
Topological Methods in Nonlinear Analysis
Volume 45, No. 2, 2015, 399–422

c© 2015 Juliusz Schauder Centre for Nonlinear Studies
Nicolaus Copernicus University

EXISTENCE OF SOLUTIONS

FOR A CLASS OF p(x)-LAPLACIAN EQUATIONS

INVOLVING A CONCAVE-CONVEX NONLINEARITY

WITH CRITICAL GROWTH IN RN

Claudianor O. Alves — Marcelo C. Ferreira

Abstract. We prove the existence of solutions for a class of quasilinear
problems involving variable exponents and with nonlinearity having critical

growth. The main tool used is the variational method, more precisely,

Ekeland’s Variational Principle and the Mountain Pass Theorem.

1. Introduction

The present paper concerns with the existence of solutions for the following

class of quasilinear problems involving variable exponents

(P)


−∆p(x)u+ V (x)up(x)−1 = λh(x)ur(x)−1 + µuq(x)−1 + up

∗(x)−1, RN ,
u ≥ 0 and u 6= 0, RN ,
u ∈W 1,p(x)(RN ),

where ∆p(x) is the p(x)-Laplacian operator given by

∆p(x)u = div(|∇u|p(x)−2∇u),
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λ, µ are positive parameters, p : RN → R is a Lipschitz continuous function,

V, q, r : RN → R are continuous functions and h is a nonnegative function in

LΘ(x)(RN ) with

Θ(x) =
Np(x)

Np(x)− r(x)(N − p(x))
.

Moreover, the functions p, q and V are ZN -periodic, that is

(H0) p(x+ y) = p(x), q(x+ y) = q(x), V (x+ y) = V (x),

for all x ∈ RN and for all y ∈ ZN , and we also assume that

(H1) 1 < p− ≤ p(x) ≤ p+ < N for all x ∈ RN .

(H2) 1 < r− ≤ r+ < p− ≤ p+ < q− ≤ q(x)� p∗(x), for all x ∈ RN .

(V0) inf
x∈RN

V (x) = V0 > 0.

Here, the notation u(x) � v(x) means that inf
x∈RN

(u(x) − v(x)) > 0, u− =

ess inf
x∈RN

u(x), u+ = ess sup
x∈RN

u(x) and u∗(x) = Nu(x)/(N − u(x)) for all x ∈ RN .

Partial Differential Equations involving the p(x)-Laplacian arise, for instance,

as a mathematical model for problems involving electrorheological fluids and im-

age restorations, see [1], [2], [10], [14], [15], [37]. This explains the intense research

on this subject in the last decades. Regarding to the application of variational

methods in order to solve p(x)-Laplacian problems, many research were already

done when the nonlinearities have a subcritical growth, see for example, [5], [8],

[12], [16]–[18], [20], [23], [34] and references therein. However, when the growth

involves some criticality, some articles just began appear recently, see the pa-

pers due to Alves and Souto [8], Alves [6], Alves andFerreira [7], Bonder and

Silva [26], Bonder, Saintier and Silva [24], [25], Fu and Zhang [27], [28], Shang

amd Wang [38] and references therein.

In [3], Alves has studied the existence of solutions for the following class of

quasilinear problems:

(P0)


−∆pu = λg(x)ur−1 + up

∗−1, RN ,
u ≥ 0, u 6= 0,

u ∈ D1,p(RN ),

where λ > 0, 2 ≤ p ≤ N , 1 < r < p and g is a nonnegative function belonging

to Lθ(RN ) with θ = Np/(Np− r(N − p)).
In [3], by using variational methods, more precisely, Mountain Pass Theorem

and Ekeland’s Variational Principle, the existence of two solutions has been

established when λ is small enough. In the literature, we can find a lot of

papers related to problem (P0) involving bounded or unbounded domains, see

for example, [9], [11], [13], [30], [31], [36], [39], [40]. However, involving variable
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exponents, the authors know only the paper [26], where the nonlinearity has

a behavior like concave-convex and the domain is bounded.

Motivated by the above informations, we prove that similar results to that

found in [3] also hold for the case where the exponents are variable. More

precisely, we have showing that the energy functional I : W 1,p(x)(RN ) → R as-

sociated with (P), which is given by

I(u) =

∫
RN

1

p(x)
(|∇u|p(x) + V (x)|u|p(x))− λ

∫
RN

h(x)

r(x)
(u+)r(x)

− µ
∫
RN

1

q(x)
(u+)q(x) −

∫
RN

1

p∗(x)
(u+)p

∗(x),

has two critical points for each µ large enough and λ small enough.

Our main theorem is the following:

Theorem 1.1. There exists µ? > 0 such that for each µ ≥ µ?, there is

λµ = λ(µ) > 0 such that problem (P) has two solutions Ψ1,Ψ2 ∈ W 1,p(x)(RN )

with I(Ψ2) < 0 < I(Ψ1), for all λ ∈ (0, λµ).

The Theorem 1.1 is an immediate consequence of Theorems 4.3 and 5.3,

which were proved in Sections 4 and 5, respectively. In the proof of the above

results, we have used a result found in [7], which shows that if (H0)–(H2) hold,

the problem

(Pµ)

−∆p(x)u+ V (x)|u|p(x)−2u = µ|u|q(x)−2u+ |u|p∗(x)−2u, RN ,
u 6= 0 and u ∈W 1,p(x)(RN ),

has a ground state solution, that is, the mountain pass level of the energy func-

tional associated with (Pµ) is a critical value.

We recall that the energy functional Iµ : W 1,p(x)(RN ) → R associated to

(Pµ) is given by

Iµ(u) =

∫
RN

1

p(x)
(|∇u|p(x)+V (x)|u|p(x))−µ

∫
RN

1

q(x)
|u|q(x)−

∫
RN

1

p∗(x)
|u|p

∗(x).

Thus, if cµ denotes the mountain pass level of Iµ, we say that Ψ ∈W 1,p(x)(RN )

is a ground state solution of (Pµ) if

I ′µ(Ψ) = 0 and Iµ(Ψ) = cµ.

In [6], the below limit has been proved

(1.1) cµ → 0, as µ→ +∞.

The above limit is a key point in our arguments, because in the present paper,

we will denote by µ0 > 0 a number such that

(1.2) cµ < min

{
γ

(
1

K

)1/γ

,
1

2Kp+
ν

}
for all µ ≥ µ0,
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where

(1.3) γ =
1

p+
− 1

p∗−
, ν =

1

p+
− 1

q−
,

and K ≥ 1 is fixed satisfying

|u|p∗(x) ≤ K‖u‖, for all u ∈W 1,p(x)(RN ).

Furthermore, standard arguments work to prove that the ground state solution

Ψ of (Pµ) can be chosen nonnegative.

