α2v)(1 + β2w)
− d
)

in Ω,

k2∂νv + v = k3∂νw + w = 0 on ∂Ω,

(3.5)



−∆u = u

(
a1 − u−

c1w

(1 + α1u)(1 + β1w)

)
in Ω,

−∆w = w

(
e1u

(1 + α1u)(1 + β1w)
− d
)

in Ω,

k1∂νu+ u = k3∂νw + w = 0 on ∂Ω,

(3.6)


−∆u = u(a1 − u− b12v) in Ω,

−∆v = v(a2 − b21u− v) in Ω,

k1∂νu+ u = k2∂νv + v = 0 on ∂Ω.



Coexistence States of Predator-Prey Systems 527

Theorem 3.5.

(a) (3.4) has a coexistence state (v(1), w(1)) with v(1) ≤ Θk2 [a2] if and only

if

a2 > λ1,k2 and − d > λ1,k3

(
− e2Θk2 [a2]

1 + α2Θk2 [a2]

)
.

Furthermore, if

a2 − c2/β2 > λ1,k2 and − d > λ1,k3

(
− e2Θk2 [a2 − c2/β2]

1 + α2Θk2 [a2 − c2/β2]

)
,

then the coexistence state (v(1), w(1)) satisfies

Θk2 [a2 − c2/β2] ≤ v(1) and w
(1)
∗ ≤ w(1),

where w
(1)
∗ is defined in Theorem 1.3.

Denote Φ1 = {(v, w) : (v, w) is the coexistence state of (3.4)}, then if

a2 > λ1,k2 and −d > λ1,k3(−e2Θk2 [a2]/(1 + α2Θk2 [a2])), we have

degK2×K3
(I −A|K2×K3

,Φ1) = 1.

(b) (3.5) has a coexistence state (u(2), w(2)) with u(2) ≤ Θk1 [a1] if and only if

a1 > λ1,k1 and − d > λ1,k3

(
− e1Θk1 [a1]

1 + α1Θk1 [a1]

)
.

Furthermore, if

a1 − c1/β1 > λ1,k1 and − d > λ1,k3

(
− e1Θk1 [a1 − c1/β1]

1 + α1Θk1 [a1 − c1/β1]

)
,

then the coexistence state (u(2), w(2)) satisfies

Θk1 [a1 − c1/β1] ≤ u(2) and w
(2)
∗ ≤ w(2),

where w
(2)
∗ is defined in Theorem 1.3.

Denote Φ2 = {(u,w) : (u,w) is the coexistence state of (3.5)}, then if

a1 > λ1,k1 and−d > λ1,k3(−e1Θk1 [a1]/(1 + α1Θk1 [a1])), we have

degK1×K3
(I −A|K1×K3 ,Φ2) = 1.

(c) If a1 > λ1,k1(b12Θk2 [a2]) and a2 > λ1,k2(b21Θk1 [a1]), then (3.6) has a

coexistence state (u(3), v(3)). Furthermore, we have the following esti-

mates:

Θk1 [a1 − b12Θk2 [a2]] ≤u(3) ≤ Θk1 [a1],

Θk2 [a2 − b21Θk1 [a1]] ≤ v(3) ≤ Θk2 [a2].

Denote Φ3 = {(u, v) : (u, v) is the coexistence state of (3.6)}, then if

a1 > λ1,k1(b12Θk2 [a2]) and a2 > λ1,k2(b21Θk1 [a1]), we have

degK1×K2
(I −A|K1×K2

,Φ3) = 1.
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Proof. We only give the proof of (a) since the proofs of (b) and (c) are

similar. We first prove the sufficient condition:

a2 > λ1,k2 and − d > λ1,k3

(
− e2Θk2 [a2]

1 + α2Θk2 [a2]

)
⇒ Φ1 6= ∅.

Similarly to the proof of Theorem 1.1, we see any solution (v, w) of (3.4) satisfying

v ≤ Q2 and w ≤ Q3, where Q2 and Q3 are defined in Theorem 1.1.

Denote

• E23 = C1
k2

(Ω)× C1
k3

(Ω),

where C1
ki

(Ω) = {φ ∈ C1(Ω) : ki∂νφ+ φ = 0, on ∂Ω}, i = 2, 3,

• W23 = K2 ×K3, where Ki = {φ ∈ C1
ki

(Ω) : φ ≥ 0 on Ω}, i = 2, 3,

• D23 = {(v, w) ∈ W23 : v < Q2 + 1, w < Q3 + 1}.

Define a positive compact operator A23 : D23 →W23 by

A23(v, w) = (−∆ + P )−1

v
(
a2 − v −

c2w

(1 + α2v)(1 + β2w)

)
+Pv

w

(
e2v

(1 + α2v)(1 + β2w)
− d
)

+Pw

= A|K2×K3
.

Note that (3.4) is equivalent to (v, w) = A23(v, w), and therefore it suffices

to prove A23 has a positive fixed point in D23 to show that (3.4) has a positive

solution.

It is easy to see that (3.4) has a trivial solution (0, 0) and a semi-trivial

solution (Θk2(a2), 0), similar to the proof of Lemma 3.2 and (a) of Lemma 3.4

(see also [23], [24], [25], [78]), we have

degW23
(I −A23, D23) = 1, indexW23

(A23, (0, 0)) = 0,

indexW23
(A23, (Θk2(a2), 0)) = 0

under the condition a2 > λ1,k2 and −d > λ1,k3(−e2Θk2 [a2]/(1 + α2Θk2 [a2])).

So, it follows from the theory of Leray–Schauder degree [59] that

degK2×K3
(I −A|K2×K3 ,Φ1) = degW23

(I −A23,Φ1)

= degW23
(I −A23, D23)− indexW23

(A23, (0, 0))− indexW23
(A23, (0, 0)) = 1.

So Φ1 6= ∅, i.e. there exist coexistence state (v(1), w(1)) of (3.4).

We next prove the necessary condition:

Φ1 6= ∅ ⇒ a2 > λ1,k2 and − d > λ1,k3

(
− e2Θk2 [a2]

1 + α2Θk2 [a2]

)
.

Suppose the result does not hold, i.e. a2 ≤ λ1,k2 or

−d < λ1,k3

(
− e2Θk2 [a2]

1 + α2Θk2 [a2]

)
.
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Without loss of generality, we assume a2 ≤ λ1,k2 , then from the first equation

of (3.4), we get−∆v = v

(
a2 − v −

c2w

(1 + α2v)(1 + β2w)

)
≤ v(a2 − v) in Ω,

k2∂νv + v = 0 on ∂Ω,

then we get v(x) = 0 from (b) of Theorem 2.3 since a2 ≤ λ1,k2 , which is contradict

to Φ1 6= ∅. So, (3.4) has a coexistence state (v(1), w(1)) with v(1) ≤ Θk2 [a2] if and

only if a2 > λ1,k2 and −d > λ1,k3(−e2Θk2 [a2]/(1 + α2Θk2 [a2])). The rest proof

is similar to the proof Theorem 1.1 by comparison principle [61], so we omit it.

