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THE NIELSEN TYPE NUMBERS

FOR MAPS ON A 3-DIMENSIONAL FLAT RIEMANNIAN

MANIFOLD

Ku Yong Ha — Jong Bum Lee

Abstract. Let f : M → M be a self-map on a 3-dimensional flat Rie-

mannian M . We compute the Lefschetz number and the Nielsen num-
ber of f by using the infra-nilmanifold structure of M and the averaging

formulas for the Lefschetz numbers and the Nielsen numbers of maps on

infra-nilmanifolds. For each positive integer n, we provide an explicit al-
gorithm for a complete computation of the Nielsen type numbers NPn(f)

and NΦn(f) of fn.

1. Introduction

In dynamical systems, it is often the case that topological information can

be used to study qualitative and quantitative properties of the system. For

the periodic points, two Nielsen type numbers NPn(f) and NΦn(f) are lower

bounds for the number of periodic points of least period exactly n and the set

of periodic points of period n, respectively, see [9]. One can find the basic

definitions, notions and some developments for the Nielsen periodic point theory

in the survey articles [4], [5] and the references given there. In this paper we

will determine these Nielsen type numbers of all homotopy classes of maps on

a 3-dimensional flat Riemannian manifold.
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In order to state our main results, let us fix some notations and terminologies.

Let f : X → X be a continuous self-map of a topological space X. We consider

the following sets:

Fix(f) = {x ∈ X | f(x) = x},

Pn(f) = Fix(fn),

Pn(f) = Fix(fn)−
⋃
k<n

Fix(fk)

= the set of periodic points f with least period n.

Let f̃ : X̃ → X̃ be a lifting of f . We denote by ϕ : Π→ Π the homomorphism

on the deck transformation group Π induced by the lifting f̃ . Namely,

ϕ(α)f̃ = f̃α, for all α ∈ Π.

For each n = 1, 2, . . ., f̃n is a lifting of fn, and the homomorphism determined

by the lifting f̃n is ϕn : Π→ Π. The homomorphism ϕn defines the Reidemeister

action of Π on Π as follows:

Π×Π→ Π, (γ, α) 7→ γαϕn(γ)−1.

The Reidemeister class containing α will be denoted by [α]n and the set of

Reidemeister classes of Π determined by ϕn will be denoted by R[ϕn]. The

Reidemeister number R(ϕn) of ϕn is defined as the cardinality of R[ϕn].

The Reidemeister number R(f) of the continuous map f is defined as the

Reidemeister number R(ϕ) of an induced homomorphism ϕ. Note that the

Reidemeister number R(f) does not depend on the particular choice of the lifting

f̃ and hence on the particular choice of the induced homomorphism ϕ. Also

the fixed point classes do not depend on the choice of liftings, although the

corresponding Reidemeister classes may.

Let On(ϕ) be the number of irreducible, essential periodic point orbits of

R[ϕn]. If [α]n is irreducible and essential, then so is the corresponding periodic

point class F and its f -orbit contains at least n periodic points of least period n.

The prime Nielsen–Jiang periodic number of period n is defined by the for-

mula

NPn(f) = n×On(ϕ).

Take the set of all the essential orbits, of any period m | n, which do not contain

any essential orbits of lower period. To each such an orbit, find the lowest period

which it can be reduced to. The full Nielsen–Jiang periodic number of period n,

denoted by NΦn(f), is the sum of these numbers.

Then the Nielsen type numbersNPn(f) andNΦn(f) are homotopy invariant,

non-negative integers [9, Theorem III.4.10]. Therefore,

NPn(f) ≤ min{|Pn(g)| | g ' f}, NΦn(f) ≤ min{|Pn(g)| | g ' f}.
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In this paper when the topological spaceX is a 3-dimensional flat Riemannian

manifold, we will determine these two homotopy invariants for all maps on X.

This will be the first complete computation on a 3-dimensional infra-nilmanifold.

In Section 2, we will consider 3-dimensional flat Riemannian manifolds which

can be considered as 3-dimensional analogues of the 2-dimensional Klein bottle,

and show that they have solvmanifold structures. In Section 3, we will consider

one of such manifolds and devote ourselves to compute these homotopy invari-

ants. This is a continuation of the work done on the Klein bottle [12]. However,

the computations involved in this paper are much complicated compared to the

previous ones. We will refer to [12] and the references given there for necessary

preliminaries and facts.

