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GLOBAL EXPONENTIAL STABILITY AND EXISTENCE

OF ANTI-PERIODIC SOLUTIONS

TO IMPULSIVE COHEN–GROSSBERG NEURAL NETWORKS

ON TIME SCALES

Yongkun Li — Tianwei Zhang

Abstract. By using the method of coincidence degree theory and Lya-
punov functions, some new criteria are established for the existence and

global exponential stability of anti-periodic solutions to impulsive Cohen–

Grossberg neural networks on time scales. Our results are new even if the
time scale T = R or Z. Finally, an example is given to illustrate our results.

1. Introduction

Since Cohen and Grossberg proposed a class of neural networks in 1983 [10],

which include Hopfield neural networks [14], shunting neural networks and other

neural networks [23], this model has received increasing interest due to its promis-

ing potential for applications in classification, parallel computation, associative

memory, especially in solving some optimization problems. Such applications

rely on the qualitative properties of stability. Thus, the qualitative analysis

of these dynamic behaviors is a prerequisite step for the practical design and

application of neural networks. Because of the finite speed of switching and
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transmission of signals in a network, time delays are inevitably present in elec-

tronic implementation of neural networks, which may influence the stability of

the entire network by creating oscillatory or unstable phenomena. In recent

years, the dynamical behaviors of Cohen–Grossberg neural networks with delays

have been studied by many researchers (see e.g. [9], [17]–[19], [21], [25]).

In reality, many physical systems undergo abrupt changes at certain moments

due to instantaneous perturbations, which lead to impulsive effects. Since the

existence of impulses is frequently a source of instability, bifurcation and chaos

for neural networks, the impulsive neural networks is an appropriate descrip-

tion of the phenomena of abrupt qualitative dynamical changes of essentially

continuous-time systems, see [3], [20], [31], [32] and references therein.

In fact, continuous and discrete systems are very important in implementing

and applications. It is well known that the theory of time scales has received a lot

of attention which was introduced by Stefan Hilger in order to unify continuous

and discrete analysis. Therefore, it is meaningful to study dynamic systems on

time scales which can unify differential and difference systems see [20].

Arising from problems in applied sciences, it is well-known that anti-periodic

problems of nonlinear differential equations have been extensively studied by

many authors during the past twenty years, see [1], [3], [27], [28], [33] and refer-

ences therein. For example, anti-periodic trigonometric polynomials are impor-

tant in the study of interpolation problems [11], [12], and anti-periodic wavelets

are discussed in [6]. In contrast, however, very few results are available on the

existence and exponential stability of anti-periodic solutions for neural networks,

while the existence of anti-periodic solutions plays a key role in characterizing

the behavior of nonlinear differential equations [8], [22], [29], [30].

To the best of our knowledge, the existence of anti-periodic solutions to

impulsive neural networks with time-varying delays has seldom been investigated

and remains important and challenging.

Motivated by above, in this paper we are concerned with the following im-

pulsive Cohen–Grossberg neural networks on time scales

(1.1)



x∆
i (t) = −ai(xi(t))

[
bi(xi(t))−

n∑
j=1

cij(t)fj(xj(t))

−
n∑
j=1

dij(t)gj(xj(t− τij(t)))− ei(t)
]
, t ∈ T+, t 6= tk, k ∈ N,

∆xi(tk) = xi(t
+
k )− xi(t−k ) = Iik(xi(tk)), i = 1, . . . , n,

where T is an ω/2-periodic time scale which has the subspace topology inherited

from the standard topology on R, T+ = {t ∈ T : t ≥ 0}, N = {1, 2, . . .}; for each

interval I of R, we denote IT = I ∩ T, xi(t
+
k ), xi(t

−
k ) (i = 1, . . . , n) represent

the right and left limit of xi(tk) in the sense of time scales, {tl} is a sequence of
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real numbers such that 0 < t1 < . . . < tl →∞ as l →∞; there exists a positive

integer q such that tl+q = tl + ω/2, Iik+q = −Iik, l ∈ N, i = 1, . . . , n. Without

loss of generality, we also assume that [0, ω/2)T ∩ {tl : l ∈ N} = {t1, . . . , tq}.
The initial conditions associated with system (1.1) are of the form

xi(t) = ϕi(t), t ∈ [−τ, 0]T, τ = max
1≤i,j≤n

{
max
t∈[0,ω]T

τij(t)
}
,

where ϕi(t) (i = 1, . . . , n) are continuous functions on [−τ, 0]T.

The main purpose of this paper is to study the existence and global exponen-

tial stability of the anti-periodic solutions of system (1.1) by using the method

of coincidence degree theory and Lyapunov functional method.

Throughout this paper, we assume that

(H1) τij ≥ 0, cij , dij , ei ∈ C(T,R), cij(t+ω/2) = cij(t), dij(t+ω/2) = dij(t),

ei(t+ ω/2) = −ei(t), i, j = 1, . . . , n.

(H2) ai ∈ C(R, (0,+∞)), ai(−u) = ai(u) and there exist positive constants

ami , aMi such that 0 < ami ≤ ai(u) ≤ aMi for all u ∈ R, i = 1, . . . , n.

(H3) bi ∈ C(R,R) are delta differentiable, bi(0) = 0, bi(−u) = −bi(u) and

there exist positive constants ρi, δi such that 0 < ρi ≤ b∆i (u) ≤ δi for all

u ∈ R, i = 1, . . . , n.

(H4) fj , gj ∈ C(R,R), fj(−u) = −fj(u), gj(−u) = −gj(u) and there exist

positive constants Lj and Pj such that

|fj(u)− fj(v)| ≤ Lj |u− v| and |gj(u)− gj(v)| ≤ Pj |u− v|

for all u, v ∈ R, j = 1, . . . , n.

(H5) Iik ∈ C(R,R) and there exist positive constants Gik such that

|Iik(u)− Iik(v)| ≤ Gik|u− v|

for all u, v ∈ R, k ∈ N, i = 1, . . . , n.

For the sake of convenience, we introduce the following notations:

hL = max
t∈[0,ω]T

|h(t)|, ‖h‖2 =

(∫ ω

0

|h(t)|2∆t

)1/2

,

where h is an ω-periodic function.