Notation. The following notations will be used in the present work:

• C and Ci will denote generic positive constant, which may vary from

line to line.

• In all the integrals we omit the symbol dx.

• u+(x) = max{u(x), 0} and u−(x) = min{u(x), 0}.

2. Variable exponent Lebesgue and Sobolev spaces

In this section, we recall some results on variable exponent Lebesgue and

Sobolev spaces found in [19], [21] and their references.

Let z ∈ L∞(RN ) with z− ≥ 1. The variable exponent Lebesgue space

Lz(x)(RN ) is defined by

Lz(x)(RN ) =

{
u : RN → R

∣∣∣∣ u is measurable and

∫
RN

|u|z(x) <∞
}
,

endowed with the norm

|u|z(x) = inf

{
λ > 0

∣∣∣∣ ∫
RN

∣∣∣∣uλ
∣∣∣∣z(x)

≤ 1

}
.

The variable exponent Sobolev space is defined by

W 1,z(x)(RN ) = {u ∈ Lz(x)(RN ) | |∇u| ∈ Lz(x)(RN )},

with the norm

‖u‖1,z(x) = |u|z(x) + |∇u|z(x).

If M ∈ L∞(RN ) satisfies M− > 0, the norm

(2.1) ‖u‖ = inf

{
λ > 0

∣∣∣∣ ∫
RN

(∣∣∣∣∇uλ
∣∣∣∣z(x)

+M(x)

∣∣∣∣uλ
∣∣∣∣z(x))

≤ 1

}
is equivalent to norm ‖ · ‖1,z(x).

If z− > 1, the spaces Lz(x)(RN ) and W 1,z(x)(RN ) are reflexive and separable

Banach spaces with these norms.

Proposition 2.1. The functional ξ : W 1,z(x)(RN )→ R defined by

(2.2) ξ(u) =

∫
RN

(|∇u|z(x) +M(x)|u|z(x)),

has the following properties:
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(a) If ‖u‖ ≥ 1, then ‖u‖z− ≤ ξ(u) ≤ ‖u‖z+ .

(b) If ‖u‖ ≤ 1, then ‖u‖z+ ≤ ξ(u) ≤ ‖u‖z− .

In particular, for (un) ⊂W 1,z(x)(RN ),

‖un‖ → 0⇔ ξ(un)→ 0,

and

(un) is bounded in W 1,z(x)(RN )⇔ ξ(un) is bounded in R.

Remark 2.2. For the functional ξz : Lz(x)(RN )→ R given by

ξz(u) =

∫
RN

|u|z(x),

the same conclusion of Proposition 2.1 also holds. Moreover, from (a) and (b),

(2.3) |u|z(x) ≤ max

{(∫
RN

|u|z(x)

)1/z−

,

(∫
RN

|u|z(x)

)1/z+}
.

Related to the Lebesgue space Lz(x)(RN ), we have the following generalized

Hölder’s inequality.

Proposition 2.3 ([35, p. 9]). For z ∈ L∞(RN ) with z− > 1, let z′ : RN → R
be such that

1

z(x)
+

1

z′(x)
= 1 a.e. in RN .

Then, for any u ∈ Lz(x)(RN ) and v ∈ Lz′(x)(RN ),

(2.4)

∣∣∣∣ ∫
RN

uv

∣∣∣∣ ≤ ( 1

z−
+

1

z′−

)
|u|z(x)|v|z′(x).

Proposition 2.4 ([19, Theorems 1.1, 1.3]). Let z : RN → R be a Lipschitz

continuous satisfying 1 < z− ≤ z+ < N and s : RN → R be a measurable

function.

(a) If z ≤ s ≤ z∗, the embedding W 1,z(x)(RN ) ↪→ Ls(x)(RN ) is continuous.

(b) If z ≤ s� z∗, the embedding W 1,z(x)(RN ) ↪→ L
s(x)
loc (RN ) is compact.

The next two results are very important in our arguments and their proofs

follows the same arguments explored in [32], this form, we will omit their proofs.

Proposition 2.5 (Brezis–Lieb’s lemma, first version). Let z ∈ L∞(RN ) with

z− ≥ 1 and (ηn) ⊂ Lz(x)(RN ,Rk) verifying

(a) ηn(x)→ η(x), almost everywhere in RN ;

(b) sup
n∈N
|ηn|Lz(x)(RN ,Rk) <∞.

Then, η ∈ Lz(x)(RN ,Rk) and∫
RN

(|ηn|z(x) − |ηn − η|z(x) − |η|z(x)) dx = on(1).
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Proposition 2.6 (Brezis–Lieb’s lemma, second version). Let z ∈ L∞(RN )

with z− > 1 and (ηn) ⊂ Lz(x)(RN ,Rk) verifying

(a) ηn(x)→ η(x), almost everywhere in RN ;

(b) sup
n∈N
|ηn|Lz(x)(RN ,Rk) <∞.

Then ηn ⇀ η in Lz(x)(RN ,Rk).

The next proposition is a Brezis–Lieb type result and it applies an important

role in our paper. For the case where z is constant, the result is due to Alves [4]

for z ≥ 2 and Mercuri and Willem [33] for 1 < z < 2.

Proposition 2.7 (Brezis–Lieb lemma, third version). Let z ∈ L∞(RN ) with

z− > 1 and (ηn) a sequence in Lz(x)(RN ,Rk) such that

(a) ηn(x)→ η(x) almost everywhere in RN ;

(b) sup
n∈N
|ηn|Lz(x)(RN ,Rk) <∞.

Then

(2.5)

∫
RN

||ηn|z(x)−2ηn − |ηn − η|z(x)−2(ηn − η)− |η|z(x)−2η|z
′(x) = on(1).

Proof. In what follows, we set A(x, y) = |y|z(x)−2y, for all x ∈ RN , y ∈ Rk.

Our goal is to show that

(2.6)

∫
{x∈RN ; 1<z(x)<2}

|A(x, ηn(x))−A(x, ηn(x)− η(x))−A(x, η(x))|z
′(x)

= on(1)

and

(2.7)

∫
{x∈RN ; z(x)≥2}

|A(x, ηn(x))−A(x, ηn(x)− η(x))−A(x, η(x))|z
′(x)

= on(1),

because if the above limits occur, we have that (2.5) also occurs. This way,

we will begin showing the limit (2.6). If the set z−1((1, 2)) has zero measure,

we have nothing to do. Thereby, we will assume that z−1((1, 2)) has a positive

measure and we will adapt the ideas found in [33]. First of all, we observe that

(2.8) α = sup
x∈z−1((1,2))

y,h∈Rk

h6=0

F (x, y, h) <∞,

where

F (x, y, h) =

∣∣∣∣ |y + h|z(x)−2(y + h)− |y|z(x)−2y

|h|z(x)−1

∣∣∣∣.
In fact, given any t > 0, it is easy to see that

F (x, y, th) = F

(
x,
y

t
, h

)
,
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hence

α = sup
x∈z−1((1,2))

y,h∈Rk

|h|=1

F (x, y, h).