2. 3-dimensional flat Riemannian manifolds

We have a complete classification of 3-dimensional crystallographic groups.

Such a group Π has an explicit representation Π → R3 o GL(3,Z) (not into

R3 o O(3)) in the book [1].

There are 3-dimensional analogues of the classical 2-dimensional Klein bot-

tle K2. In fact, among ten 3-dimensional Bieberbach groups, there are three 3-

dimensional Bieberbach groups Π with holonomy group Z2. These are orientable

2/1/1/02, and non-orientable 2/2/1/02 and 2/2/2/02. The bold-faced num-

bers associated to the 3-dimensional Bieberbach groups refer to the numbering

in the book [1]. Indeed, it is easy to see that these are G2, B1 and B2 in [16,

Theorems 3.5.5 and 3.5.9], respectively. Write

e1 =

1

0

0

 , e2 =,

0

1

0

 , e3 =

0

0

1

 ;

a1 =

 0

1/2

0

 , A1 =

−1 0 0

0 1 0

0 0 −1

 ;

a2 =

 0

0

1/2

 , A2 =

1 0 0

0 −1 0

0 0 1

 ;

a3 =

 0

0

1/2

 , A3 =

0 1 0

1 0 0

0 0 1

 .
Then αi = (ai, Ai) and ti = (ei, I3) be elements of R3 o GL(3,R) and Ai has

period 2.
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Furthermore,

α2
1 = t2, t1α1t

−1
1 =α1t

−2
1 , t3α1t

−1
3 =α1t

−2
3 ,

α2
2 = t3, t1α2t

−1
1 =α2, t2α2t

−1
2 =α2t

−2
2 ,

α2
3 = t3, t1α3t

−1
1 =α3t

−1
1 t2, t2α3t

−1
2 =α3t1t

−1
2 .

Let Γ be the integral matrices of R3. Then it forms a lattice of R3 and Γ \R3 is

the 3-torus. It is easy to check that the subgroup

Πi = 〈Γ, (ai, Ai)〉 ⊂ R3 o GL(3,R)

generated by the lattice Γ and the element αi = (ai, Ai) is discrete and torsion

free, and has Γ as a normal subgroup of index 2. Thus Πi is a 3-dimensional

Bieberbach group and the quotient space Πi \ R3 is a 3-dimensional flat mani-

fold which is orientable when i = 1 and non-orientable when i = 2 or 3. The

projection Γ \R3 → Πi \R3 is a double covering projection. We shall denote the

flat manifold Πi \ R3 by Ki, and the torus Γ \ R3 by T . Note also that

2/1/1/02: Π1 = 〈t1, α1, t3 | t1α1 = α1t
−1
1 , t3α1 = α1t

−1
3 , [t1, t3] = 1〉,

2/2/1/02: Π2 = 〈t1, t2, α2 | t1α2 = α2t1, t2α2 = α2t
−1
2 , [t1, t2] = 1〉,

2/2/2/02: Π3 = 〈t1, t2, α3 | t1α3 = α3t2, t2α3 = α3t1, [t1, t2] = 1〉.
Furthermore, since we can embed Aff(3) = R3 o GL(3,R) in GL(4,R) as

Aff(3) =

{[
A x

0 1

] ∣∣∣∣∣ A ∈ GL(3,R),x ∈ R3

}
⊂ GL(4,R),

we can embed each Πi in GL(4,R) so that

ti =

[
I3 ei
0 1

]
, αi =

[
Ai ai
0 1

]
∈ GL(4,R).

Observe that the Πi are non-nilpotent, 2-step solvable groups

Π1 = Z2 oφ1 Z, Π2 = Z2 oφ2 Z, Π3 = Z2 oφ3 Z

where

φ1 =

[
−1 0

0 −1

]
, φ2 =

[
1 0

0 −1

]
, φ3 =

[
0 1

1 0

]
.

Since each φi has an eigenvalue −1, the solvmanifold with fundamental group Πi

is not anNR-solvmanifold (see [10], [15] for the definition ofNR-solvmanifolds).

Proposition 2.1. The flat manifolds Ki are compact solvmanifolds.

Proof. Consider the simply connected solvable Lie group G1 = C2 oσ1
R

where σ1(t) is the rotation by 2πt on each factor of C, namely, σ1(t) : (z1, z2) 7→
(e2πitz1, e

2πitz2). Let H1 be the closed subgroup of G1 given by

H1 = {(m+ ix, n+ iy, k/2) ∈ G1 | m,n, k ∈ Z, x, y ∈ R}.
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Then it is easily seen that the compact solvmanifold H1 \ G1 is homeomorphic

to the flat manifold K1.