The proof is complete. �

Denote

Ψ1 = {(0, v(1), w(1)) : where(v(1), w(1)) ∈ Φ1},

Ψ2 = {(u(2), 0, w(2)) : where(u(2), w(2)) ∈ Φ2},

Ψ3 = {(u(3), v(3), 0) : where(u(3), v(3)) ∈ Φ3}.

It is easy to see that (1.6) has semi-trivial solutions

(0, v(1), w(1)) ∈ Ψ1, (u(2), 0, w(2)) ∈ Ψ2 and (u(3), v(3), 0) ∈ Ψ3

from Theorem 3.5. Next, we give the degree of I − A in Ψ1, Ψ2, Ψ3 relative

to W, respectively.

Lemma 3.6.

(a) If Φ1 6= ∅ and

a1 > λ1,k1

(
b12v

(1) +
c1w

(1)

1 + β1w(1)

)
for any (0, v(1), w(1)) ∈ Ψ1,

then degW(I −A,Ψ1) = 0.

(b) If Φ1 6= ∅ and

a1 < λ1,k1

(
b12v

(1) +
c1w

(1)

1 + β1w(1)

)
for any (0, v(1), w(1)) ∈ Ψ1,

then degW(I −A,Ψ1) = degK2×K3
(I −A|K2×K3

,Φ1) = 1.

(c) If Φ2 6= ∅ and

a2 > λ1,k2

(
b21u

(2) +
c2w

(2)

1 + β2w(2)

)
for any (u(2), 0, w(2)) ∈ Ψ2,

then degW(I −A,Ψ2) = 0.

(d) If Φ2 6= ∅ and

a2 < λ1,k2

(
b21u

(2) +
c2w

(2)

1 + β2w(2)

)
for any (u(2), 0, w(2)) ∈ Ψ2,

then degW(I −A,Ψ2) = degK1×K3
(I −A|K1×K3 ,Φ2) = 1.
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(e) If Φ3 6= ∅ and

−d > λ1,k3

(
− e1u

(3)

1 + α1u(3)
− e2v

(3)

1 + α2v(3)

)
for any (u(3), v(3), 0) ∈ Ψ3,

then degW(I −A,Ψ3) = 0.

(f) If a1 > λ1,k1(b12Θk2 [a2]), a2 > λ1,k2(b21Θk1 [a1]) and

−d < λ1,k3

(
− e1u

(3)

1 + α1u(3)
− e2v

(3)

1 + α2v(3)

)
for any (u(3), v(3), 0) ∈ Ψ3,

then degW(I −A,Ψ3) = degK1×K2
(I −A|K1×K2 ,Φ3) = 1.

Remark 3.7. (a) If Φi = ∅ (i = 1, 2, 3), it is easy to see degW(I−A,Ψi) = 0

from Leray–Schauder degree theory [59].

(b) From Theorem 3.5, we know that

Φ1 6= ∅ ⇔ a2 > λ1,k2 and − d > λ1,k3

(
− e2Θk2 [a2]

1 + α2Θk2 [a2]

)
.

So, we have Φ1 6= ∅ ⇒ degK2×K3
(I−A|K2×K3 ,Φ1) = 1 in case (b) of Lemma 3.6

by (a) of Theorem 3.5. The same argument holds for case (d) of Lemma 3.6.

However, this is not true for (f) of Lemma 3.6 since

Φ3 6= ∅
6⇒
⇐

a1 > λ1,k1(b12Θk2 [a2]) and a2 > λ1,k2(b21Θk1 [a1])

by (c) of Theorem 3.5. In fact, similar to [23], [24], [52], we have

degK1×K2
(I −A|K1×K2

,Φ3)

=


−1 ifa1 < λ1,k1(b12Θk2 [a2]), and a2 < λ1,k2(b21Θk1 [a1]),

1 if a1 > λ1,k1(b12Θk2 [a2]), and a2 > λ1,k2(b21Θk1 [a1]),

0 if (a1 − λ1,k1(b12Θk2 [a2]))(a2 − λ1,k2(b21Θk1 [a1])) < 0.

Proof. We only prove (a) and (b) since the proofs of (c) and (e) are similar

to (a) and the proof of (d) and (d) are similar to (b).

(a) For θ ≥ 0, we define a homotopy Aθ by

Aθ(u, v, w)

= (−∆+P )−1


u

(
θ + a1 − u− b12v −

c1w

(1 + α1u)(1 + β1w)

)
+ Pu

v

(
a2 − b21u− v −

c2w

(1 + α2v)(1 + β2w)

)
+ Pv

w

(
e1u

(1 + α1u)(1 + β1w)
+

e2v

(1 + α2v)(1 + β2w)
− d
)

+ Pw

 .

Next, we prove the following two claims:
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Claim 1. For any θ ≥ 0, there is a sufficiently small open neighbourhood

Nδ(0, v
(1), w(1)) for any (0, v(1), w(1)) ∈ Ψ1 such that Aθ has no fixed point on

∂Nδ(0, v
(1), w(1)), i.e. degW(I −Aθ, Nδ(0, v(1), w(1))) is well defined.

Claim 2. Aθ has no fixed point in Nδ(0, v
(1), w(1)) for θ sufficiently large,

i.e. degW(I −Aθ, Nδ(0, v(1), w(1))) = 0 for θ sufficiently large.

Proof of Claim 1. Suppose the result does not hold, then there exist

δn → 0, θn ≥ 0 and (un, vn, wn) ∈ ∂Nδn(0, v(1), w(1)) with Aθ(un, vn, wn) =

(un, vn, wn). Since δn → 0, we see that un → 0, vn → v(1), wn → w(1). If un ≡
0, then ∂Nδn(0, v(1), w(1)) 3 (0, vn, wn) = (0, v(1), w(1)) 6∈ ∂Nδn(0, v(1), w(1)),

a contradiction. Therefore, un 6≡ 0 in Ω for all n. Since (un, vn, wn) is a positive

fixed point of Aθ, we have

θn + a1 = λ1,k1

(
un + b12vn +

c1wn
(1 + α1un)(1 + β1wn)

)
by Theorem 2.2. Thus,

a1 ≤ λ1,k1

(
un + b12vn +

c1wn
(1 + α1un)(1 + β1wn)

)
→ λ1,k1

(
b12v

(1) +
c1w

(1)

1 + β1w(1)

)
(as δn → 0)

< a1,

a contradiction. So we get Claim 1.