Firstly, if |y| ≤ 2, for any x ∈ z−1((1, 2)), h ∈ Rk with |h| = 1, it follows that

||y + h|z(x)−2(y + h)− |y|z(x)−2y| ≤ 5,

implying that

(2.9) α1 = sup
x∈z−1((1,2))

y,h∈Rk

|y|≤2, |h|=1

F (x, y, h) <∞.

On the other hand, if |y| > 2, for any t ∈ [0, 1] and h ∈ Rk with |h| = 1, it holds

|y + th| ≥ |y| − t|h| > 1.

Therefore, for each i = 1, . . . , k and x ∈ z−1((1, 2)),

||y + h|z(x)−2(yi + hi)− |y|z(x)−2yi| =
∣∣∣∣ ∫ 1

0

d

dt
|y + th|z(x)−2(yi + thi) dt

∣∣∣∣
=

∣∣∣∣ ∫ 1

0

(|y + th|z(x)−2hi + (z(x)− 2)(yi + thi)|y + th|z(x)−4(y + th) · h) dt

∣∣∣∣
≤ (3− z(x))

∫ 1

0

|y + th|z(x)−2 dt < 2

∫ 1

0

1 dt = 2,

showing that

(2.10) α2 = sup
x∈z−1((1,2))

y,h∈Rk

|y|>2, |h|=1

F (x, y, h) <∞.

Combining (2.9) with (2.10), we obtain (2.8).

A direct computation gives

|A(x, ηn(x))−A(x, ηn(x)− η(x))−A(x, η(x))|

≤ F (x, ηn(x)− η(x), η(x))|η(x)|z(x)−1 + |η(x)|z(x)−1 ≤ (α+ 1)|η(x)|z(x)−1,

for all x ∈ z−1((1, 2)), and so,

|A(x, ηn(x))−A(x, ηn(x)− η(x))−A(x, η(x))|z
′(x) ≤ (α+ 1)z

′
+ |η(x)|z(x),

for all x ∈ z−1((1, 2)), where z′(x) = z(x)/(z(x)− 1), for all x ∈ RN . Now, the

limit (2.6) follows from the last inequality together with Lebesgue’s dominated

convergence theorem.

In the proof of (2.7), we will adapt the ideas found in [4]. If the set

z−1([2,∞)) has zero measure, we have nothing to do. Thereby, we will assume
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that z−1([2,∞)) has a positive measure. For each i = 1, . . . , k and x ∈ RN , we

have that

Ai(x, ηn(x))−Ai(x, ηn(x)− η(x))

= |ηn(x)|z(x)−2ηin(x)− |ηn(x)− η(x)|z(x)−2(ηin(x)− ηi(x)).

So, by the previous calculations,

|Ai(x, ηn(x)) −Ai(x, ηn(x)− η(x))|

≤ (z(x)− 1)|η(x)|
∫ 1

0

|ηn(x) + (t− 1)η(x)|z(x)−2 dt

≤ (z+ − 1)|η(x)|(|ηn(x)|+ |η(x)|)z(x)−2.

Therefore

|A(x, ηn(x))−A(x, ηn(x)− η(x))| ≤ C(|η(x)|z(x)−1 + |η(x)||ηn(x)|z(x)−2),

for all x ∈ z−1([2,∞)). The above inequality combined with Young’s inequality

leads, for all ε > 0, to

|A(x, ηn(x))−A(x, ηn(x)− η(x))| ≤ C(ε)|η(x)|z(x)−1 + ε|ηn(x)|z(x)−1.

Now, for each ε > 0, n ∈ N, we define the function fε,n : RN → R given by

fε,n(x) = max{|A(x, ηn(x))−A(x, ηn(x)−η(x))−A(x, η(x))|−ε|ηn(x)|z(x)−1, 0},

which satisfies fε,n(x)→ 0 almost everywhere in z−1([2,∞)), as n→∞, and

0 ≤ fε,n(x) ≤ (C(ε) + 1)|η(x)|z(x)−1, for all x ∈ z−1([2,∞)).

So, by Lebesgue’s dominated convergence theorem,∫
z−1([2,∞))

fz
′(x)
ε,n → 0, as n→∞.

On the other hand, by the definition of fε,n,

|A(x, ηn(x))−A(x, ηn(x)− η(x))−A(x, η(x))| ≤ ε|ηn(x)|z(x)−1 + fε,n(x),

for all x ∈ RN . Consequently,

|A(x, ηn(x))−A(x, ηn(x)− η(x))−A(x, η(x))|z
′(x)

≤ 2z
′
+(εz

′
− |ηn(x)|z(x) + fz

′(x)
ε,n ),

for all x ∈ RN and ε > 0 sufficiently small. Thus,

lim
n

∫
z−1([2,∞))

|A(x, ηn(x))−A(x, ηn(x)− η(x))−A(x, η(x))|z
′(x)

≤ 2z
′
+εz

′
−

∫
z−1([2,∞))

|ηn(x)|z(x) ≤ Cεz
′
− ,

for all ε > 0, which implies that (2.7) holds. �
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3. Preliminary results

In what follows, we will consider on W 1,p(x)(RN ) the following norm

‖u‖ = inf{α > 0; ρ(α−1u) ≤ 1},

with

ρ(u) =

∫
RN

(|∇u|p(x) + V (x)|u|p(x)).

Using well known arguments, we have that the energy functional

I : W 1,p(x)(RN )→ R

associated with (P), which is given by

I(u) =

∫
RN

1

p(x)
(|∇u|p(x) + V (x)|u|p(x))

− λ
∫
RN

h(x)

r(x)
(u+)r(x) − µ

∫
RN

1

q(x)
(u+)q(x) −

∫
RN

1

p∗(x)
(u+)p

∗(x),

is well defined and I ∈ C1(W 1,p(x)(RN ),R) with

I ′(u)v =

∫
RN

(|∇u|p(x)−2∇u∇v + V (x)|u|p(x)−2uv)

− λ
∫
RN

h(x)(u+)r(x)−1v − µ
∫
RN

(u+)q(x)−1v −
∫
RN

(u+)p
∗(x)−1v,

for all u, v ∈W 1,p(x)(RN ).

Lemma 3.1. All (PS)d sequences (vn) for I are bounded. Furthermore, (v+
n )

is a (PS)d sequence for I.

Proof. If there exist only a finite number of terms (vn) such that ρ(vn) > 1,

then (vn) is bounded and the proof is complete. Otherwise, suppose the existence

of a infinitely many terms of (vn) such that ρ(vn) > 1. Since (vn) is a (PS)d
sequence, there is n0 ∈ N such that

I(vn)− 1

q−
I ′(vn)vn ≤ d+ 1 + ‖vn‖, n ≥ n0.