Note that Π2 = 〈t1〉 × 〈t2, α2〉 is isomorphic to the product of the infinite

cyclic group Z and the 2-dimensional Klein bottle group π1(K). This yields that

the flat manifold K2 is homeomorphic to the product space S1 × K2. Hence

K2 is a compact solvmanifold. As above, we can consider the simply connected

solvable Lie group G2 = R× (Coσ2
R) = R× Ẽ0(2) where σ2(t) is the rotation

by 2πt on C, namely, σ2(t) : z 7→ e2πitz. Let H2 be the closed subgroup of G2

given by

H2 = {(m,n+ ix, k/2) ∈ G2 | m,n, k ∈ Z, x ∈ R}.

Then we can see that the compact solvmanifold H2 \G2 is homeomorphic to the

product S1 ×K2 and hence to the flat manifold K2.
Consider the simply connected solvable Lie group G3 = C3oσ3

R where σ3(t)
is given by the composition (or product) of three matrices

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 cos 2πt − sin 2πt

0 0 0 0 sin 2πt cos 2πt


,



cos 4πt 0 − sin 4πt 0 0 0

0 cos 4πt 0 0 − sin 4πt 0

sin 4πt 0 cos 4πt 0 0 0

0 0 0 1 0 0

0 sin 4πt 0 0 cos 4πt 0

0 0 0 0 0 1


,



cos 2πt 0 − sin 2πt 0 0 0

0 cos 2πt 0 − sin 2πt 0 0

sin 2πt 0 cos 2πt 0 0 0

0 sin 2πt 0 cos 2πt 0 0

0 0 0 0 cos 2πt − sin 2πt

0 0 0 0 sin 2πt cos 2πt


.

Let H3 be the closed subgroup of G3 given by

H3 = {(x+ im, y + in, u+ iv, k/4) ∈ G3 | k,m, n ∈ Z, x, y, u, v ∈ R}.

Then it is easily seen that the compact solvmanifold H3 \ G3 is homeomorphic

to the flat manifold K3. �

For a compact solvmanifold K = H \ G where S is a connected, simply

connected solvable Lie group and H is a closed uniform subgroup of G, let N be

the nilradical of G; then N fits a short exact sequence

0 −→ N −→ G −→ G/N ∼= Rs −→ 0.
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The closed subgroup H of G yields a uniform subgroup N ∩H of N . Moreover,

the closed subgroup H of G induces a short exact sequence 0→ N ∩H → H →
H/N ∩H ∼= H ·N/N → 0 so that the following diagram is commutative

0 −−−−→ N −−−−→ G −−−−→ G/N −−−−→ 0x x x
0 −−−−→ N ∩H −−−−→ H −−−−→ H ·N/N −−−−→ 0

This gives rise to the fibration, called the Mostow fibration,

N ∩H \N −→ K = H \G −→ H ·N \G

over a torus base H ·N \G with compact nilmanifold fiber N∩H \N , see [15], [2].

It is known that the Mostow fibration is orientable if and only if the solvmanifold

K is a nilmanifold, see [15, Lemma 3.1].

For G1 = C2 oσ1 R, we have that

• the nilradical of G1 is N1 = C2,

• N1 ∩H1 = {(m+ ix, n+ iy, 0) ∈ G1 | m,n ∈ Z, x, y ∈ R},
• N1 ·H1 = {(C2, k/2) | k ∈ Z}.

Thus the Mostow fibration has the base the circle with α1 as a generator of the

fundamental group, and the fiber the torus with t1 and t3 as generators of the

fundamental group. Notice here that K1 is orientable as a manifold, however

the Mostow fibration structure on K1 is not orientable. In this sense, K1 is

a 3-dimensional analogue of the classical 2-dimensional Klein bottle.

It is clear that K2 = S1 ×K2. The Mostow fibration is the product of the

trivial bundle over S1 with the standard fibration of the Klein bottle K2.

For G3 = C3 oσ3
R, we have that

• the nilradical of G3 is N3 = C3,

• N3 ∩H3 = {(x+ im, y + in, u+ iv, 0) ∈ G3 | m,n ∈ Z, x, y, u, v ∈ R},
• N3 ·H3 = {(C3, k/4) | k ∈ Z}.