The organization of this paper is as follows. In Section 2, we make some

preparations. In Section 3, by using the method of coincidence degree, we obtain

the existence of the anti-periodic solutions of system (1.1). In Section 4, we

give the criteria of global exponential stability of the anti-periodic solutions

of system (1.1). In Section 5, an example is also provided to illustrate the

effectiveness of the main results in Sections 3 and 4. The conclusions are drawn

in Section 6.
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2. Preliminaries

In this section, we shall first recall some basic definitions, lemmas which are

used in what follows.

Definition 2.1 ([5]). A time scale T is an arbitrary nonempty closed subset

of the real set R with the topology and ordering inherited from R. The forward

and backward jump operators σ, ρ : T → T and the graininess µ : T → R+ are

defined, respectively, by

σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t}, µ(t) := σ(t)− t.

The point t ∈ T is called left-dense, left-scattered, right-dense or right-scattered

if ρ(t) = t, ρ(t) < t, σ(t) = t or σ(t) > t, respectively. Points that are right-

dense and left-dense at the same time are called dense. If T has a left-scattered

maximum m, defined Tk = T− {m}; otherwise, set Tk = T.

Definition 2.2 ([5]). A vector function f : T→ Rn is rd-continuous provided

it is continuous at each right-dense point in T and has a left-sided limit at each

left-dense point in T. The set of rd-continuous functions f : T → Rn will be

denoted by Crd(T) = Crd(T,Rn).

Definition 2.3 ([5]). For a function f : T → R (the range R of f may be

actually replaced by Banach space) the (delta) derivative is defined by

f∆ =
f(σ(t))− f(t)

σ(t)− t
,

if f is continuous at t and t is right-scattered. If t is not right-scattered then the

derivative is defined by

f∆ = lim
s→t

f(σ(t))− f(s)

σ(t)− s
= lim
s→t

f(t)− f(s)

t− s
provided this limit exists.

Definition 2.4 ([5]). If F∆(t) = f(t), then we define the delta integral by∫ t

a

f(s)∆s = F (t)− F (a).

Definition 2.5 ([5]). A function p : T→ R is said to be regressive provided

1 + µ(t)p(t) 6= 0 for all t ∈ Tk, where µ(t) = σ(t) − t is the graininess function.

The set of all regressive rd-continuous functions f : T→ R is denoted by R while

the set R+ is given by {f ∈ R : 1 + µ(t)f(t) > 0} for all t ∈ T. Let p ∈ R. The

exponential function is defined by

ep(t, s) = exp

(∫ t

s

ξµ(τ)(p(τ))∆τ

)
,

where ξh(z) is the so-called cylinder transformation.
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Definition 2.6 ([16]). For each t ∈ T, let N be a neighbourhood of t. Then

we defined the generalized derivative (or Dini derivative), D+u∆(t) to mean that,

given ε > 0, there exists a right neighbourhood N(ε) ⊂ N of t such that

u(σ(t))− u(s)

σ(t)− s
< D+u∆(t) + ε

for each s ∈ N(ε), s > t.

In case t is right-scattered and u(t) is continuous at t, this reduce to

D+u∆(t) =
u(σ(t))− u(t)

σ(t)− t
.

Similar to [15], we shall first give the definition of anti-periodic function on

a time scale as following:

Definition 2.7. We say that a time scale T is periodic if there exists p > 0

such that if t ∈ T, then t ± p ∈ T. For T 6= R, the smallest positive p is called

the period of the time scale. Let T 6= R be a periodic time scale with period p.

We say that the function f : T→ R is ω/2-anti-periodic if there exists a natural

number n such that ω/2 = np, f(t + ω/2) = −f(t) for all t ∈ T and ω/2 is the

smallest number such that f(t+ ω/2) = −f(t). If T = R, we say that f is ω/2-

anti-periodic if ω/2 is the smallest positive number such that f(t+ω/2) = −f(t)

for all t ∈ T.

Lemma 2.8 ([5]). Let p, q ∈ R. Then:

(a) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;

(b) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);

(c) 1/ep(t, s) = e�p(t, s), where �p(t) = −p(t)/(1 + µ(t)p(t));

(d) ep(t, s)ep(s, r) = ep(t, r);

(e) e∆
p ( · , s) = pep( · , s).

Lemma 2.9 ([5]). Assume that f , g : T→ R are delta differentiable at t ∈ Tk.

Then

(fg)∆(t) = f∆(t)g(t) + f(σ(t))g∆(t) = f(t)g∆(t) + f∆(t)g(σ(t)),

f(σ(t)) = f(t) + µ(t)f∆(t).

The following lemmas can be found in [2], [4], [24], respectively.

Lemma 2.10. Let t1, t2 ∈ [0, ω]T. If x : T→ R is ω-periodic, then

x(t) ≤ x(t1) +

∫ ω

0

|x∆(s)|∆s and x(t) ≥ x(t2)−
∫ ω

0

|x∆(s)|∆s.

Lemma 2.11 (Cauchy Schwarz inequality on time scale). Let a, b ∈ T. For

rd-continuous functions f , g : [a, b]T → R we have∫ b

a

|f(t)||g(t)|∆t ≤
(∫ b

a

|f(t)|2∆t

)1/2(∫ b

a

|g(t)|2∆t

)1/2

.
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Lemma 2.12 (Mean value theorem, [13]). Let function f be continuous on

[a, b]T and delta differentiable on [a, b)T, then there exist ξ, ς ∈ [a, b)T such that

f∆(ξ)(b− a) ≤ f(b)− f(a) ≤ f∆(ς)(b− a).

Definition 2.13. The anti-periodic solution x∗(t) = (x∗1(t), . . . , x∗n(t))T of

system (1.1) is said to be globally exponentially stable if there exist positive con-

stants λ and M = M(λ) ≥ 1, for any solution x(t) = (x1(t), x2(t), . . . , xn(t))T of

system (1.1) with the initial value ϕ(t) = (ϕ1(t), . . . , ϕn(t))T ∈ C([−τ, 0]T,Rn),

such that
n∑
i=1

|xi(t)− x∗i (t)| ≤M(λ)e�λ(t, α)‖ϕ− x∗‖,

where

‖ϕ− x∗‖ =

n∑
i=1

max
s∈[−τ,0]T

|ϕi(s)− x∗i (s)|, α ∈ [−τ, 0]T.