On the other hand, using the fact that ρ(vn) > 1 and Hölder’s inequality, we get

I(vn) − 1

q−
I ′(vn)vn

≥
(

1

p+
− 1

q−

)
‖vn‖p− − λ

(
1

r−
− 1

q−

)∫
RN

h(x)|vn|r(x)

≥
(

1

p+
− 1

q−

)
‖vn‖p− − λ

(
1

r−
− 1

q−

)
C|h|Θ(x)||vn|r(x)|p∗(x)/r(x),
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and so,

I(vn)− 1

q−
I ′(vn)vn

≥
(

1

p+
− 1

q−

)
‖vn‖p− − λ

(
1

r−
− 1

q−

)
C|h|Θ(x)(|vn|

r−
p∗(x) + |vn|r+p∗(x))

≥
(

1

p+
− 1

q−

)
‖vn‖p− − λ

(
1

r−
− 1

q−

)
|h|Θ(x)(C1‖vn‖r− + C2‖vn‖r+).

From this, for n ≥ n0,

d+ 1 + ‖vn‖

≥
(

1

p+
− 1

q−

)
‖vn‖p− − λ

(
1

r−
− 1

q−

)
|h|Θ(x)(C1‖vn‖r− + C2‖vn‖r+)

which yields (vn) is also bounded in this case.

Now, we will prove that (v+
n ) is also a (PS)d sequence for I. Note that the

boundedness of (v−n ) combined with the limit ‖I ′(vn)‖ → 0 gives I ′(vn)v−n → 0,

from where it follows that ρ(v−n ) → 0, or equivalently v−n → 0 in W 1,p(x)(RN ).

Now, a simple computation yields

I(vn) = I(v+
n ) + on(1) and I ′(vn) = I ′(v+

n ) + on(1),

proving that (v+
n ) is a (PS)d sequence. �

From the last lemma, hereafter we will assume that all (PS)d sequences for

I are composed by nonnegative functions. Moreover, once that W 1,p(x)(RN )

is reflexive, if (vn) is a (PS)d sequence for I, we also assume that for some

subsequence, still denoted by itself, there is v ∈W 1,p(x)(RN ) such that

vn ⇀ v in W 1,p(x)(RN ), vn(x)→ v(x) a.e in RN , v(x) ≥ 0 a.e in RN .

The next lemma is a key point in our arguments, which can be found in [7].

However for the reader’s convenience we will make its proof.

Lemma 3.2. Let (vn) be a (PS)d sequence for I and v ∈ W 1,p(x)(RN ) such

that vn ⇀ v in W 1,p(x)(RN ). Then, I ′(v) = 0. Hence, if v 6= 0, v is a nontrivial

solution for (P).

Proof. Following a standard reasoning, it is sufficient to show that, up to

a subsequence,

∇vn(x)→ ∇v(x) a.e in RN .

We begin observing that, up to a subsequence, there exist two nonnegative mea-

sures m and n in M(RN ) such that

|∇vn|p(x) ⇀ m in M(RN ),(3.1)

|vn|p
∗(x) ⇀ n in M(RN ).(3.2)



Solutions for a Class of p(x)-Laplacian Equations 409

In this case, according a concentration compactness principle in [27], there exists

a countable index set I such that

n = |v|p
∗(x) dx+

∑
i∈I

niδxi , m ≥ |∇v|p(x) dx+
∑
i∈I

miδxi ,

and

ni ≤ Smax

{
m
p∗+/p−
i ,m

p∗−/p+
i

}
where (ni)i∈I, (mi)i∈I ⊂ [0,∞) and (xi)i∈I ⊂ RN . The constant S is given by

S = sup
u∈W 1,p(x)(RN )

‖u‖≤1

∫
RN

|u|p
∗(x).

Our first task is to prove that mi = ni, for all i ∈ I. For this, let ϕ ∈ C∞0 (RN )

such that ϕ(x) = 1 in B1(0), ϕ(x) = 0 in Bc2(0) and 0 ≤ ϕ(x) ≤ 1, for all x ∈ RN .

Fixed i ∈ I, we consider, for each ε > 0,

ϕε(x) = ϕ

(
x− xi
ε

)
for all x ∈ RN .

Since (vn) is bounded in W 1,p(x)(RN ), the sequence (ϕεvn) is also bounded in

W 1,p(x)(RN ). Thus, I ′(vn)(ϕεvn) = on(1), that is,∫
RN

(ϕε|∇vn|p(x) + vn|∇vn|p(x)−2∇vn∇ϕε) +

∫
RN

V (x)|vn|p(x)ϕε

= λ

∫
RN

h(x)|vn|r(x)ϕε + µ

∫
RN

|vn|q(x)ϕε +

∫
RN

|vn|p
∗(x)ϕε + on(1).

Taking the limits as n→∞, the weak convergence of (|∇vn|p(x)) and (|vn|p
∗(x))

in M(RN ) combined with the Lebesgue’s dominated convergence theorem and

Proposition 2.6, give us

(3.3)

∫
RN

ϕε dm + lim sup
n

∫
RN

vn|∇vn|p(x)−2∇vn∇ϕε +

∫
RN

V (x)|v|p(x)ϕε

= λ

∫
RN

h(x)|v|r(x)ϕε + µ

∫
RN

|v|q(x)ϕε +

∫
RN

ϕε dn.

Using Hölder’s inequality and the boundedness of (vn) in W 1,p(x)(RN ),∣∣∣∣ ∫
RN

vn|∇vn|p(x)−2∇vn · ∇ϕε
∣∣∣∣

≤
∫
RN

|∇vn|p(x)−1|vn∇ϕε| ≤ C||∇vn|p(x)−1|p′(x)|vn|∇ϕε||p(x)

≤ C max

{(∫
RN

|vn|p(x)|∇ϕε|p(x)

)1/p−

,

(∫
RN

|vn|p(x)|∇ϕε|p(x)

)1/p+}
,
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where p′(x) = p(x)/(p(x)− 1) for all x ∈ RN . Therefore, by Lebesgue’s domi-

nated convergence theorem,

lim sup
n

∣∣∣∣ ∫
RN

vn|∇vn|p(x)−2∇vn · ∇ϕε
∣∣∣∣

≤ C max

{(∫
RN

|v|p(x)|∇ϕε|p(x)

)1/p−

,

(∫
RN

|v|p(x)|∇ϕε|p(x)

)1/p+}
.

Furthermore, by Hölder’s inequality∫
RN

|v|p(x)|∇ϕε|p(x) ≤ C||v|p(x)|LN/(N−p(x))(B2ε(xi))||∇ϕε|
p(x)|LN/p(x)(B2ε(xi)).