Thus the Mostow fibration has the base the circle with α3 as a generator of the

fundamental group, and the fiber the torus with t1 and t2 as generators of the

fundamental group.

3. The Nielsen type numbers of maps on K

Now let us recall some of the main results in [6], [7], [8].

Definition 3.1. The map f : M→M is called weakly Jiang if either N(f)=0

or N(f) = R(f).

Theorem 3.2 ([6, Theorem 1], [7, Theorems 1.2]). Let f : M →M be a self-

map of a nilmanifold or NR solvmanifold, or if M is an arbitrary solvmanifold
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suppose that fn is weakly Jiang. If N(fn) 6= 0, then for all m|n

N(fm) =
∑
k|m

NPk(f), NPm(f) =
∑
k|m

µ(k)N(fm/k),

where µ is the Möbius function.

Theorem 3.3 ([7, Corollary 4.6]). Let f : M → M be a self-map. If M is

a solvmanifold, then

NΦn(f) =
∑
k|n

NPk(f), NPn(f) =
∑
k|n

µ(k)NΦn/k(f).

Since our flat manifolds Ki are solvmanifolds, according to Theorem 3.3 it

is enough to find the formula for the prime Nielsen–Jiang periodic number or

the full Nielsen-Jiang periodic number. Note that Ki are not NR solvmanifolds.

When fn is weakly Jiang and N(fn) 6= 0 we can find the formula easily using

Theorem 3.2. However, the remaining cases are not rare and are required a lot

of efforts to work, see for example [12].

In this paper we shall consider the flat manifold K1 only and evaluate the

Nielsen type numbers for all self-maps on K1. We believe the results of this case

are worth recording once and for all. For simplicity we will use the notation K

and Π for the manifold K1 and its fundamental group Π1.

4. Self-maps on K

Note that Π fits a short exact sequence

0 −→ Z2 −→ Π −→ Z −→ 0

where s1 and s2 are generators of the normal subgroup Z2 and α is a generator

of the quotient group Z so that α acts on si by α : si 7→ s−1
i . Of course, we can

embed Π into R3 o GL(3,R) by the assignment s1 7→ t1, s2 7→ t2 and α 7→ α1

where

ti = (ei, I3), α1 =


 0

0

1/2

 ,
−1 0 0

0 −1 0

0 0 1


 .

Note that the group 〈t1, t2, α1〉 is conjugate to the 3-dimensional Bieberbach

group 2/1/1/02 in the book [1] by
0

0

0

 ,
1 0 0

0 0 1

0 1 0


 ∈ Ro GL(3,R).
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Lemma 4.1. Any homomorphism ϕ : Π→ Π is given as follows:

ϕ(s1) = s
(a11−(−1)ωa11)/2
1 s

(a21−(−1)ωa21)/2
2 ,

ϕ(s2) = s
(a12−(−1)ωa12)/2
1 s

(a22−(−1)ωa22)/2
2 ,

ϕ(α) = sb11 s
b2
2 α

ω.

Proof. Every element of Π can be written uniquely as s`1s
m
2 α

n. Thus

ϕ(s1) = sa111 sa212 αω1 , ϕ(s2) = sa121 sa222 αω2 , ϕ(α) = sb11 s
b2
2 α

ω,

for some integers aij , bi, ωi and ω. Since αsiα
−1 = s−1

i implies α = siαsi, the

equations

ϕ(α) = ϕ(si)ϕ(α)ϕ(si)

yields that

sb11 s
b2
2 α

ω = (sa1i1 sa2i2 αωi)(sb11 s
b2
2 α

ω)(sa1i1 sa2i2 αωi)

= s
a1i+(−1)ωib1+(−1)ωi+ωa1i
1 s

a2i+(−1)ωib2+(−1)ωi+ωa2i
2 α2ωi+ω

or

ωi = 0 and (1 + (−1)ω)aij = 0 for 1 ≤ i, j ≤ 2.

The equation ϕ(s1)ϕ(s2) = ϕ(s2)ϕ(s1) is redundant! �

Explicitly we have:

Corollary 4.2. Any homomorphism ϕ : Π→ Π is given as follows:

(a) When ω is odd,

ϕ(s1) = sa111 sa212 , ϕ(s2) = sa121 sa222 , ϕ(α) = sb11 s
b2
2 α

ω.