Proof of Claim 2. A contradiction argument will be used again by

assuming there exist θn → ∞ and (un, vn, wn) ∈ Nδ(0, v
(1), w(1)) such that

Aθ(un, vn, wn) = (un, vn, wn). Then, by Theorem 2.2,

θn + a1 = λ1,k1

(
un + b12vn +

c1wn
(1 + α1un)(1 + β1wn)

)
.

Moreover, since (un, vn, wn) ∈ Nδ(0, v(1), w(1)), we have

max
x∈Ω

un(x) ≤ δ, max
x∈Ω

vn(x) ≤ δ + max
x∈Ω

v(1)(x),

and thus

θn + a1 ≤ λ1,k1

(
δ + b12δ + b12 max

x∈Ω
v(1)(x) + c1/β1

)
by the comparison property of principle eigenvalues. This derives a contradiction

since θn →∞. From Claims 1, 2 and the Leray–Schauder degree theory [59], we

have

degW(I −A,Ψ1) =
∑

(0,v(1),w(1))∈Ψ1

indexW(A, (0, v(1), w(1)))

=
∑

(0,v(1),w(1))∈Ψ1

degW(I −Aθ, Nδ(0, v(1), w(1))) = 0.
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(b) For θ ∈ [0, 1], we define a homotopy Aθ by

Aθ(u, v, w)

= (−∆+P )−1


θ

(
u

(
a1 − u− b12v −

c1w

(1 + α1u)(1 + β1w)

)
+ Pu

)
v

(
a2 − b21u− v −

c2w

(1 + α2v)(1 + β2w)

)
+ Pv

w

(
e1u

(1 + α1u)(1 + β1w)
+

e2v

(1 + α2v)(1 + β2w)
− d
)

+ Pw


.

Next, we prove the following claim:

Claim 3. For any θ ∈ [0, 1], there is a sufficiently small open neighbourhood

Nδ(0, v
(1), w(1)) for any (0, v(1), w(1)) ∈ Ψ1 such that Aθ has no fixed point on

∂Nδ(0, v
(1), w(1)), i.e. degW(I −Aθ, Nδ(0, v(1), w(1))) is well defined.

Proof of the Claim 3. Suppose by contradiction that there is δn → 0,

θn ∈ [0, 1] and (un, vn, wn) ∈ ∂Nδn(0, v(1), w(1)) such that Aθn(un, vn, wn) =

(un, vn, wn). As the proof of (a), we can easily see that un → 0, vn → v(1),

wn → w(1) as n → ∞ with un 6≡ 0. Since (un, vn, wn) is a positive fixed point

of Aθn , we have−∆un = θnun

(
a1 − un − b12vn−

c1wn
(1 + α1un)(1 + β1wn)

+P

)
−Pun in Ω,

k1∂νun + un = 0 on ∂Ω.

Therefore,

θna1 = λ1,k1

(
θn

(
un + b12vn +

c1wn
(1 + α1un)(1 + β1wn)

− P
)

+ P

)
by Theorem 2.2. Since

θu

(
a1 − u− b12v −

c1wn
(1 + α1un)(1 + β1wn)

+ P

)
> 0

for all (u, v, w) ∈ D and θ ∈ [0, 1] from the definition of P , we can derive the

following contradiction as δn → 0:

a1 ≥ θna1 = λ1,k1

(
θn

(
un + b12vn +

c1wn
(1 + α1un)(1 + β1wn)

− P
)

+ P

)
≥ λ1,k1

(
un + b12vn +

c1wn
(1 + α1un)(1 + β1wn)

)
→ λ1,k1

(
b12v

(1) +
c1w

(1)

1 + β1w(1)

)
> a1.

Since degW(I −Aθ, Nδ(0, v(1), w(1))) is independent of θ [59], we see that

degW(I −A,Ψ1) = degW(I −A0,Ψ1)
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=
∑

(0,v(1),w(1))∈Ψ1

degW(I −A0, Nδ(0, v
(1), w(1)))

=
∑

(v(1),w(1))∈Φ1

degK2×K3
(I−A0|K2×K3

, Nδ(v
(1), w(1))) · degK1

(I−A0|K1
, Nδ(0))

=
∑

(v(1),w(1))∈Φ1

degK2×K3
(I −A|K2×K3

, Nδ(v
(1), w(1)))

= degK2×K3
(I −A|K2×K3

,Φ1) = 1

by theory of Leray–Schauder degree [59] and (a) of Theorem 3.5. �

Now, we are ready to discuss the existence of positive steady-state solution

of (1.5), that is, give the proof of Theorem 1.3.

Proof of Theorem 1.3. We prove (a) in detail only since the other cases

can be obtained by using a similar argument. Since ai > λ1,ki for i = 1, 2, we

obtain degW(I−A,D) = 1 and indexW(A, (0, 0, 0)) = 0 from Lemma 3.2. Thus,

it suffices to prove that

indexW(A, (Θk1 [a1], 0, 0) + indexW(A, (0,Θk2 [a2], 0)) +

3∑
i=1

degW(I −A,Ψi) 6= 1.

(a) Since a2 > λ1,k2(b21Θk1 [a1]) and a1 > λ1,k1(b12Θk2 [a2]), we have

indexW(A, (Θk1 [a1], 0, 0) = indexW(A, (0,Θk2 [a2], 0)) = 0

from (a) of Lemma 3.3 and (a) of Lemma 3.4, respectively.

Moreover, Theorem 3.5 implies Ψi 6= ∅ for all i = 1, 2, 3. Let (0, v(1), w(1)) ∈
Ψ1, (u(2), 0, w(2)) ∈ Ψ2 and (u(3), v(3), 0) ∈ Ψ3. Then, since v(1) ≤ Θk2 [a2],

u(2) ≤ Θk1 [a1], u(3) ≥ Θk1 [a1− b12Θk2 [a2]], v(3) ≥ Θk2 [a2− b21Θk1 [a1]], we have

a1 >λ1,k1

(
b12Θk2 [a2] +

c1
β1

)
≥ λ1,k1

(
b12v

(1) +
c1w

(1)

1 + β1w(1)

)
,

a2 >λ1,k2

(
b21Θk1 [a1] +

c2
β2

)
≥ λ1,k2

(
b21u

(2) +
c2w

(2)

1 + β2w(2)

)
,

−d >λ1,k3

(
Γ

(1)
2 + Γ

(2)
2

)
≥ λ1,k3

(
− e1u

(3)

1 + α1u(3)
− e2v

(3)

1 + α2v(3)

)
by the comparison property of principle eigenvalues, thus degW(I − A,Ψi) = 0

for i = 1, 2, 3 by Lemma 3.6. Synthetically, we have

indexW(A, (Θk1 [a1], 0, 0) + indexW(A, (0,Θk2 [a2], 0)) +

3∑
i=1

degW(I −A,Ψi) = 0.