Once that ∫
B2ε(xi)

|∇ϕε|N =

∫
B2(0)

|∇ϕ|N ,

we derive

||∇ϕε|p(x)|LN/p(x)(B2ε(xi))

≤ max

{(∫
B2ε(xi)

|∇ϕε|N
)1/(N/p)−

,

(∫
B2ε(xi)

|∇ϕε|N
)1/(N/p)+}

≤ C

for some positive constant C, which is independent of ε. Thereby,∫
RN

|v|p(x)|∇ϕε|p(x) ≤ C||v|p(x)|LN/(N−p(x))(B2ε(xi)),

and so

lim sup
n

∣∣∣∣ ∫
RN

vn|∇vn|p(x)−2∇vn · ∇ϕε
∣∣∣∣

≤ C max

{
||v|p(x)|1/p−

LN/(N−p(x))(B2ε(xi))
, ||v|p(x)|1/p+

LN/(N−p(x))(B2ε(xi))

}
.

But,

||v|p(x)|LN/(N−p(x))(B2ε(xi))

≤ max

{(∫
B2ε(xi)

|v|p
∗(x)

)1/(N/(N−p))−
,

(∫
B2ε(xi)

|v|p
∗(x)

)1/(N/(N−p))+}
from where it follows that

lim
ε→0

lim sup
n

∣∣∣∣ ∫
RN

vn|∇vn|p(x)−2∇vn∇ϕε
∣∣∣∣ = 0

implying that

lim
ε→0

lim sup
n

∫
RN

vn|∇vn|p(x)−2∇vn∇ϕε = 0.

Now, taking the limit as ε→ 0 in (3.3), we get

(3.4) mi = m(xi) = n(xi) = ni.
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Once that p∗−/p+ ≤ p∗+/p−, we have that

(3.5) n
p+/p

∗
−

i ≤ (Sp+/p
∗
− + Sp−/p

∗
+)mi, if mi < 1

and

(3.6) n
p−/p

∗
+

i ≤ (Sp+/p
∗
− + Sp−/p

∗
+)mi if mi ≥ 1.

Thus, from (3.4)–(3.6), if ni > 0 for some i ∈ I, there exists α > 0, which is

independent of i, such that

(3.7) ni ≥ α.

Recalling that

(3.8)
∑
i∈I
mi<1

n
p+/p

∗
−

i +
∑
i∈I
mi≥1

n
p−/p

∗
+

i ≤ C
∑
i∈I

mi <∞,

the inequality (3.7) gives Ĩ = {i ∈ I; ni > 0} is a finite set. From this, one of

the two possibilities below occurs:

(a) There exist ni1 , . . . , nis > 0 for a maximal s ∈ N;

(b) ni = 0, for all i ∈ I.

We begin analyzing (a). For this, choose 0 < ε0 < 1 sufficiently small such

that

Bε0(x1), . . . , Bε0(xs) ⊂ B 1
ε0

(0) and Bε0(xi) ∩Bε0(xj) = ∅, i 6= j,

where x1, . . . , xs are the singular points related to ni1 , . . . , nis , respectively. We

set

ψε(x) = ϕ(εx)−
s∑
i=1

ϕ

(
x− xi
ε

)
for all x ∈ RN .

Then, for 0 < ε < ε0/2,

ψε(x) =


0 if x ∈

s⋃
i=1

Bε/2(xi),

1 if x ∈ Aε = B1/ε(0) \
s⋃
i=1

B2ε(xi),

and

suppψε ⊂ B2/ε(0) \
s⋃
i=1

Bε/2(xi)

loading to ∫
RN

|vn|p
∗(x)ψε →

∫
RN

|v|p
∗(x)ψε.

Since

I ′(vn)(vnψε) = on(1) and I ′(vn)(vψε) = on(1),
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repeating the same type of arguments for the case where the exponents are

constant, we obtain

lim
n

∫
Aε

(Pn + V (x)Qn) = 0,

where

Pn(x) = (|∇vn|p(x)−2∇vn − |∇v|p(x)−2∇v)(∇vn −∇v)

for all x ∈ RN and for all n ∈ N, and

Qn(x) = (|vn|p(x)−2vn − |v|p(x)−2v)(vn − v)

for all x ∈ RN and for all n ∈ N. Since

(3.9) Pn(x) ≥


23−p+

p+
|∇vn −∇v|p(x) if p(x) ≥ 2,

(p− − 1)
|∇vn −∇v|2

(|∇vn|+ |∇v|)2−p(x)
if 1 < p(x) < 2,

it follows that ∫
Aε

Pn ≥ C
∫
Aε∩{x∈RN ; p(x)≥2}

|∇vn −∇v|p(x) ≥ 0.

Thus,

(3.10) lim
n

∫
Aε∩{x∈RN ; p(x)≥2}

|∇vn −∇v|p(x) = 0.

On the other hand, by Hölder’s inequality∫
Aε∩{x∈RN ; 1<p(x)<2}

|∇vn −∇v|p(x)

≤ C
∣∣∣∣ |∇vn −∇v|p(x)

(|∇vn|+ |∇v|)p(x)/(2−p(x))2

∣∣∣∣
L2/p(x)(Ãε)

· |(|∇vn|+ |∇v|)p(x)(2−p(x))/2|
L2/(2−p(x))(Ãε)

,

where Ãε = Aε ∩ {x ∈ RN ; 1 < p(x) < 2}. From relation (3.9), the right side of

above inequality goes to zero. Hence,

(3.11) lim
n

∫
Aε∩{x∈RN ; 1<p(x)<2}

|∇vn −∇v|p(x) = 0.

Now (3.10) combined with (3.11) gives

lim
n

∫
Aε

|∇vn −∇v|p(x) = 0.

The same arguments can be used to prove that

lim
n

∫
Aε

V (x) |vn − v|p(x)
= 0.
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Therefore, vn → v in W 1,p(x)(Aε). The last limit yields, up to a subsequence,

∇vn(x)→ ∇v(x) almost everywhere in Aε (0 < ε < ε0/2). Observing that

RN \ {x1, . . . , xs} =
⋃
n∈N

1/n<ε0/2

A1/n,

we conclude by a diagonal argument, that there is a subsequence of (vn), still

denoted by itself, such that ∇vn(x)→ ∇v(x) almost everywhere in RN .

For the case (b), we consider ψε(x) = ϕ(εx) for all x ∈ RN and Aε = B1/ε(0),

ε > 0. Repeating the same arguments used in the case a), we have that vn → v

in W 1,p(x)(B1/ε(0)). This way, there is again a subsequence of (vn), still denoted

by itself, such that ∇vn(x)→ ∇v(x) almost everywhere in RN . �

Lemma 3.3. Let (vn) be a (PS)d sequence for I with vn ⇀ v in W 1,p(x)(RN ).