(b) When ω is even,

ϕ(s1) = 1, ϕ(s2) = 1, ϕ(α) = sb11 s
b2
2 α

ω.

Immediately we have:

Corollary 4.3. The group of pure translations in Π, Γ = 〈s1, s2, s3〉, is

a fully invariant subgroup of Π.

Let f : K → K be a continuous map on the flat manifold K = Π \ R3 and

choose a lifting f̃ : R3 → R3 of f . The lifting f̃ induces a homomorphism

ϕ : Π→ Π which is defined by the following rule:

ϕ(γ) ◦ f̃ = f̃ ◦ γ for all γ ∈ Π.

Given f , we consider another lifting of f . It is of the form β ◦ f̃ for some β ∈ Π,

and the homomorphism on Π induced by β ◦ f̃ is τβ ◦ ϕ. Indeed, for all γ ∈ Π,

(β ◦ f̃) ◦ γ = β ◦ ϕ(γ) ◦ f̃ = (β ◦ ϕ(γ) ◦ β−1) ◦ (β ◦ f̃) = (τβ ◦ ϕ)(γ) ◦ (β ◦ f̃).

Now we describe τβ ◦ ϕ.
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A homomorphism ϕ given as in Corollary 4.2 is called of type (F,b, ω) where

F and b are integer matrices

F =

[
a11 a12

a21 a22

]
, b =

[
b1
b2

]
.

When ω is even, F is the zero matrix. A self-map on K is called of type (F,b, ω)

if it induces a homomorphism of type (F,b, ω). Since the element β of Π is of

the form β = s`1s
m
2 α

n for some integers `,m and n, we have:

(1) When ω is odd, then

τβ ◦ ϕ(si) = s
(−1)na1i
1 s

(−1)na2i
2 , (i = 1, 2),

τβ ◦ ϕ(α) = s
2`+(−1)nb1
1 s

2m+(−1)nb2
2 αω.

Thus we can choose a lifting f̃ of f so that (i) F is unique up to ±I and

(ii) b1, b2 ∈ {0, 1}.
(2) When ω is even, then

τβ ◦ ϕ(si) = 1, (i = 1, 2),

τβ ◦ ϕ(α) = s
(−1)nb1
1 s

(−1)nb2
2 αω.

Thus we can choose a lifting f̃ of f so that b1 ≥ 0; when b1 = 0 then

b2 ≥ 0.

Consequently, we can choose and then fix a lifting f̃ of f so that the induced

homomorphism ϕ as in Corollary 4.2 satisfies the following: when ω is odd, (i)

F is unique up to ±I and (ii) b1, b2 ∈ {0, 1}, and when ω is even, b1 ≥ 0; when

b1 = 0 then b2 ≥ 0. Such a homomorphism ϕ : Π → Π is called of normalized

type (F,b, ω). A self-map f on Π \ R3 is said to be of normalized type (F,b, ω)

if it induces a homomorphism of normalized type (F,b, ω).

Suppose f and f ′ are homotopic maps on the flat manifold K. It is well

known that the induced homomorphisms ϕ and ϕ′ are conjugate by an element

of Π. It follows that ϕ = ϕ′ as normalized type. Note that when ω is even F = 0.

Conversely suppose f and f ′ are maps on K so that the homomorphisms ϕ

and ϕ′ are the same (as normalized type). Since K is an aspherical manifold,

it is well-known that f and f ′ are homotopic, i.e. such a map is unique up to

homotopy.

In all, we have obtained the following homotopy classification of maps on the

flat manifold K.

Theorem 4.4. Every continuous maps on the flat manifold K is homo-

topic to a map of normalized type (F,b, ω). Furthermore, two such maps of

(normalized) type are homotopic if and only if they have the same normalized

types.
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Notation 4.5. A self-map f : K → K on the flat manifold K of type

(F,b, ω) will be denoted by f(F,b,ω).

Lemma 4.6. Every self-map f : K → K of type (F,b, ω) has an affine endo-

morphism (δ,D) ∈ R3 o Endo(R3) as a homotopy lifting given by

(δ,D) =



b/2

∗

 ,
F 0

0 ω

 when ω is odd,

∗
∗

 ,
0 2b

0 ω

 when ω is even.

Conversely, such an affine map (δ,D) induces a map on K of type (F,b, ω).