Lemma 2.14. Let f ∈ C(T,R) is ∆-differentiable at t. Then

∆r|f(t)| ≤ sign(fσ(t))f∆(t), where fσ(t) = f(σ(t)).

Proof. Case 1. If t is a right dense point, that is, σ(t) = t.

(2.1) ∆r|f(t)| ≤ sign(f(t))f∆(t) = sign(fσ(t))f∆(t).

Case 2. If t is a right scattered point, that is, σ(t) > t. If f(t)fσ(t) > 0, one

can easily have sign(f(t)) = sign(fσ(t)), so we can obtain

∆r|f(t)| = |f
σ(t)| − |f(t)|

µ(t)
=

sign(fσ(t))fσ(t)− sign(f(t))f(t)

µ(t)
(2.2)

= sign(fσ(t))

(
fσ(t)− f(t)

µ(t)

)
= sign(fσ(t))f∆(t).

If f(t)fσ(t) ≤ 0, then one can get |f(t)| ≥ sign(fσ(t))f(t). Then

∆r|f(t)| = |f
σ(t)| − |f(t)|

µ(t)
=

sign(fσ(t))fσ(t)− |f(t)|
µ(t)

(2.3)

≤ sign(fσ(t))fσ(t)− sign(fσ(t))f(t)

µ(t)

= sign(fσ(t))

(
fσ(t)− f(t)

µ(t)

)
= sign(fσ(t))f∆(t).

Therefore, by (2.1)–(2.3), one can get ∆r|f(t)| ≤ sign(fσ(t))f∆(t). �

The following fixed point theorem of coincidence degree is crucial in the

arguments of our main results.

Lemma 2.15 ([26]). Let X, Y be two Banach spaces, Ω ⊂ X be open bounded

and symmetric with 0 ∈ Ω. Suppose that L : D(L) ⊂ X→ Y is a linear Fredholm

operator of index zero with D(L)∩Ω 6= ∅ and N : Ω→ Y is L-compact. Further,

we also assume that
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(H) Lx−Nx 6= λ(−Lx−N(−x)) for all x ∈ D(L) ∩ ∂Ω, λ ∈ (0, 1].

Then equation Lx = Nx has at least one solution on D(L) ∩ Ω.

3. Existence of anti-periodic solutions

Theorem 3.1. Assume that (H1)–(H5) hold. Suppose further that

(H6) Π = (hij)n×n is a nonsingular M matrix, where

hij =



ami − δiami aMi ω −
(

1

ωρi
+ ami

) 2q∑
k=1

Gik

− aMi
(

1

ρi
+ ami ω

)
(cLijLj + dLijPj), i = j,

−aMi
(

1

ρi
+ ami ω

)
(cLijLj + dLijPj), i 6= j.

Then system (1.1) has at least one ω/2-anti-periodic solution.

Proof. Let Ck[0, ω; t1, . . . , tq, tq+1, . . . , t2q]T = {x : [0, ω]T → R | xk(t) is

a piecewise continuous map with first-class discontinuous points in [0, ω]T ∩ {tl :

l ∈ N} and at each discontinuous point it is continuous on the left}, k = 0, 1.

Take

X = {x ∈ C[0, ω; t1, . . . , tq, tq+1, . . . , t2q]T :

x(t+ ω/2) = −x(t) for all t ∈ [0, ω/2]T}

and Y = X× Rn×q, then X and Y are Banach spaces with the norms

‖x‖X =

n∑
i=1

|xi|0 and ‖z‖Y = ‖x‖X + ‖y‖

for all x ∈ X, y ∈ Rn×q, respectively, in which |xi|0 = max
t∈[0,ω]T

|xi(t)|, i = 1, . . . , n,

‖ · ‖ is any norm of Rn×q.
Set L : DomL ∩ X→ Y, x→ (x∆,∆x(t1), . . . ,∆x(tq)), where

DomL = {x ∈ C1[0, ω; t1, . . . , t2q]T : x(t+ ω/2) = −x(t) for all t ∈ [0, ω/2]T},

and N : X→ Y

Nx=



A1(t)

...

An(t)

,

I11(x1(t1))

...

In1(xn(t1))

,

I12(x1(t2))

...

In2(xn(t2))

, . . . ,

I1q(x1(tq))

...

Inq(xn(tq))



 ,
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where, for i = 1, . . . , n,

Ai(t) = −ai(xi(t))
[
bi(xi(t))−

n∑
j=1

cij(t)fj(xj(t))

−
n∑
j=1

dij(t)gj(xj(t− τij(t)))− ei(t)
]
.

It is easy to see that

KerL = {0} and ImL =

{
z = (f, C1, . . . , Cq) ∈ Y :

∫ ω

0

f(s)∆s = 0

}
≡ Y.

Thus dim KerL = 0 = codim ImL, and L is a linear Fredholm operator of index

zero.

Define the continuous projector P : X → KerL and the averaging projector

Q : Y→ Y by

Px =

∫ ω

0

x(s)∆s = 0

and

Qz = Q(f, C1, . . . , Cq) =

(
1

ω

∫ ω

0

f(s)∆s, 0, . . . , 0

)
.

Hence ImP = KerL and KerQ = ImL = Im (I −Q).

Denoting by L−1
P : ImL → Dom(L) ∩ KerP the inverse of L|D(L)∩KerP , we

have

L−1
P z =

∫ t

0

f(s)∆s+
∑
tk<t

Ck −
1

2

∫ ω/2

0

f(s)∆s− 1

2

q∑
k=1

Ck,

in which Cq+i = −Ci for all 1 ≤ i ≤ q.
Similar to [20], it is not difficult to show that QN(Ω), L−1

P (I −Q)N(Ω) are

relatively compact for any open bounded set Ω ⊂ X. Therefore, N is L-compact

on Ω for any open bounded set Ω ⊂ X.