(b) Ψ1 = ∅ from (a) of Theorem 3.5 since −d < λ1,k3(Γ
(2)
1 ), and therefore

degW(I −A,Ψ1) = 0. The remaining proofs are similar to (a).

(c) The proof is similar to (b).
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(d) Since −d < min{λ1,k3(Γ
(1)
1 ), λ1,k3(Γ

(2)
1 )}, Ψ1 = Ψ2 = ∅ by (a) and (b) of

Theorem 3.5, and thus one can similarly show that

indexW(A, (Θk1 [a1], 0, 0) + indexW(A, (0,Θk2 [a2], 0)) +

3∑
i=1

degW(I −A,Ψi) = 0.

(e) We have

indexW(A, (Θk1 [a1], 0, 0) = indexW(A, (0,Θk2 [a2], 0)) = degW(I −A,Ψ3) = 0,

but degW(I −A,Ψ1) = degW(I −A,Ψ2) = 1. Therefore,

indexW(A, (Θk1 [a1], 0, 0) + indexW(A, (0,Θk2 [a2], 0)) +

3∑
i=1

degW(I −A,Ψi) = 2.

(f) Observe that a1 < λ1,k1(b12Θk2 [a2]) and a2 > λ1,k2(b21Θk1 [a1]) do not

imply Ψ3 = ∅ or Ψ3 6= ∅. If Ψ3 = ∅, then clearly degW(I − A,Ψ3) = 0 holds.

Even if Ψ3 6= ∅ are assumed, we have degW(I −A,Ψ3) = 0 by (e) of Lemma 3.6

since

−d > λ1,k3(Γ
(2)
2 ) ≥ λ1,k3

(
− e1u

(3)

1 + α1u(3)
− e2v

(3)

1 + α2v3

)
.

The other degrees re the same as (e), and thus

indexW(A, (Θk1 [a1], 0, 0) + indexW(A, (0,Θk2 [a2], 0)) +

3∑
i=1

degW(I −A,Ψi) = 2.

(g) The proof is similar to (f).

(h) Since a2 < λ1,k2(b21Θk1 [a1 − b12Θk2 [a2]]), Ψ3 = ∅. More precisely, if

there is (u(3), v(3), 0) ∈ Ψ3, then we have

a2 = λ1,k2(b21u
(3) + v(3)) > λ1,k2(b21Θk1 [a1 − b12Θk2 [a2]]) > a2

by Theorem 2.2 and the comparison property of principle eigenvalues, a contra-

diction. Then as in (f), we have

indexW(A, (Θk1 [a1], 0, 0) + indexW(A, (0,Θk2 [a2], 0)) +

3∑
i=1

degW(I −A,Ψi) = 2.

(i) The proof is similar to (h). �

We discuss the biology meaning of Theorem 1.3 (b)–(d), (h) and (i).

Remark 3.8. (a) Theorem 1.3(b)–(c) imply that, even if the subsystem

(3.4) or (3.5) does not have a coexistence state (Ψ1 = ∅ or Ψ2 = ∅), we may

expect that (1.6) has at leat one coexistence state by introducing another prey

species or by putting them in the same circumstance with weak competition

interaction between two prey species u and v (i.e. a1 > λ1,k1(b12Θk2 [a2]) and

a2 > λ1,k2(b21Θk1 [a1])).
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(b) In Theorem 1.3(h), the assumption

a1 > λ1,k1(b12Θk2 [a2]) and λ1,k2(b21Θk1 [a1 − b12Θk2 [a2]])

can be observed that the first species u dominates the other species v in the

competing subsystem (3.6), and therefore u may wipe out v. In this situation,

if some predator species w is introduced properly in the system, then we may

expect that they coexist.

(c) The remark on Theorem 1.3(i) is similar to remark (b).

3.2. No-existence of coexistence states. Before closing this section, we

consider the non-existence of coexistence states of (1.6) and give the proof of

Theorem 1.4.

Proof of Theorem 1.4. Assume (1.6) has a coexistence state (u, v, w),

then u, v, w satisfy the following three equations respectively,

(3.7)

−∆u = u

(
a1 − u− b12v −

c1w

(1 + α1u)(1 + β1w)

)
in Ω,

k1∂νu+ u = 0 on ∂Ω,

(3.8)

−∆v = v

(
a2 − b21u− v −

c2w

(1 + α2v)(1 + β2w)

)
in Ω,

k2∂νv + v = 0 on ∂Ω,

(3.9)

−∆w = w

(
e1u

(1 + α1u)(1 + β1w)
+

e2v

(1 + α2v)(1 + β2w)
− d
)

in Ω,

k3∂νw + w = 0 on ∂Ω.

(a) Without loss of generality, we only consider the case a1 ≤ λ1,k1 . Since

u > 0 in Ω, we get from (3.7) that

a1 = λ1,k1

(
u+ b12v +

c1w

(1 + α1u)(1 + β1w)

)
> λ1,k1

by Theorem 2.2 and comparison property of principle eigenvalue, this is contra-

dict to a1 ≤ λ1,k1 .

(b) Since w > 0 in Ω, u ≤ Θk1 [a1] and v ≤ Θk2 [a2], we get from (3.9) that

−d =λ1,k3

(
− e1u

(1 + α1u)(1 + β1w)
− e2v

(1 + α2v)(1 + β2w)

)
>λ1,k3

(
− e1Θk1 [a1]

1 + α1Θk1 [a1]
− e2Θk2 [a2]

1 + α2Θk2 [a2]

)
by Theorem 2.2 and comparison property of principle eigenvalue, this is contra-

dict to

−d ≤ λ1,k3

(
− e1Θk1 [a1]

1 + α1Θk1 [a1]
− e2Θk2 [a2]

1 + α2Θk2 [a2]

)
.
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(c) Since v ≤ Θk2 [a2] and c1w/((1 + α1u)(1 + β1w)) ≤ c1/β1, we get from

(3.7) that −∆u ≥ u(a1 − u− b12Θk2 [a2]− c1/β1) in Ω,

k1∂νu+ u = 0 on ∂Ω,

then, we have u ≥ Θk1 [a1 − b12Θk2 [a2] − c1/β1] by comparison principle. Since

v > 0 in Ω, we get from (3.8) that

a2 =λ1,k2

(
b21u+v+

c2w

(1+α2v)(1+β2w)

)
>λ1,k2(b21Θk1 [a1−b12Θk2 [a2]−c1/β1])

by Theorem 2.2 and comparison property of principle eigenvalue, this is contra-

dict to a2 ≤ λ1,k2(b21Θk1 [a1 − b12Θk2 [a2]− c1/β1]).