Then, there exists a constant M > 0, which is independent of λ and µ, such that

I(v) ≥ −M(λΘ− + λΘ+).

Proof. From Lemma 3.2, I ′(v)v = 0, or equivalently,∫
RN

|∇v|p(x) + V (x)vp(x) = λ

∫
RN

h(x)vr(x) + µ

∫
RN

vq(x) +

∫
RN

vp
∗(x).

From this,

I(v) ≥ λ
(

1

p+
− 1

r−

)∫
RN

h(x)vr(x) +

(
1

p+
− 1

p∗−

)∫
RN

vp
∗(x),

which together with Young’s inequality implies that for all ε > 0,

I(v) ≥ ε
(

1

p+
− 1

r−

)∫
RN

vp
∗(x)

+

(
1

p+
− 1

r−

)∫
RN

C(ε, x)λΘ(x)hΘ(x) +

(
1

p+
− 1

p∗−

)∫
RN

vp
∗(x),

where

C(ε, x) =
1

Θ(x)

(
ε
p∗(x)

r(x)

)r(x)Θ(x)/p∗(x)
.

Fixing

0 < ε < min

{
1,

(
1

r−
− 1

p+

)−1(
1

p+
− 1

p∗−

)}
,

it follows that I(u) ≥ −M(λΘ− + λΘ+), where

M =
1

Θ−εΘ+−1

(
1

r−
− 1

p+

)∫
RN

hΘ(x). �

The next result is an important step to understand the behavior of the (PS)

sequences of I.
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Lemma 3.4. Let (vn) be a bounded sequence in W 1,p(x)(RN ) such that vn(x)→
v(x) and ∇vn(x)→ ∇v(x)almost everywhere in RN . Then:

(a) I(vn)− Iµ(vn − v)− I(v) = on(1), and

(b) I ′(vn)− I ′µ(vn − v)− I ′(v) = on(1).

Consequently, if (vn) is a (PS)d sequence for I with weak limit v ∈W 1,p(x)(RN ),

setting wn = vn − v, we have that for some subsequence, (wn) is a (PS)d−I(v)

sequence for Iµ.

Proof. From definitions of I and Iµ, we derive that

I(vn) − Iµ(vn − v)− I(v)

=

∫
RN

1

p(x)
(|∇vn|p(x) − |∇vn −∇u|p(x) − |∇v|p(x))

+

∫
RN

V (x)

p(x)
(vp(x)
n − |vn − v|p(x) − vp(x))

− µ
∫
RN

1

q(x)
(vq(x)
n − |vn − v|q(x) − vq(x))

−
∫
RN

1

p∗(x)
(vp
∗(x)
n − |vn − v|p

∗(x) − vp
∗(x))− λ

∫
RN

h(x)

r(x)
(vr(x)
n − vr(x)).

By Propositions 2.5 and 2.6, we observe that the right side of the last inequality

is on(1), and so,

I(vn)− Iµ(vn − v)− I(v) = on(1),

showing (a).

Now, to prove (b), we fix ϕ ∈ W 1,p(x)(RN ) with ‖ϕ‖ = 1. Using Hölder’s

inequality together with Sobolev’s embedding, it follows that there is a positive

constant C such that

[I ′(vn)− I ′µ(vn − v)− I ′(v)]ϕ ≤ C(A1(n) +A2(n) +A3(n) +A4(n) +A5(n))

where

A1(n) = ||∇vn|p(x)−2∇vn − |∇vn −∇v|p(x)−2(∇vn −∇v)− |∇v|p(x)−2∇v|p′(x),

A2(n) = |vp(x)−2
n vn − |vn − v|p(x)−2(vn − v)− vp(x)−2v|p′(x),

A3(n) =µ| vq(x)−2
n vn − |vn − v|q(x)−2(vn − v)− vq(x)−2v|q′(x),

A4(n) = |vp
∗(x)−2
n vn − |vn − v|p

∗(x)−2(vn − v)− vp
∗(x)−2v|p∗′(x),

and

A5(n) = λ

∫
RN

h(x)|(vr(x)−1
n − vr(x)−1)ϕ|.

From Proposition 2.5, Ai(n) = on(1) for i = 1, 2, 3, 4. Related to A5(n), we have

that∫
RN

h(x)|(vr(x)−1
n − vr(x)−1)ϕ| =

∫
RN

h1/r′(x)|vr(x)−1
n − vr(x)−1|h1/r(x)|ϕ|.
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Since

h1/r′(x)|vr(x)−1
n − vr(x)−1| ∈ Lr

′(x)(RN ) and h1/r(x)|ϕ| ∈ Lr(x)(RN ),

by Hölder’s inequality,∫
RN

h(x)|(vr(x)−1
n − vr(x)−1)ϕ| ≤ C|h1/r′(x)|vr(x)−1

n − vr(x)−1||r′(x).

Now, our goal is to prove that |h1/r′(x)|vr(x)−1
n − vr(x)−1||r′(x) → 0, or equiva-

lently,

(3.12)

∫
RN

h(x)|vr(x)−1
n − vr(x)−1|r

′(x) → 0.

To this end, we define Vn(x) = |vr(x)−1
n − vr(x)−1|r′(x) for all n ∈ N. Then,

Vn(x) → 0 almost everywhere in RN and (Vn) is bounded in Lp
∗(x)/r(x)(RN ).

Therefore, by Proposition 2.6, it follows that Vn ⇀ 0 in Lp
∗(x)/r(x)(RN ). Thus,∫

RN

h(x)Vn(x)→ 0

proving (3.12). Consequently,

‖I ′(vn)− I ′µ(vn − v)− I ′(v)‖ = on(1),

or yet

I ′(vn)− I ′µ(vn − v)− I ′(v) = on(1),

finishing the proof. �

Lemma 3.5. Suppose µ ≥ µ0, where µ0 is given in (1.2). Then, I verifies the

(PS)d condition for

d < cµ −M(λΘ− + λΘ+).

Proof. Let (vn) be a (PS)d sequence for I with d as above. We know that

there exists v ∈ W 1,p(x)(RN ) such that vn ⇀ v in W 1,p(x)(RN ), and vn(x) →
v(x) almost everywhere in RN . Setting wn = vn− v, by Lemma 3.4, we see that

(wn) is a (PS)d−I(v) sequence for Iµ. Thus, up to a subsequence, we can assume

that ∫
RN

(|∇wn|p(x) + V (x)|wn|p(x))→ L ≥ 0.