In order to apply Lemma 2.7, we need to find an appropriate open bounded

subset Ω in X. Corresponding to the operator equation

Lx−Nx = λ(−Lx−N(−x)), λ ∈ (0, 1],

we have, for i = 1, . . . , n,

(3.1)


x∆
i (t) =

1

1 + λ
Gi(t, x)− λ

1 + λ
Gi(t,−x), t ∈ T+,

t 6= tk, k ∈ N,

∆xi(tk) =
1

1 + λ
Iik(xi(tk))− λ

1 + λ
Iik(−xi(tk)), i = 1, . . . , n,
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where

Gi(t, x) = −ai(xi(t))
[
bi(xi(t))−

n∑
j=1

cij(t)fj(xj(t))

−
n∑
j=1

dij(t)gj(xj(t− τij(t)))− ei(t)
]

and

Gi(t,−x) = −ai(−xi(t))
[
bi(−xi(t))−

n∑
j=1

cij(t)fj(−xj(t))

−
n∑
j=1

dij(t)gj(−xj(t− τij(t)))− ei(t)
]
.

Set t0 = t+0 = 0, t2q+1 = ω, in view of (3.1), we get from (H2)–(H5) and

Lemma 2.5 that∫ ω

0

|x∆
i (t)|∆t =

2q+1∑
k=1

∫ tk

t+k−1

|x∆
i (t)|∆t+

2q∑
k=1

|Iik(xi(tk))|(3.2)

≤
∫ ω

0

∣∣∣∣ 1

1 + λ
Gi(t, x)− λ

1 + λ
Gi(t,−x)

∣∣∣∣∆t+

2q∑
k=1

|Iik(xi(tk))|

≤
[

1

1 + λ
+

λ

1 + λ

] ∫ ω

0

max{|Gi(t, x)|, |Gi(t,−x)|}∆t

+

2q∑
k=1

|Iik(xi(tk))|

≤ aMi
[ ∫ ω

0

|bi(xi(t))|∆t+

n∑
j=1

cLij

∫ ω

0

|fj(xj(t))− fj(0)|∆t

+

n∑
j=1

dLij

∫ ω

0

|gj(xj(t− τij))− gj(0)|∆t+ eLi ω

+

n∑
j=1

cLijω|fj(0)|+
n∑
j=1

dLijω|gj(0)|
]

+

2q∑
k=1

|Iik(xi(tk))− Iik(0)|+
2q∑
k=1

|Iik(0)|

≤ aMi
[
δi
√
ω‖xi‖2 +

n∑
j=1

cLijLj
√
ω‖xj‖2 +

n∑
j=1

dLijPj
√
ω‖xj‖2 + eLi ω

+

n∑
j=1

cLijω|fj(0)|+
n∑
j=1

dLijω|gj(0)|
]

+

2q∑
k=1

Gik|xi|0 +

2q∑
k=1

|Iik(0)|
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= aMi δi
√
ω‖xi‖2 +

2q∑
k=1

Gik|xi|0 + aMi
√
ω

n∑
j=1

(cLijLj + dLijPj)‖xj‖2

+ aMi e
L
i ω + aMi

n∑
j=1

cLijω|fj(0)|+ aMi

n∑
j=1

dLijω|gj(0)|+
2q∑
k=1

|Iik(0)|,

for i = 1, . . . , n. Integrating (3.1) from 0 to ω, we have from (H2)–(H5) that∣∣∣∣ ∫ ω

0

[
ai(xi(t))bi(xi(t))

1 + λ
− λai(−xi(t))bi(−xi(t))

1 + λ

]
∆t

∣∣∣∣
=

∣∣∣∣ ∫ ω

0

[
ai(xi(t))bi(xi(t))

1 + λ
+
λai(xi(t))bi(xi(t))

1 + λ

]
∆t

∣∣∣∣
=

∣∣∣∣ ∫ ω

0

ai(xi(t))bi(xi(t))∆t

∣∣∣∣
=

∣∣∣∣ 1

1 + λ

∫ ω

0

ai(xi(t))

[ n∑
j=1

cij(t)fj(xj(t))

+

n∑
j=1

dij(t)gj(xj(t− τij(t))) + ei(t)

]
∆t

+
λ

1 + λ

∫ ω

0

ai(−xi(t))
[
−

n∑
j=1

cij(t)fj(−xj(t))

−
n∑
j=1

dij(t)gj(−xj(t− τij(t)))− ei(t)
]
∆t

+
1

1 + λ

2q∑
k=1

Iik(xi(tk))− λ

1 + λ

2q∑
k=1

Iik(−xi(tk))

∣∣∣∣
≤
[

1

1 + λ
+

λ

1 + λ

]
aMi

∫ ω

0

max

{∣∣∣∣ n∑
j=1

cij(t)fj(xj(t))

+

n∑
j=1

dij(t)gj(xj(t− τij(t))) + ei(t)

∣∣∣∣,∣∣∣∣ n∑
j=1

cij(t)fj(xj(t)) +

n∑
j=1

dij(t)gj(xj(t− τij(t)))− ei(t)
∣∣∣∣}∆t

+

[
1

1 + λ
+

λ

1 + λ

]
max

{ 2q∑
k=1

|Iik(xi(tk))|,
2q∑
k=1

|Iik(−xi(tk))|
}

≤ aMi
∫ ω

0

[ n∑
j=1

cLij |fj(xj(t))− fj(0)|

+

n∑
j=1

dLij |gj(xj(t− τij(t)))− gj(0)|+ eLi

]
∆t
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+ aMi

n∑
j=1

cLijω|fj(0)|+ aMi

n∑
j=1

dLijω|gj(0)|

+ max

{ 2q∑
k=1

|Iik(xi(tk))− Iik(0)|,
2q∑
k=1

|Iik(−xi(tk))− Iik(0)|
}

+

2q∑
k=1

|Iik(0)|

≤ aMi
[ n∑
j=1

cLijLj
√
ω‖xj‖2 +

n∑
j=1

dLijPj
√
ω‖xj‖2 + eLi ω

]
+ aMi

n∑
j=1

cLijω|fj(0)|

+ aMi

n∑
j=1

dLijω|gj(0)|+
2q∑
k=1

Gik|xi|0 +

2q∑
k=1

|Iik(0)|

= aMi
√
ω

n∑
j=1

(cLijLj + dLijPj)‖xj‖2 +

2q∑
k=1

Gik|xi|0 + aMi e
L
i ω

+ aMi

n∑
j=1

cLijω|fj(0)|+ aMi

n∑
j=1

dLijω|gj(0)|+
2q∑
k=1

|Iik(0)|,

for i = 1, . . . , n, by Lemma 2.5 and (H3), for i = 1, . . . , n, we obtain that