(d) The proof is similar to (c). �

4. Uniqueness and stability of coexistence states

In this section, in order to investigate the stability and uniqueness of co-

existence states of (1.6), we first present a lemma that mainly show the non-

degenerateness and linear stability of coexistence states for (1.6) under some

restricted assumptions.

Lemma 4.1. Assume that a1 > λ1,k1(b12Θk2 [a2]), a2 > λ1,k2(b21Θk1 [a1]) and

(1.9) holds. Then we have:

(a) (3.6) has a unique coexistence state (u(3), v(3)).

(b) Let w(3) be the unique positive solution of the following equation−∆w = w

(
e1u

(3)

(1 + α1u(3))(1 + β1w)
+

e2v
(3)

(1 + α2v(3))(1 + β2w)
− d
)

in Ω,

k3∂νw + w = 0 on ∂Ω

for

−d > λ1,k3

(
− e1u

(3)

1 + α1u(3)
− e2v

(3)

1 + α2v(3)

)
and w(3) ≡ 0 for the other cases. Then the coexistence states of (1.6) (if

they exist) converge to (u(3), v(3), w(3)) as ci → 0 for i = 1, 2.

(c) There exists a positive constant C̃ = C̃(α1, α2, β1, β2) such that for

c1, c2 ≤ C̃, any coexistence state of (1.6) is non-degenerate and linearly

stable.

(d) If a1 − c1/β1 > λ1,k1(b12Θk2 [a2]) and

−d > λ1,k3

(
− e1Θk1 [a1 − b12Θk2 [a2]− c1/β1]

1 + α1Θk1 [a1 − b12Θk2 [a2]− c1/β1]

)
,

then there exists a positive constant C̃ = C̃(c2, α1, α2, β1, e2) such that

for 1/β2, c1 ≤ C̃ any coexistence state of (1.6) (if it exists) is non-

degenerate and linearly stable.
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(e) If a2 − c2/β2 > λ1,k2(b21Θk1 [a1]) and

−d > λ1,k3

(
− e2Θk2 [a2 − b21Θk1 [a1]− c2/β2]

1 + α2Θk2 [a2 − b21Θk1 [a1]− c2/β2]

)
,

then there exists a positive constant C̃ = C̃(c1, α1, α2, β2, e1) such that

for 1/β1, c2 ≤ C̃ any coexistence state of (1.6) (if it exists) is non-

degenerate and linearly stable.

Proof. (a) The existence of a coexistence state of (3.6) follows from (c)

of Theorem 3.5. Using the Rayleigh’s formula as in [46] or [49] for principle

eigenvalue, the unique can be shown similarly. So that its proof is omitted.

(b) It is easy to see that the compact operator A(u, v, w) defined in Section 3

converges to the operator

Ã(u, v, w) = (−∆ + P )−1

·


u(a1 − u− b12v) + Pu

v(a2 − b21u− v) + Pv

w

(
e1u

(1 + α1u)(1 + β1w)
+

e2v

(1 + α2v)(1 + β2w)
− d
)

+ Pw

 ,

as ci → 0 for i = 1, 2, and coexistence state of (1.6) converge to the fixed points

of Ã(u, v, w) as ci → 0 for i = 1, 2 since the only fixed point of Ã(u, v, w) is

(u(3), v(3), w(3)).

(c) In view of Theorem 11.20 of [71], it suffices to show that the corresponding

linearized problem of (1.6) has no eigenvalue µ with Re(µ) ≤ 0. To do this,

a contradiction argument will be used by assuming that (1.6) has a coexistence

state (ui, vi, wi) which is either degenerate or linearly unstable for sequence {c1,i}
and {c2,i} with c1,i, c2,i → 0 where i ≥ 1. Thus there exist µi with Re(µi) ≤ 0

and (ξi, ηi, ζi) 6= (0, 0, 0) such that

(4.1)



−∆ξi −
(
a1 − 2ui − b12vi −

c1,iwi
(1 + α1ui)2(1 + β1wi)

)
ξi

+ b12uiηi +
c1,iui

(1 + α1ui)(1 + β1wi)2
ζi = µiξi in Ω,

−∆ηi+b21viξi−
(
a2−b21ui−2vi−

c2,iwi
(1 + α2vi)2(1 + β2wi)

)
ηi

+
c2,ivi

(1 + α2vi)(1 + β2wi)2
ζi = µiηi in Ω,

−∆ζi −
e1wi

(1 + α1ui)2(1 + β1wi)
ξi −

e2wi
(1 + α2vi)2(1 + β2wi)

ηi

−
(

e1ui
(1+α1ui)(1+β1wi)2

+
e2vi

(1+α2vi)(1+β2wi)2
−d
)
ζi = µiζi in Ω,

k1∂νξi + ξi = k2∂νηi + ηi = k3∂νζi + ζi = 0 on ∂Ω.
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There are two cases for our considerations.

Case 1.

−d > λ1,k3

(
− e1u

(3)

1 + α1u(3)
− e2v

(3)

1 + α2v3

)
.

Assume that

‖ξi‖2L2 + ‖ηi‖2L2 = ‖ζi‖2L2 = 1

and observe that

(ui, vi, wi)→ (u(3), v(3), w(3))

with w(3) > 0 in Ω as c1,i, c2,i → 0 by the previous result (a). Then from (4.1),

we have

µi =

∫
Ω

|∇ξi|2 −
∫

Ω

(
a1 − 2ui − b12vi −

c1,iwi
(1 + α1ui)2(1 + β1wi)

)
|ξi|2

+

∫
Ω

b12uiηiξi +

∫
Ω

c1,iui
(1 + α1ui)(1 + β1wi)2

ζiξi + τ1

∫
∂Ω

|ξi|2

+

∫
Ω

|∇ηi|2 −
∫

Ω

(
a2 − b21ui − 2vi −

c2,iwi
(1 + α2vi)2(1 + β2wi)

)
|ηi|2

+

∫
Ω

b21viξiηi +

∫
Ω

c2,ivi
(1 + α2vi)(1 + β2wi)2

ζiηi + τ2

∫
∂Ω

|ηi|2

+

∫
Ω

|∇ζi|2 −
∫

Ω

e1wi
(1 + α1ui)2(1 + β1wi)

ξiζi

−
∫

Ω

e2wi
(1 + α2vi)2(1 + β2wi)

ηiζi

−
∫

Ω

(
e1ui

(1+α1ui)(1+β1wi)2
+

e2vi
(1+α2vi)(1+β2wi)2

−d
)
|ζi|2 + τ3

∫
∂Ω

|ζi|2,

where ξi, ηi and ζi are the respective complex conjugates of ξi, ηi and ζi and

τi =

0 if ki = 0,
1

ki
if ki > 0

for i = 1, 2, 3.