Proof. Let f : K → K be a self-map inducing a homomorphism ϕ on Π of

type (F,b, ω). Due to [14, Theorem 1.1], there exists an affine endomorphism

(δ,D) ∈ R3 o Endo(R3) such that

ϕ(si)(δ,D) = (δ,D)si (i = 1, 2),

ϕ(α)(δ,D) = (δ,D)α.

These equalities yield the formula for (δ,D) by a simple computation. Further-

more, the above equalities imply that (δ,D) induces a map f on K, i.e. f has

a lifting (δ,D). Hence f and f induce the same homomorphism ϕ. Since K is

a K(π, 1)-manifold, f is homotopic to f . �

Definition 4.7. Let f be a self-map on K of type (F,b, ω). The linear part

D of a homotopy lifting of f in Lemma 4.6 is called the linearization of f . We

call F the fiber of f .

Remark 4.8. Let f be a self-map onK of type (F,b, ω) with a lifting f̃ which

induces the homomorphism ϕ. Then f̃n is a lifting of fn and the corresponding

homomorphism is ϕn. It can seen easily that

ϕn(si)(δ,D)n = (δ,D)nsi (i = 1, 2),

ϕn(α)(δ,D)n = (δ,D)nα.

Thus Dn is the linearization of fn, and Fn is the fiber of fn. Note also that the

integer ω for f becomes ωn for fn.

Theorem 4.9. Let f : K → K be a self-map of type (F,b, ω). Then for any

positive integer n,

N(fn) =
1

2
|1− ωn|(|det(I − Fn)|+ |det(I + Fn)|).

In particular when ω is even N(fn) = |1− ωn|.
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Proof. We recall the averaging formula for the Nielsen number on infra-

nilmanifolds from [11, Theorem 3.5] and [13, Theorem 1.4]

N(f) =
1

|Ψ|
∑
A∈Ψ

|det(A∗ − f∗)|.

Thus for the case of the flat manifold K, we have Ψ = 〈A1〉 ∼= Z2 and

N(fn) =
1

2
(|det(I −Dn)|+ |det(A1 −Dn)|)

=
1

2
|1− ωn|(|det(I − Fn)|+ |det(I + Fn)|). �

Remark that if λi is an eigenvalue of F then 1±λi is an eigenvalue of I ±F .

Hence

det(I ± Fn) = (1± λn1 )(1± λn2 ) = 1 + λn1λ
n
2 ± (λn1 + λn2 )

= 1 + det(Fn)± tr(Fn).

5. Weakly Jiang maps on K

Let f be a self-map on K of normalized type (F,b, ω) with induced homo-

morphism ϕ on Π. By Lemma 4.6, fn is of type (Fn,bn, ω
n), not necessarily

normalized, where

bn =

(I + F + . . .+ Fn−1)b when ω is odd;

ωn−1b when ω is even.

We will discuss the case where fn is weakly Jiang.

Theorem 5.1. Let f be a self-map on K of type (F,b, ω). Then fn is weakly

Jiang if and only if one of the following holds:

(a) Case N(fn) = 0:

• det(I ± Fn) = 0,

• ω = 1,

• ω = −1 and n even.

(b) Case N(fn) = R(fn):

• ω even,

• ω = −1, n odd and det(I ± Fn) 6= 0,

• ω 6= ±1 odd and det(I ± Fn) 6= 0.

Proof. The first case follows directly from Theorem 4.9. For the second

case, we shall recall the averaging formula for the Reidemeister coincidence

number on orientable infra-nilmanifolds from [3, Theorem 6.11]. We can use

this result because our infra-nilmanifold K is orientable. In fact, the fixed point
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version of this result is true for all infra-nilmanifolds. Namely,

R(f) =
1

|Ψ|
∑
A∈Ψ

σ(det(A∗ − f∗)),

where σ : R → R ∪ {∞} is defined by σ(0) = ∞ and σ(x) = |x| for all x 6= 0.

Hence

R(fn) =
1

2
(σ(det(I −Dn)) + σ(det(A−Dn))) .

Therefore, N(fn) = R(fn) if and only if det(I −Dn) 6= 0 and det(A−Dn) 6= 0

if and only if ωn 6= 1, det(I − Fn) 6= 0 6= det(I + Fn). �

Immediately we have:

Corollary 5.2. If N(fn) = R(fn) holds, then for any m with m |n, we

have that N(fm) = R(fm).