Next, we will show that L = 0. To this end, we recall that only one of the below

possibilities hold:

(a) There is R > 0 such that

lim
n

sup
y∈RN

∫
BR(y)

|wn|p(x) = 0

or



416 C.O. Alves — M.C. Ferreira

(b) For each R > 0, there are η > 0, a subsequence of (wn), still denoted by

itself, and (yn) ⊂ RN
(

which we can suppose in ZN
)

such that

lim
n

∫
BR(yn)

|wn|p(x) ≥ η.

We will show that (b) does not hold. Arguing by contradiction, if (b) is true,

we define

ŵn(x) = wn(x+ yn), x ∈ RN .

Then, by a simple computation, Iµ(ŵn) = Iµ(wn) and I ′µ(ŵn) = on(1). So,

(ŵn) is also a (PS)d−I(v) sequence for Iµ. Let ŵ ∈ W 1,p(x)(RN ) \ {0} the weak

limit of ŵn. Since I ′µ(ŵ) = 0 and ŵ 6= 0, it follows from the definition of cµ that

cµ ≤ Iµ(ŵ) = Iµ(ŵ)− 1

p+
I ′µ(ŵ)ŵ

≤ lim
n

(∫
RN

(
1

p(x)
− 1

p+

)
(|∇ŵn|p(x) + V (x)|ŵn|p(x))

+ µ

∫
RN

(
1

p+
− 1

q(x)

)
|ŵn|q(x) +

∫
RN

(
1

p+
− 1

p∗(x)

)
|ŵn|p

∗(x)

)
= lim

n

(
Iµ(ŵn)− 1

p+
I ′µ(ŵn)ŵn

)
= d− I(v) ≤ d+M(λΘ− + λΘ+).

Thus, cµ −M(λΘ− + λΘ+) ≤ d, which is a contradiction with the hypothesis

on d. Therefore, (b) does not hold. Then (a) holds, and by Lemma 3.1 in [22],

wn → 0 in Lq(x)(RN ), or equivalently,

(3.13)

∫
RN

|wn|q(x) → 0.

Since I ′µ(wn)wn = on(1), we derive that∫
RN

|wn|p
∗(x) → L.

By (3.13),

d− I(v) + on(1) = Iµ(wn) + µ

∫
RN

1

q(x)
|wn|q(x)

=

∫
RN

1

p(x)
(|∇wn|p(x) + V (x)|wn|p(x))−

∫
RN

1

p∗(x)
|wn|p

∗(x)

and so,

d− I(v) + on(1) ≥ 1

p+

∫
RN

(|∇wn|p(x) + V (x)|wn|p(x))− 1

p∗−

∫
RN

|wn|p
∗(x).

Taking the limit of n→ +∞ in the last inequality, we see that

(3.14) d− I(v) ≥ 1

p+
L− 1

p∗−
L = γL.
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In this moment, it is very important to recall that I(v) ≥ −M(λΘ− + λΘ+).

Then, by the hypothesis on d,

(3.15) d− I(v) < cµ.

On the other hand, since µ ≥ µ0, the last inequality combined with (1.2) leads

to d − I(v) < ν/2Kp+ . Using this information, we get ‖wn‖ ≤ 1/K < 1 for all

n ≥ n0 and so, |wn|p∗(x) ≤ 1 for all n ≥ n0. The above inequalities show that(∫
RN

|wn|p
∗(x)

)1/p∗−

≤ K
(∫

RN

|∇wn|p(x) + V (x)|vn|p(x)

)1/p+

,

for all n ≥ n0. Taking the limit of n → +∞, we derive L1/p∗− ≤ KL1/p+ .

Supposing by contradiction that L > 0, we obtain

(3.16) L ≥
(

1

K

)1/γ

.

Combining (3.14) with (3.16), it follows that d− I(v) ≥ γL ≥ γ(1/K)1/γ , which

is a contradiction, once that (3.15) and (1.2) imply that d− I(v) < γ(1/K)1/γ .

Thereby, L = 0. �

4. Existence of solution with positive energy

In this section, we will show the existence of a solution via Mountain Pass

Theorem. Our first lemma establishes that I verifies the mountain pass geometry.

Lemma 4.1. For each µ > 0, there exists λ1 = λ1(µ) > 0 such that I satisfies

the mountain pass geometry, if λ ∈ (0, λ1).

Proof. First of all, we observe that, for all u ∈W 1,p(x)(RN ),

I(u) ≥ 1

p+

∫
RN

(|∇u|p(x) + V (x)|u|p(x))− λ

r−

∫
RN

h(x)|u|r(x)

− µ

q−

∫
RN

|u|q(x) − 1

p∗−

∫
RN

|u|p
∗(x).

By Sobolev’s embedding, there are C1, C2 > 0 such that

|u|q(x) ≤ C1‖u‖ and |u|p∗(x) ≤ C2‖u‖, for all u ∈W 1,p(x)(RN ).

If we suppose that ‖u‖ < m = min{1, 1/C1, 1/C2}, then

‖u‖ < 1, |u|q(x) < 1 and |u|p∗(x) < 1.

The above inequalities yield

I(u) ≥ 1

p+
‖u‖p+ − λC3|h|Θ(x)‖u‖r− − µC4‖u‖q− − C5‖u‖p

∗
− , if ‖u‖ < m.

Since p+ < q−, p
∗
−, we can choose R = R(µ) ∈ (0,m) such that

1

p+
Rp+ − µC4R

q− − C5R
p∗− ≥ 1

2p+
Rp+ .
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So, if ‖u‖ = R,

I(u) ≥ 1

2p+
Rp+ − λC3|h|Θ(x)R

r− .

Now, we choose λ1 = λ1(µ) > 0 such that

1

2p+
Rp+ − λ1C3|h|Θ(x)R

r− = β > 0.

Consequently, if λ ∈ (0, λ1), we have that I(u) ≥ β, for ‖u‖ = R, showing that

the first geometry is satisfied. For the second geometry, we fix u ∈W 1,p(x)(RN )

with u+ 6= 0. Then, for t > 1,

I(tu) ≤ tp+
∫
RN

1

p(x)

(
|∇u|p(x)

+ V (x)|u|p(x)
)
− tr−

∫
RN

h(x)

r(x)

(
u+
)r(x)

− tq−
∫
RN

1

q(x)

(
u+
)q(x) − tp

∗
−

∫
RN

1

p∗(x)

(
u+
)p∗(x)

,

from where it follows that lim
t→∞

I(tu) = −∞. From this, we observe that the

second geometry follows choosing e = t0u with t0 > R/‖u‖ and I(t0u) ≤ 0. �

Lemma 4.2. For each µ ≥ µ0, there exists 0 < λ2 = λ2(µ) ≤ λ1, with λ1

given in Lemma 4.1, such that the mountain pass level c of I satisfies

c < cµ −M(λΘ− + λΘ+), for all λ ∈ (0, λ2).