From the above the above identity, we can see that {Im(µi)} and {Re(µi)}
are bounded. Therefore, {µi} is bounded.

Without loss of generality, we assume that µi → µ, then Re(µ) ≤ 0 follows

from Re(µi) ≤ 0.

We also assume that ξi → ξ, ηi → η and ζi → ζ since {ξi}, {ηi} and {ζi} are

bounded.
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Taking the limit in (4.1), we obtain

(4.2)



−∆ξ − (a1 − 2u(3) − b12v
(3))ξ + b12u

(3)η = µξ in Ω,

−∆η + b21v
(3)ξ − (a2 − b21u

(3) − 2v(3))η = µη in Ω,

−∆ζ − e1w
(3)

(1 + α1u(3))2(1 + β1w(3))
ξ

− e2w
(3)

(1 + α2v(3))2(1 + β2w(3))
η

−
(

e1u
(3)

(1 + α1u(3))(1 + β1w(3))2

+
e2v

(3)

(1 + α2v(3))(1 + β2w(3))2
− d
)
ζ = µζ in Ω,

k1∂νξ + ξ = k2∂νη + η = k3∂νζ + ζ = 0 on ∂Ω.

From the first and the second equations of (4.2), we obtain

µ

∫
Ω

(|ξ|2 + |η|2) =

∫
Ω

|∇ξ|2 −
∫

Ω

(a1 − 2u(3) − b12v
(3))|ξ|2 +

∫
Ω

b12u
(3)ηξ

+τ1

∫
∂Ω

|ξ|2+

∫
Ω

|∇η|2+

∫
Ω

b21v
(3)ξη−

∫
Ω

(a2−b21u
(3)−2v(3))|η|2+τ2

∫
∂Ω

|η|2,

then we have

0 ≥Re(µ)

∫
Ω

(|ξ|2 + |η|2)

=

∫
Ω

|∇Re(ξ)|2 −
∫

Ω

(a1 − u(3) − b12v
(3))(Re(ξ))2 + τ1

∫
∂Ω

(Re(ξ))2

+

∫
Ω

|∇Im(ξ)|2 −
∫

Ω

(a1 − u(3) − b12v
(3))(Im(ξ))2 + τ1

∫
∂Ω

(Im(ξ))2

+

∫
Ω

|∇Re(η)|2 −
∫

Ω

(a2 − b21u
(3) − v(3))(Re(η))2 + τ2

∫
∂Ω

(Re(η))2

+

∫
Ω

|∇Im(η)|2 −
∫

Ω

(a2 − b21u
(3) − v(3))(Im(η))2 + τ2

∫
∂Ω

(Im(η))2

+

∫
Ω

[u(3)((Re(ξ))2 + (Im(ξ))2)

+ (b21v
(3)+b12u

(3))(Re(ξ)Re(η)+Im(ξ)Im(η))+v(3)((Re(ξ))2 + (Im(η))2)]

≥
∫

Ω

[u(3)(Re(ξ))2 + (b21v
(3) + b12u

(3))Re(ξ)Re(η) + v(3)(Re(η))2] (ℵ1)

+

∫
Ω

[
u(3)(Im(ξ))2 + (b21v

(3) + b12u
(3))Im(ξ)Im(η) + v(3)(Im(η))2

]
(ℵ2)

≥ 0.

The last inequality follows from the fact that the integrand in (ℵ1) and

(ℵ2) are positive defined since (b21v
(3) + b12u

(3))2 − 4u(3)v(3) < 0 under the
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assumption (1.9) (Note that Θk1 [a1− b12Θk2 [a2]] ≤ u(3) ≤ Θk1 [a1] and Θk2 [a2−
b21Θk1 [a1]] ≤ v(3) ≤ Θk2 [a2] follows from (c) of Theorem 3.5). This implies that

Re(ξ) = Im(ξ) = Re(η) = Im(η) = 0, i.e. ξ = η = 0. Thus, ζ must not be

identical zero to avoid a contradiction. Since ξ = η = 0, the third equation of

(4.2) becomes

(4.3)



−∆ζ −
(

e1u
(3)

(1 + α1u(3))(1 + β1w(3))2

+
e2v

(3)

(1 + α2v(3))(1 + β2w(3))2
− d
)
ζ = µζ in Ω,

k3∂νζ + ζ = 0 on ∂Ω,

and µ must be a non-positive real number. Furthermore, since ζ 6≡ 0, µ can be

consider as an eigenvalue of the problem (4.3), and therefore we have

µ = λ1,k3

(
− e1u

(3)

(1 + α1u(3))(1 + β1w(3))2
− e2v

(3)

(1 + α2v(3))(1 + β2w(3))2
+ d

)
> λ1,k3

(
− e1u

(3)

1 + α1u(3)
− e2v

(3)

1 + α2v(3)
+ d

)
≥ 0

by the comparison property of principle eigenvalue and Theorem 2.2, which is

contradict to µ ≤ 0.

Case 2.

−d ≤ λ1,k3

(
− e1u

(3)

1 + α1u(3)
− e2v

(3)

1 + α2v3

)
.

Even if w(3) ≡ 0 in this case, a contradiction can be derived similarly as the

previous case.

(d) From Theorem 2.3, we see the assumptions a1−c1/β1 > λ1,k1(b12Θk2 [a2])

and

−d > λ1,k3

(
− e1Θk1 [a1 − b12Θk2 [a2]− c1/β1]

1 + α1Θk1 [a1 − b12Θk2 [a2]− c1/β1]

)
,

guarantee the existence of Θk1 [a1 − b12Θk2 [a2] − c1/β1] and w∗, respectively,

where w∗ is the unique positive solution of the following equation−∆w = w

(
e1Θk1 [a1 − b12Θk2 [a2]− c1/β1]

(1 + α1Θk1 [a1 − b12Θk2 [a2]− c1/β1])(1 + β1w)
− d
)

in Ω,

k3∂νw + w = 0 on ∂Ω.

Furthermore, Θk1 [a1−b12Θk2 [a2]−c1/β1] ≤ u and w∗ ≤ w follows by comparison

principle for any positive solution (u, v, w) of (1.6). Since w∗ is a lower solution

of w which does not dependent on β2, we see that β2w → ∞ as β2 → ∞,

equivalently as 1/β2 → 0. Therefore, replacing the role of the sequence {c2,i} by

{β2,i} in the previous proof, the desired result can be obtained similarly.

(e) The proof is similar to (d). �

By using of Lemma 4.1, we can give the proof of Theorem 1.5.
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Proof of Theorem 1.5. We only prove (b) since the proofs for others are

similar. It suffices to show the uniqueness. By a compact argument, A has at

most finitely many positive fixed points in the region D defined in Section 3.