(3.3)

∣∣∣∣ ∫ ω

0

ai(xi(t))xi(t)∆t

∣∣∣∣
=
aMi
ρi

√
ω

n∑
j=1

(cLijLj + dLijPj)‖xj‖2 +
1

ρi

2q∑
k=1

Gik|xi|0 +
aMi
ρi
eLi ω

+
aMi
ρi

n∑
j=1

cLijω|fj(0)|+ aMi
ρi

n∑
j=1

dLijω|gj(0)|+ 1

ρi

2q∑
k=1

|Iik(0)|,

From Lemma 2.3, for any ζi, ηi ∈ [0, ω]T, i = 1, . . . , n, we have

(3.4)

∫ ω

0

ai(xi(t))xi(t)∆t

≤
∫ ω

0

ai(xi(t))xi(ζi)∆t+

∫ ω

0

ai(xi(t))

(∫ ω

0

|x∆
i (t)|∆t

)
∆t,

(3.5)

∫ ω

0

ai(xi(t))xi(t)∆t

≥
∫ ω

0

ai(xi(t))xi(ηi)∆t−
∫ ω

0

ai(xi(t))

(∫ ω

0

|x∆
i (t)|∆t

)
∆t,

where i = 1, . . . , n. Dividing by
∫ ω

0
ai(xi(t))∆t on the two sides of (3.4) and

(3.5), respectively, we obtain that, for i = 1, . . . , n,

(3.6) xi(ζi) ≥
1∫ ω

0

ai(xi(t))∆t

∫ ω

0

ai(xi(t))xi(t)∆t−
∫ ω

0

|x∆
i (t)|∆t,
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(3.7) xi(ηi) ≤
1∫ ω

0

ai(xi(t))∆t

∫ ω

0

ai(xi(t))xi(t)∆t+

∫ ω

0

|x∆
i (t)|∆t.

Let ti, ti ∈ [0, ω]T such that xi(ti) = max
t∈[0,ω]T

xi(t), xi(ti) = min
t∈[0,ω]T

xi(t), by the

arbitrariness of ζi, ηi, we obtain from (3.2), (3.3), (3.6) and (3.7) that

xi(ti) ≥
1∫ ω

0

ai(xi(t))∆t

∫ ω

0

ai(xi(t))xi(t)∆t−
∫ ω

0

|x∆
i (t)|∆t(3.8)

≥ − 1∫ ω

0

ai(xi(t))∆t

∣∣∣∣ ∫ ω

0

ai(xi(t))xi(t)∆t

∣∣∣∣− ∫ ω

0

|x∆
i (t)|∆t

≥ − 1

ami ω

[
aMi
ρi

√
ω

n∑
j=1

(cLijLj + dLijPj)‖xj‖2

+
1

ρi

2q∑
k=1

Gik|xi|0 +
aMi
ρi
eLi ω

+
aMi
ρi

n∑
j=1

cLijω|fj(0)|+ aMi
ρi

n∑
j=1

dLijω|gj(0)|+ 1

ρi

2q∑
k=1

|Iik(0)|
]

−
[
aMi δi

√
ω‖xi‖2 +

2q∑
k=1

Gik|xi|0

+ aMi
√
ω

n∑
j=1

(cLijLj + dLijPj)‖xj‖2 + aMi e
L
i ω

+ aMi

n∑
j=1

cLijω|fj(0)|+ aMi

n∑
j=1

dLijω|gj(0)|+
2q∑
k=1

|Iik(0)|
]
,

for i = 1, . . . , n and

xi(ti) ≤
1∫ ω

0

ai(xi(t))∆t

∫ ω

0

ai(xi(t))xi(t)∆t+

∫ ω

0

|x∆
i (t)|∆t(3.9)

≤ 1∫ ω

0

ai(xi(t))∆t

∣∣∣∣ ∫ ω

0

ai(xi(t))xi(t)∆t

∣∣∣∣+

∫ ω

0

|x∆
i (t)|∆t

≤ 1

ami ω

[
aMi
ρi

√
ω

n∑
j=1

(cLijLj + dLijPj)‖xj‖2

+
1

ρi

2q∑
k=1

Gik|xi|0 +
aMi
ρi
eLi ω +

aMi
ρi

n∑
j=1

cLijω|fj(0)|
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+
aMi
ρi

n∑
j=1

dLijω|gj(0)|+ 1

ρi

2q∑
k=1

|Iik(0)|
]

+

[
aMi δi

√
ω‖xi‖2 +

2q∑
k=1

Gik|xi|0

+ aMi
√
ω

n∑
j=1

(cLijLj + dLijPj)‖xj‖2 + aMi e
L
i ω

+ aMi

n∑
j=1

cLijω|fj(0)|+ aMi

n∑
j=1

dLijω|gj(0)|+
2q∑
k=1

|Iik(0)|
]

for i = 1, . . . , n. Thus, we have from (3.8) and (3.9) that

|xi|0 = max
t∈[0,ω]T

|xi(t)| ≤
1

ami ω

[
aMi
ρi

√
ω

n∑
j=1

(cLijLj + dLijPj)‖xj‖2(3.10)

+
1

ρi

2q∑
k=1

Gik|xi|0 +
aMi
ρi
eLi ω +

aMi
ρi

n∑
j=1

cLijω|fj(0)|

+
aMi
ρi

n∑
j=1

dLijω|gj(0)|+ 1

ρi

2q∑
k=1

|Iik(0)|
]

+

[
aMi δi

√
ω‖xi‖2 +

2q∑
k=1

Gik|xi|0

+ aMi
√
ω

n∑
j=1

(cLijLj + dLijPj)‖xj‖2 + aMi e
L
i ω

+ aMi

n∑
j=1

cLijω|fj(0)|+ aMi

n∑
j=1

dLijω|gj(0)|+
2q∑
k=1

|Iik(0)|
]
,

for i = 1, . . . , n. In addition, we have that

‖xi‖2 =

(∫ ω

0

|xi(s)|2∆s

)1/2

≤
√
ω max
t∈[0,ω]T

|xi(t)| =
√
ω|xi|0, i = 1, . . . , n.