Proof. For each µ ≥ µ0, we know that there is Ψ ∈W 1,p(x)(RN ) \ {0} with

Ψ ≥ 0 such that Iµ(Ψ) = cµ and I ′µ(Ψ) = 0. In what follows, fix δ1 > 0 such

that

cµ −M(λΘ− + λΘ+) >
cµ
2
, for all λ ∈ (0, δ1).

Since for t > 0 sufficiently small

I(tΨ) ≤ tp−
∫
RN

1

p(x)
(|∇u|p(x) + V (x)|u|p(x)),

there is t0 > 0, which is independent of λ, such that I(tΨ) ≤ cµ/2, for all

t ∈ [0, t0]. Therefore, for each λ ∈ (0, δ1),

I(tΨ) ≤ cµ
2
< cµ −M(λΘ− + λΘ+), for all t ∈ [0, t0].

On the other hand, using the fact that Ψ ≥ 0, we have that

I(tΨ) = Iµ(tΨ)− λ
∫
RN

h(x)

r(x)
(tΨ)r(x) for t ≥ 0,

from where it follows that

I(tΨ) ≤ cµ − λmin{tr− , tr+}
∫
RN

h(x)

r(x)
Ψr(x).

In particular, for t ≥ t0,

I(tΨ) ≤ cµ − λmin{tr−0 , t
r+
0 }

∫
RN

h(x)

r(x)
Ψr(x).
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Fixing δ2 > 0 such that

λΘ−−1 + λΘ+−1 <
min{tr−0 , t

r+
0 }

M

∫
RN

h(x)

r(x)
Ψr(x), for all λ ∈ (0, δ2),

we have that sup
t≥t0

I(tΨ) < cµ − M(λΘ− + λΘ+), if λ ∈ (0, δ2). Setting λ2 =

min{λ1, δ1, δ2}, we obtain by the previous estimates,

sup
t≥0

I(tΨ) < cµ −M(λΘ− + λΘ+) for all λ ∈ (0, λ2).

Once that c ≤ sup
t≥0

I(tΨ), for λ ∈ (0, λ2), it follows that c < cµ−M(λΘ− +λΘ+),

finishing the proof of the lemma. �

Theorem 4.3. For each µ ≥ µ0, there exists λ? = λ?(µ) > 0 such that

problem (P) has a solution with positive energy, for all λ ∈ (0, λ?).

Proof. Since µ ≥ µ0, by Lemma 3.5, the functional I verifies the (PS)d
condition for d < cµ −M(λΘ− + λΘ+).

In what follows, we fix λ? = λ2, where λ2 was obtained in Lemma 4.2. From

this, if λ ∈ (0, λ?), by Lemma 4.1, I has the mountain pass geometry, and by

Lemma 4.2, the mountain pass level c satisfies 0 < c < cµ −M(λΘ− + λΘ+).

Thereby, I satisfies the (PS)c condition, and so, there exists Ψ1 ∈ W 1,p(x)(RN )

such that I ′(Ψ1) = 0 and I(Ψ1) = c > 0 showing that Ψ1 is a nontrivial solution

for (P) with positive energy. �

5. Existence of solution with negative energy

In this section we will show the existence of a solution with negative energy

by using Ekeland’s Variational Principle.

Lemma 5.1. I is bounded below in BR(0), where R > 0 is given by Lemma 4.1.

Moreover,

J = inf
u∈BR(0)

I(u) < 0.

Proof. If u ∈ BR(0), then ‖u‖ < 1. Arguing like in the proof of Lemma 4.1,

we obtain

|I(u)| ≤ 1

p−

∫
RN

(|∇u|p(x) + V (x)|u|p(x)) +
λ

r−

∫
RN

h(x)|u|r(x)

+
µ

q−

∫
RN

|u|q(x) +
1

p∗−

∫
RN

|u|p
∗(x)

≤ 1

p−
‖u‖p− + λC3|h|Θ(x)‖u‖r− + µC4‖u‖q− + C5‖u‖p

∗
−

≤ 1

p−
Rp− + λC3|h|Θ(x)R

r− + µC4R
q− + C5R

p∗− .

From this, I is bounded from below in BR(0).
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Let u ∈W 1,p(x)(RN ) \ {0} with u+ 6= 0 and 0 < t < 1. Then,

I(tu) ≤ tp−ρ(u)− λtr+
∫
RN

h(x)

r(x)
(u+)r(x)

− µtq+
∫
RN

1

q(x)
(u+)q(x) − tp

∗
+

∫
RN

1

p∗(x)
(u+)p

∗(x).

Since r+ < p−, q+, p
∗
+, I(tu) < 0, for t ≈ 0+, leading to J = inf

u∈BR(0)
I(u) < 0. �

The next result establishes the existence of a (PS)J sequence for I. The main

tool used is Ekeland’s Variational Principle and the arguments are very similar

to those found in [3], this way, its proof will be omitted.

Lemma 5.2. For each λ ∈ (0, λ1), where λ1 is given by Lemma 4.1, there is

a (PS)J sequence for I, that is, there is (un) ⊂W 1,p(x)(RN ) satisfying

I(un)→ J and I ′(un)→ 0

Now, we are able to prove the existence of a solution with negative energy.

Theorem 5.3. For each µ ≥ µ0, there exists λ?? > 0 such that problem (P)

has a solution with negative energy for all λ ∈ (0, λ??).

Proof. In fact, once that µ ≥ µ0, by Lemma 3.5 functional I verifies the

(PS)d condition for d < cµ −M(λΘ− + λΘ+). In what follows, we choose λ3 > 0

such that 0 < cµ−M(λΘ− +λΘ+),for all λ ∈ (0, λ3) and λ?? = min{λ1, λ3}. For

each λ ∈ (0, λ??), it follows from Lemma 5.2 that there exists a (PS)J sequence

(un) for I, where J = inf
u∈BR(0)

I(u). By Lemma 5.1, we have J < 0, then I

verifies the (PS)J condition. From this, there exists Ψ2 ∈ W 1,p(x)
(
RN
)

such

that I ′(Ψ2) = 0 and I(Ψ2) = J < 0. Hence, Ψ2 is a nontrivial solution for (P)

with negative energy. �

6. Final comments

Regarding to the problem

(P)∗


−∆p(x)u+ V (x)|u|p(x)−2u

= λh(x)|u|r(x)−2u+ µ|u|q(x)−2u+ |u|p∗(x)−2u, RN ,
u ∈W 1,p(x)(RN ),

repeating the same arguments used by Azorero and Alonso [29], we can prove

that there exists µ∗ > 0 with the following property: for each µ ≥ µ∗, there

is λµ > 0 such that (P)∗ has infinitely many solutions with negative energy, if

λ ∈ (0, λµ). This result is obtained using the concept and properties of genus

and working with a truncation of the energy functional corresponding to (P)∗.
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