Denote them by (ui, vi, wi) for i = 1, . . . , k. For sufficiently small 1/β2, c1, it is

easy to show that I − A′(ui, vi, wi) is invertible under the condition (1.9) and

A′(ui, vi, wi) does not have property α on W(ui,vi,wi) by (d) of Lemma 4.1. In

addition, A′(ui, vi, wi) does not have a real eigenvalue which is greater than or

equal to one. Then we get indexW(A, (ui, vi, wi)) = (−1)0 = 1 for i = 1, . . . , k

by (b) of Theorem 2.4. Using the additivity property of degree [59] and

−d > λ1,k3

(
− e2Θk2 [a2]

1 + α2Θk2 [a2]

)
,

we have

k =

k∑
i=1

indexW(A, (ui, vi, wi))

= degW(I −A,D)− indexW(A, (0, 0, 0))− indexW(A, (Θk1 [a1], 0, 0))

− indexW(A, (0,Θk2 [a2], 0))− degW(I −A,Ψ1)

− degW(I −A,Ψ2)− degW(I −A,Ψ3)

= 1− 0− 0− 0− 0− 0− 0 = 1.

So, the uniqueness holds, the proof is complete. �

5. Asymptotic behavior

In this section, the asymptotic behavior of the time-dependent solutions of

(1.5) is considered, that is, sufficient conditions for the extinction and perma-

nence to the time-dependent system (1.5) are investigated. We first give the

proof of Theorem 1.6.

Proof of Theorem 1.6. (a) First, consider any time-dependent positive

solution (u, v, w) of (1.5) satisfies

ut −∆u = u

(
a1 − u− b12v −

c1w

(1 + α1u)(1 + β1w)

)
≤ u(a1 − u) in Ω× (0,∞),

vt −∆v = v

(
a2 − b21u− v −

c2w

(1 + α2v)(1 + β2w)

)
≤ v(a2 − v) in Ω× (0,∞),

k1∂νu+ u = k2∂νv + v = 0 on ∂Ω× (0,∞).

Thus, from (b) of Theorem 2.3, we see that u(x, t), v(x, t) → 0 uniformly as

t→∞ by using comparison argument for elliptic problems.
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Let ε be a positive constant with ε ≤ d/(e1 + e2), then there exists a Tε ≥ 0

such that u(x, t), v(x, t) ≤ ε for all t > Tε. Therefore, we havewt −∆w ≤ w((e1 + e2)ε− d) ≤ 0 in Ω× (Tε,∞),

k3∂νw + w = 0 on ∂Ω× (Tε,∞),

that concludes w(x, t)→ 0 uniformly as t→∞ by (b) of Theorem 2.3.

(b) Similar to (a), we see that v(x, t) → 0 uniformly as t → ∞. Let ε′ be

a positive constant with

ε′ <
1

e2

(
d+ λ1,k3

(
− e1Θk1 [a1]

1 + α1Θk1 [a1]

))
,

then there exists a Tε′ ≥ 0 such that v(x, t) ≤ ε′ for all t > Tε′ . Therefore, we

have wt −∆w ≤
(

e1Θk1 [a1]

1 + α1Θk1 [a1]
+ e2ε

′ − d
)

in Ω× (Tε′ ,∞),

k3∂νw + w = 0 on ∂Ω× (Tε′ ,∞),

that concludes w(x, t)→ 0 uniformly as t→∞ by (b) of Theorem 2.3.

Let ε be a positive constant with ε < (a1−λ1,k1)/(b12 +c1), then there exists

a Tε ≥ 0 such that u(x, t), v(x, t) ≤ ε for all t > Tε. Therefore, we haveut −∆u ≥ u(a1 − u− b12ε− c1ε) in Ω× (Tε,∞),

k1∂νu+ u = 0 on ∂Ω× (Tε,∞),

so

lim inf
t→∞

u(x, t) ≥ Θk1 [a1 − b12ε− c1ε]− ε.

On other hand, ut −∆u ≤ u(a1 − u) in Ω× (0,∞),

k1∂νu+ u = 0 on ∂Ω× (0,∞),

so,

lim sup
t→∞

u(x, t) ≤ Θk1 [a1] + ε.

Therefore

Θk1 [a1 − b12ε− c1ε]− ε ≤ lim inf
t→∞

u(x, t) ≤ lim sup
t→∞

u(x, t) ≤ Θk1 [a1] + ε,

letting ε→ 0, we see that u(x, t)→ Θk1 [a1] as t→∞.

(c) The proof is similar to (b), we complete the proof. �

In order to prove of Theorem 1.6, we first give a definition of upper and lower

solutions of (1.6).



Coexistence States of Predator-Prey Systems 543

Definition 5.1 (see [61]). A pair of functions (u, v, w) and (u, v, w) in

C2(Ω) ∩ C1(Ω) are called ordered upper and lower solutions of (1.6) if they

satisfy the relations:

u ≥ u, v ≥ v, w ≥ w
and the following inequalities

−∆u ≥ u
(
a1 − u− b12v −

c1w

(1 + α1u)(1 + β1w)

)
in Ω,

−∆u ≤ u
(
a1 − u− b12v −

c1w

(1 + α1u)(1 + β1w)

)
in Ω,

−∆v ≥ v
(
a2 − b21u− v −

c2w

(1 + α2v)(1 + β2w)

)
in Ω,

−∆v ≤ v
(
a2 − b21u− v −

c2w

(1 + α2v)(1 + β2w)

)
in Ω,

−∆w ≥ w
(

e1u

(1 + α1u)(1 + β1w)
+

e2v

(1 + α2v)(1 + β2w)
− d
)

in Ω,

−∆w ≤ w
(

e1u

(1 + α1u)(1 + β1w)
+

e2v

(1 + α2v)(1 + β2w)
− d
)

in Ω,

k1∂νu+ u ≥ 0 ≥ k1∂νu+ u on ∂Ω,

k2∂νv + v ≥ 0 ≥ k2∂νv + v on ∂Ω,

k3∂νw + w ≥ 0 ≥ k3∂νw + w on ∂Ω.

Proof of Theorem 1.8. It is easy to see that

(Θk1 [a1],Θk2 [a2], w(Θk1
[a1],Θk2

[a2])) and (u∗, v∗, w(u∗,v∗))

are a pair of ordered positive upper and lower solutions of (1.6) under assumption

(1.10). Using the monotone iteration scheme technique in [61], the existence of

a pair of functions (ũ, ṽ, w̃) and (û, v̂, ŵ) can be show easily.

Next, we show that [û, ũ]× [v̂, ṽ]× [ŵ, w̃] is a positive global attractor of (1.5).