By (3.10), we have

ami ω|xi|0 ≤
[
aMi
ρi

√
ω

n∑
j=1

(cLijLj + dLijPj)‖xj‖2 +
1

ρi

2q∑
k=1

Gik|xi|0 +
aMi
ρi
eLi ω

+
aMi
ρi

n∑
j=1

cLijω|fj(0)|+ aMi
ρi

n∑
j=1

dLijω|gj(0)|+ 1

ρi

2q∑
k=1

|Iik(0)|
]

+ ami ω

[
aMi δi

√
ω‖xi‖2 +

2q∑
k=1

Gik|xi|0
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+ aMi
√
ω

n∑
j=1

(cLijLj + dLijPj)‖xj‖2 + aMi e
L
i ω

+ aMi

n∑
j=1

cLijω|fj(0)|+ aMi

n∑
j=1

dLijω|gj(0)|+
2q∑
k=1

|Iik(0)|
]

≤
[
aMi
ρi
ω

n∑
j=1

(
cLijLj + dLijPj

)
|xj |0 +

1

ρi

2q∑
k=1

Gik|xi|0 +
aMi
ρi
eLi ω

+
aMi
ρi

n∑
j=1

cLijω|fj(0)|+ aMi
ρi

n∑
j=1

dLijω|gj(0)|+ 1

ρi

2q∑
k=1

|Iik(0)|
]

+ ami ω

[
aMi δiω|xi|0 +

2q∑
k=1

Gik|xi|0 + aMi ω

n∑
j=1

(cLijLj + dLijPj)|xj |0

+ aMi e
L
i ω + aMi

n∑
j=1

cLijω|fj(0)|+ aMi

n∑
j=1

dLijω|gj(0)|+
2q∑
k=1

|Iik(0)|
]
,

where i = 1, 2, . . . , n. That is,

(3.11)

[
ami − δiami aMi ω −

1

ωρi

2q∑
k=1

Gik − ami
2q∑
k=1

Gik

]
|xi|0

− aMi
(

1

ρi
+ ami ω

) n∑
j=1

(cLijLj + dLijPj)|xj |0 ≤
1

ω

(
1

ρi
+ ami ω

)[
aMi

n∑
j=1

cLijω|fj(0)|

+ aMi

n∑
j=1

dLijω|gj(0)|+ aMi e
L
i ω +

2q∑
k=1

|Iik(0)|
]

= Di

for i = 1, . . . , n. Denote |x|0 = (|x1|0, . . . , |xn|0)T and D = (D1, . . . , Dn)T . Then

(3.11) can be rewritten in the matrix form Π|x|0 ≤ D.

From the conditions of Theorem 3.1, Π is a nonsingular M matrix, hence

|x|0 ≤ Π−1D , (M1, . . . ,Mn)T .

Let M =
n∑
i=1

Mi + 1 (clearly, M is independent of λ). Take Ω = {x ∈ X :

‖x‖X < M}. It is clear that Ω satisfies all the requirements in Lemma 2.7 and

the condition (H) is satisfied. In view of all the discussions above, we conclude

from Lemma 2.7 that system (1.1) has at least one ω/2-anti-periodic solution.

This completes the proof. �

4. Global exponential stability of the anti-periodic solution

Suppose that x∗(t) = (x∗1(t), . . . , x∗n(t))T is an ω/2-anti-periodic solution of

system (1.1). In this section, we will construct some suitable Lyapunov functions

to study the global exponential stability of this anti-periodic solution.
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Theorem 4.1. Assume that (H1)–(H6) hold and τij(t) ≡ τij (i, j = 1, . . . , n)

are nonnegative constants. Suppose further that

(H7) There exist positive constants fMj , gMj such that |fj(u)| ≤ fMj and

|gj(u)| ≤ gMj for all u ∈ R, j = 1, . . . , n.

(H8) There exist positive constants νi such that

|ai(u)− ai(v)| ≤ νi|u− v| for all u, v ∈ R, i = 1, . . . , n.

(H9) There exist positive constants li such that

(ai(u)bi(u)− ai(v)bi(v))(u− v) ≥ 0 and |ai(u)bi(u)− ai(v)bi(v)| ≥ li|u− v|

for all u, v ∈ R, i = 1, . . . , n.

(H10) There exists a positive constant ε such that max
t∈[0,ω/2]T

Θi(ε, t) < 0, where

Θi(ε, t) = ε+ (1 + εµ(t))(2µ(t)ζ2
i − ζi) +

n∑
j=1

aMi [(1 + 2µ(t)ζi)c
L
ijLj

+ (1 + εµ(t+ τij))(1 + 2µ(t+ τij)ζi)eε(t+ τij , t)d
L
ijPj ,

where

ζi = li − νi
( n∑
j=1

cLijf
M
j +

n∑
j=1

dLijg
M
j + eLi

)
,

for i = 1, . . . , n.

(H11) The impulsive operators Iik(xi(t)) satisfy

Iik(xi(tk)) = −γikxi(tk), 0 ≤ γik ≤ 2, i = 1, . . . , n, k ∈ N.

Then the ω/2-anti-periodic solution of system (1.1) is globally exponentially sta-

ble.

Proof. According to Theorem 3.1, we know that system (1.1) has an ω/2-

anti-periodic solution x∗(t) = (x∗1(t), . . . , x∗n(t))T with initial value x∗(s), s ∈
[−τ, 0]T, suppose that x(t) = (x1(t), . . . , xn(t))T is an arbitrary solution of sys-

tem (1.1) with initial value ϕ(s), s ∈ [−τ, 0]T. Then it follows from system (1.1)

that

(4.1)



(xi(t)− x∗i (t))∆ = −[ai(xi(t))bi(xi(t))− ai(x∗i (t))bi(x∗i (t))]

+ai(xi(t))

[ n∑
j=1

cij(t)fj(xj(t)) +

n∑
j=1

dij(t)gj(xj(t− τij)) + ei(t)

]
−ai(x∗i (t))

[ n∑
j=1

cij(t)fj(x
∗
j (t)) +

n∑
j=1

dij(t)gj(x
∗
j (t− τij)) + ei(t)

]
,

t ∈ T+, t 6= tk, k ∈ N,
∆(xi(tk)− x∗i (tk)) = −γik(xi(tk)− x∗i (tk)), i = 1, . . . , n.
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In view of system (4.1), for t ∈ T+, t 6= tk, k ∈ N, i = 1, . . . , n, we have

(xi(t)− x∗i (t))∆ = − [ai(xi(t))bi(xi(t))− ai(x∗i (t))bi(x∗i (t))]

+ [ai(xi(t))− ai(x∗i (t))]
n∑
j=1

cij(t)fj(xj(t))

+ ai(x
∗
i (t))

n∑
j=1

cij(t)[fj(xj(t))− fj(x∗j (t))]

+ [ai(xi(t))− ai(x∗i (t))]
n∑
j=1

dij(t)gj(xj(t− τij))

+ ai(x
∗
i (t))

n∑
j=1

dij(t)[gj(xj(t− τij))− gj(x∗j (t− τij))]

+ [ai(xi(t))− ai(x∗i (t))]ei(t).

Denote yi(t) = xi(t)− x∗i (t), i = 1, . . . , n. Hence we can obtain from (H7)–(H9)

and Lemma 2.6 that

D+|yi(t)|∆ ≤ sign(yσi (t))y∆
i (t)

≤
(
− li + νi

( n∑
j=1

cLijf
M
j +

n∑
j=1

dLijg
M
j + eLi

))
|yσi (t)− µ(t)y∆

i (t)|

+ aMi

n∑
j=1

cLijLj |yj(t)|+ aMi

n∑
j=1

dLijPj |yj(t− τij)|

≤
(
− li + νi

( n∑
j=1

cLijf
M
j +

n∑
j=1

dLijg
M
j + eLi

))
|yσi (t)|

+ µ(t)

(
− li + νi

( n∑
j=1

cLijf
M
j +

n∑
j=1

dLijg
M
j + eLi

))
|y∆
i (t)|

+ aMi

n∑
j=1

cLijLj |yj(t)|+ aMi

n∑
j=1

dLijPj |yj(t− τij)|

≤ − ζi|yi(t)|+ 2µ(t)ζi|y∆
i (t)|

+ aMi

n∑
j=1

cLijLj |yj(t)|+ aMi

n∑
j=1

dLijPj |yj(t− τij)|

≤ (2µ(t)ζ2
i − ζi)|yi(t)|

+ (1 + 2µ(t)ζi)a
M
i

[ n∑
j=1

cLijLj |yj(t)|+
n∑
j=1

dLijPj |yj(t− τij)|
]
,

or i = 1, . . . , n. And we have from (H11) that

|yi(t+k )| = |1− γik||yi(tk)| ≤ |yi(tk)|, i = 1, . . . , n, k ∈ N.
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For any α ∈ [−τ, 0]T, we construct the Lyapunov functional

V (t) =V1(t) + V2(t),

V1(t) =

n∑
i=1

eε(t, α)|yi(t)|,

V2(t) =

n∑
i=1

n∑
j=1

∫ t

t−τij
(1 + εµ(s+ τij))eε(s+ τij , α)(1 + 2µ(s+ τij)

× ζiaMi dLijPj |yj(s)|∆s.

For t ∈ T+, t 6= tk, k ∈ N, calculating the delta derivative D+V (t)∆ of V (t)

along system (4.1), we can get

D+V ∆
1 (t) =

n∑
i=1

[εeε(t, α)|yi(t)|+ eε(σ(t), α)D+|yi(t)|∆]

≤
n∑
i=1

{
εeε(t, α)|yi(t)|+ (1 + εµ(t))eε(t, α)

(
(2µ(t)ζ2

i − ζi)|yi(t)|

+ (1 + 2µ(t)ζi)a
M
i

[ n∑
j=1

cLijLj |yj(t)|+
n∑
j=1

dLijPj |yj(t− τij)|
])}

≤
n∑
i=1

[ε+ (1 + εµ(t))(2µ(t)ζ2
i − ζi)]eε(t, α)|yi(t)|

+ (1 + εµ(t))eε(t, α)

×
n∑
i=1

n∑
j=1

(1 + 2µ(t)ζi)a
M
i [cLijLj |yj(t)|+ dLijPj |yj(t− τij)|]

and

D+V ∆
2 (t)

≤
n∑
i=1

n∑
j=1

(1 + εµ(t+ τij))(1 + 2µ(t+ τij)ζi)eε(t+ τij , α)aMi d
L
ijPj |yj(t)|

− (1 + εµ(t))eε(t, α)

n∑
i=1

n∑
j=1

(1 + 2µ(t)ζi)a
M
i d

L
ijPj |yj(t− τij)|.