Since û, v̂, ŵ > 0, the positivity follows easily. So it is sufficient to show that

[û, ũ]× [v̂, ṽ]× [ŵ, w̃] is a global attractor.

Let ε be a sufficiently small constant such that

(i) ε <

−λ1,k3

(
− e1Θk1 [a1]

1 + α1Θk1 [a1]
− e2Θk2 [a2]

1 + α2Θk2 [a2]

)
− d

e1 + e2
,

(ii) max{b12, b21}ε < min

{
a1 −

c1
β1
− λ1,k1(b12Θk2 [a2]),

a2 −
c2
β2
− λ1,k2(b21Θk1 [a1])

}
,

(iii) ε <

−λ1,k3

(
− e1u

∗

1 + α1u∗
− e2v

∗

1 + α2v∗

)
− d

e1 + e2
.
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Since

ut −∆u = u

(
a1 − u− b12v −

c1w

(1 + α1u)(1 + β1w)

)
≤ u(a1 − u) in Ω× (0,∞),

vt −∆v = v

(
a2 − b21u− v −

c2w

(1 + α2v)(1 + β2w)

)
≤ v(a2 − v) in Ω× (0,∞),

k1∂νu+ u = k2∂νv + v = 0 on ∂Ω× (0,∞),

then by Theorem 2.3 and comparison principle, it is obvious that

(5.1) lim sup
t→∞

u(x, t) ≤ Θk1 [a1] and lim sup
t→∞

v(x, t) ≤ Θk2 [a2].

This implies that there exists a Tε ≥ 0 such that

(5.2) u(x, t) ≤ Θk1 [a1] + ε and v(x, t) ≤ Θk2 [a2] + ε for all t > Tε.

Thus,

wt −∆w = w

(
e1u

(1 + α1u)(1 + β1w)
+

e2v

(1 + α2v)(1 + β2w)
− d
)

≤ w
(

e1(Θk1 [a1] + ε)

(1 + α1(Θk1 [a1] + ε))(1 + β1w)

+
e2(Θk2 [a2] + ε)

1 + α2(Θk2 [a2] + ε)(1 + β2w)
− d
)

≤ w
(

e1Θk1 [a1]

(1 + α1Θk1 [a1])(1 + β1w)

+
e2Θk2 [a2]

(1 + α2Θk2 [a2])(1 + β2w)
+ ε(e1 + e2)− d

)
in Ω× (Tε,∞),

k3∂νw + w = 0 on ∂Ω× (Tε,∞).

Since ε satisfies assumption (i), we get from Theorem 2.3 that

(5.3) lim sup
t→∞

w(x, t) ≤ w(Θk1
[a1],Θk2

[a2]).

On the other hand, it follows from (5.2) that

ut −∆u = u

(
a1 − u− b12v −

c1w

(1 + α1u)(1 + β1w)

)
≥ u

(
a1 −

c1
β1
− b12(Θk2 [a2] + ε)− u

)
in Ω× (Tε,∞),

vt −∆v = v

(
a2 − b21u− v −

c2w

(1 + α2v)(1 + β2w)

)
≥ v
(
a2 −

c2
β2
− b21(Θk1 [a1] + ε)− v

)
in Ω× (Tε,∞),

k1∂νu+ u = k2∂νv + v = 0 on ∂Ω× (Tε,∞).
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Since ε satisfies assumption (ii), we get from Theorem 2.3 that

(5.4) lim inf
t→∞

u(x, t) ≥ u∗ and lim inf
t→∞

v(x, t) ≥ v∗.

This implies that there exists a T ′ε ≥ 0 such that

(5.5) u(x, t) ≥ u∗ − ε and v(x, t) ≥ v∗ − ε for all t > T ′ε.

Thus,

wt −∆w = w

(
e1u

(1 + α1u)(1 + β1w)
+

e2v

(1 + α2v)(1 + β2w)
− d
)

≥ w
(

e1(u∗ − ε)
(1 + α1(u∗ − ε))(1 + β1w)

+
e2(v∗ − ε)

(1 + α2(v∗ − ε))(1 + β2w)
− d
)

≥ w
(

e1u
∗

(1 + α1u∗)(1 + β1w)

+
e2v
∗

(1 + α2v∗)(1 + β2w)
− ε(e1 + e2)− d) in Ω× (T ′ε,∞),

k3∂νw + w = 0 on ∂Ω× (T ′ε,∞).

Since ε satisfies assumption (iii), we get from Theorem 2.3 that

(5.6) lim sup
t→∞

w(x, t) ≥ w(u∗,v∗).

Finally, using (5.1) and (5.3)-(5.6), it is concluded that there exist

T = max{Tε, T ′ε}

such that for any nontrivial initial condition (u(x, 0), v(x, 0), w(x, 0)), the time-

dependent solution (u, v, w) of (1.5) satisfies

(u, v, w) ∈ [u∗,Θk1 [a1]]× [v∗,Θk2 [a2]]× [w(u∗,v∗), w(Θk1
[a1],Θk2

[a2])] for t > T.

Then, our result follows by Corollary 2.1 and Theorem 2.1 in [62]. �

Similar to the proof of above theorem, we obtain the following theorem.

Theorem 5.2.

(a) If a1 ≤ λ1,k1 , a2 − c2/β2 > λ1,k2 and

−d > λ1,k3

(
− e2Θk2 [a2]

1 + α2Θk2 [a2]

)
,

then there exists a pair of quasi-solution (ṽ, w̃) and (v̂, ŵ) of (3.4) with

ṽ ≥ v̂ and w̃ ≥ ŵ. Moreover, {0} × [v̂, ṽ] × [ŵ, w̃] is a global attractor

of (1.5).
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(b) If a1 − c1/β1 > λ1,k1 , a2 ≤ λ1,k2 and

−d > λ1,k3

(
− e1Θk1 [a1]

1 + α1Θk1 [a1]

)
,

then there exist a pair of quasi-solution (ũ, w̃) and (û, ŵ) of (3.5) with

ũ ≥ û and w̃ ≥ ŵ. Moreover, [û, ũ] × {0} × [ŵ, w̃] is a global attractor

of (1.5).

(c) If a1 > λ1,k1(b12Θk2 [a2]), a2 > λ1,k2(b21Θk1 [a1]) and

−d < λ1,k3

(
− e1Θk1 [a1]

1 + α1Θk1 [a1]
− e2Θk2 [a2]

1 + α2Θk2 [a2]

)
,

then there exist a pair of quasi-solutions (ũ, ṽ) and (û, v̂) of (3.6) with

ũ ≥ û and ṽ ≥ v̂. Moreover, [û, ũ] × [v̂, ṽ] × {0} is a global attractor

of (1.5).
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