By assumption (H10), it concludes that

D+(V ∆(t)) = D+V ∆
1 (t) +D+V ∆

2 (t)

≤
n∑
i=1

[ε+ (1 + εµ(t))(2µ(t)ζ2
i − ζi)]eε(t, α)|yi(t)|

+ (1 + εµ(t))eε(t, α)

n∑
i=1

n∑
j=1

(1 + 2µ(t)ζi)a
M
i c

L
ijLj |yj(t)|
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+

n∑
i=1

n∑
j=1

(1 + εµ(t+ τij))(1 + 2µ(t+ τij)ζi)eε(t+ τij , α)aMi d
L
ijPj |yj(t)|

=

n∑
i=1

{
ε+ (1 + εµ(t))(2µ(t)ζ2

i − ζi) +

n∑
j=1

aMi

[
(1 + 2µ(t)ζi)c

L
ijLj

+ (1 + εµ(t+ τij))(1 + 2µ(t+ τij)ζi)eε(t+ τij , t)d
L
ijPj

]}
eε(t, α)|yi(t)| ≤ 0,

for t ∈ T+, t 6= tk, k ∈ N. Also, for k ∈ N,

V (t+k ) = V1(t+k ) + V2(t+k )

=

n∑
i=1

eε(t
+
k , α)|yi(t+k )|

+

n∑
i=1

n∑
j=1

∫ t+k

t+k−τij
(1+εµ(s+τij))eε(s+τij , α)(1+2µ(s+τij)ζia

M
i d

L
ijPj |yj(s)|∆s

≤
n∑
i=1

eε(tk, α)|yi(tk)|

+

n∑
i=1

n∑
j=1

∫ tk

tk−τij
(1+εµ(s+τij))eε(s+τij , α)(1+2µ(s+τij)ζia

M
i d

L
ijPj |yj(s)|∆s

=V (tk).

It follows that V (t) ≤ V (0) for all t ∈ T+. On the other hand, we have

V (0) =V1(0) + V2(0)

=

n∑
i=1

eε(0, α)|yi(0)|

+

n∑
i=1

n∑
j=1

∫ 0

−τij
(1 + εµ(s+ τij))eε(s+ τij , α)

× (1 + 2µ(s+ τij)ζia
M
i d

L
ijPj |yj(s)|∆s

≤
n∑
i=1

{
eε(0, α) +

n∑
j=1

∫ 0

−τji
(1 + εµ(s+ τij))eε(s+ τij , α)

× (1 + 2µ(s+ τij)ζja
M
i d

L
jiPi∆s

}
× max
s∈[−τ,0]T

|yi(s)|

≤Γ(ε)

n∑
i=1

max
s∈[−τ,0]T

|ϕi(s)− x∗i (s)|,
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where

Γ(ε) = max
1≤i≤n

{
max

α∈[−τ,0]T

{
eε(0, α) +

n∑
j=1

∫ 0

−τji
(1 + εµ(s+ τij))eε(s+ τij , α)

× (1 + 2µ(s+ τij)ζja
M
i d

L
jiPi∆s

}}
.

It is obvious that
n∑
i=1

eε(t, α)|xi(t)− x∗i (t)| ≤ V (t) ≤ V (0) ≤ Γ(ε)

n∑
i=1

max
s∈[−τ,0]T

|ϕi(s)− x∗i (s)|.

So we can finally get

n∑
i=1

|xi(t)− x∗i (t)|

≤ Γ(ε)e�ε(t, α)

n∑
i=1

max
s∈[−τ,0]T

|ϕi(s)− x∗i (s)| = Γ(ε)e�ε(t, α)‖ϕ− x∗‖.

Since Γ(ε) ≥ 1, from Definition 2.8, the ω/2-anti-periodic solution of system (1.1)

is globally exponential stable. This completes the proof. �

5. An example

Example 5.1. Consider the following impulsive Cohen-Grossberg neural net-

works

(5.1)



x∆
i (t) = −ai(xi(t))

[
bi(xi(t))−

n∑
j=1

cij(t)fj

(xj(t))−
n∑
j=1

dij(t)gj(xj(t− τij))− ei(t)
]
,

t ∈ T+, t 6= tk, k ∈ N,
∆xi(tk) = xi(t

+
k )− xi(t−k ) = Iik(xi(tk)), i = 1, 2,

where

(ai)2×1 =

(
1.6 + (2/π) arctan |u|
1.5 + (2/π) arctan |u|

)
, (bi)2×1 =

1

220π

(
u

u

)
,

(fj)2×1 = (gj)2×1 =
1

2

(
sinu

sinu

)
,

(cij)2×2 =
1

2640π

(
sin 2t cos 2t

cos 2t sin 2t

)
,

(dij)2×2 =
1

2640π

(
sin2 t cos2 t

cos2 t sin2 t

)
,
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(ei)2×1 =
π

2

(
sin t

cos t

)
, (τij)2×2 =

(
1 1

1 1

)
,

(Iik)2×2 =
1

240

(
−u −u
−u −u

)
,

ω = 2π, [0, 2π]T ∩ {tk : k ∈ N} = {t1, t2}.
When T = R or Z, system (5.1) has at least one exponentially stable π-anti-

periodic solution.

Proof. By calculation, we have am1 = 1.6, am2 = 1.5, aM1 = 2.6, aM2 = 2.5,

ν1 = ν2 = 2/π, l1 = 0.6 − 1/π, l2 = 0.5 − 1/π, ρ1 = ρ2 = 1/(220π), δ1 = δ2 =

1/(220π), L1 = L2 = 1/2, P1 = P2 = 1/2, fM1 = fM2 = 1/2, gM1 = gM2 = 1/2,

cL11 = cL12 = cL21 = cL22 = 1/(2640π), dL11 = dL12 = dL21 = dL22 = 1/(2640π),

eL1 = eL2 = π/2, G11 = G12 = G21 = G22 = 1/240.

It is obvious that (H1)–(H5), (H7)–(H9) and (H11) are satisfied. Furthermore,

we can easily calculate that

Π = (hij)2×2 ≈

(
0.1926 −0.4396

−0.4392 0.0978

)
is a nonsingular M matrix, thus (H6) is satisfied.

Case 1. When T = R, then µ(t) = 0. Take ε = 0.01, we have that

max
t∈[0,ω/2]T

Θ1(ε, t) ≈ −0.2697 < 0 and max
t∈[0,ω/2]T

Θ2(ε, t) ≈ −0.1697 < 0.

Hence (H10) holds. By Theorems 3.1 and 4.1, system (5.1) has at least one

exponentially stable π-anti-periodic solution.

Case 2. When T = Z, then µ(t) = 1. Take ε = 0.001, we have that

max
t∈[0,ω/2]T

Θ1(ε, t) ≈ −0.1233 < 0 and max
t∈[0,ω/2]T

Θ2(ε, t) ≈ −0.1135 < 0.

Hence (H10) holds. By Theorems 3.1 and 4.1, system (5.1) has at least one

exponentially stable π-anti-periodic solution. �
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