Proof. Observe that if m |n then I−Fn = (I−Fm)(I+Fm+ . . .+Fn−m)

and so det(I − Fm) |det(I − Fn); moreover, in addition, if n/m is even then

I−Fn = (I+Fm)(I−Fm+ . . .−Fn−m) implies that det(I+Fm) |det(I−Fn),

and if n/m is odd then I + Fn = (I + Fm)(I − Fm + . . .+ Fn−m) implies that

det(I + Fm) |det(I + Fn). This implies our result. �

Corollary 5.3. If det(I ± Fn) = 0 holds, then n must be odd and the

eigenvalues of F are ±1. Moreover, for any odd m det(I ± Fm) = 0 holds and,

for any even m, det(I−Fm) = 0 and det(I+Fm) = 4 and so N(fm) = 2|1−ωm|.

Proof. Assume det(I ± Fn) = 0. Let λ1 and λ2 be the eigenvalues of F .

Then 1 + λn1λ
n
2 − (λn1 + λn2 ) = 0 and 1 + λn1λ

n
2 + (λn1 + λn2 ) = 0. These identities

induce that λn2 = −λn1 and λ2n
1 = 1. If the λi are real then λ1 = −λ2 = ±1 and

n must be odd; thus in this case for any odd m, we must have det(I ±Fm) = 0.

If the λi are complex numbers (so that λ2 = λ1) then λn2 = −λn1 yields that λn2 =

λ
n

1 = −λn1 and thus λn1 = ±i and λ2n
1 = (±i)2 = −1, which is a contradiction.

Now it is simply a routine to check the last assertion. �

Let f be a self-map on K with induced homomorphism ϕ on Π of type

(F,b, ω). Assuming N(fn) = R(fn) so that fn is weakly Jiang, we will find

a complete set of representatives for the Reidemeister set R[ϕn].

Notation 5.4. Note that for any k, ϕk acts on the integral lattice spanned

by s1 and s2 by matrix multiplication by F k. That is, the exponents of ϕk(si11 s
i2
2 )

are the entries of F k multiplied by the column vector i of (i1, i2). For simplicity,

we will use the following notations:

si := si11 s
i2
2 , sF

ki := ϕk(si).

Similarly, we will use i and F ki for the elements in a quotient group of Z2

represented by i and F ki, respectively.
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Notation 5.5. As we are dealing with only integral matrices M of order 2,

when we say the image of M , Im(M), we shall mean that

Im(M) = image{M : Z2 → Z2}.

Remark 5.6 (ω even). Let f be a self-map on K with induced homomor-

phism ϕ on Π of type (F,b, ω) where ω is even and so F = 0. In this case

R(ϕn) = N(fn) = |1− ωn| 6= 0. Since

ϕn(sxαy) = syω
n−1bαyω

n

, ϕn(sxαy)−1 = s−yω
n−1bα−yω

n

,

we have for each i ∈ Z2 and j ∈ Z

(sxαy)(siαj)ϕn(sxαy)−1 = sx+(−1)yi−(−1)y+jyωn−1bαy(1−ωn)+j .

It follows that R[ϕn] = {[α]n, [α
2]n, . . . , [α

|1−ωn|]n}.
In fact, ϕ : Π→ Π induces the following commutative diagram

1 −−−−→ Z2 −−−−→ π −−−−→ Z −−−−→ 1y0

yϕ yϕ
1 −−−−→ Z2 −−−−→ π −−−−→ Z −−−−→ 1

This diagram induces the exact sequence of the Reidemeister sets

R(0) −→ R(ϕ) −→ R(ϕ) −→ 1.

Since R(0) = 1 and the same holds for all iterations ϕk, we get the equality of

all prime and full Nielsen–Jiang numbers. Thus the results are the same as in

the corresponding self-maps of the circle, the base space of the fibration. This

was suggested by the referee.

Remark 5.7 (ω = −1 and n odd). Let f be a self-map on K with induced

homomorphism ϕ on Π of type (F,b, ω) where ω = −1, n odd. In this case

N(fn) = |det(I−Fn)|+|det(I+Fn)|. Note also that ϕn is of type (Fn,bn,−1).

Observe that

ϕn(sxαy) =

sF
nx+bnα−y when y is odd;

sF
nxα−y when y is even,

and so

ϕn(sxαy)−1 =

sF
nx+bnαy when y is odd;

s−F
nxαy when y is even.

For each i ∈ Z2 and j ∈ Z, we then have

(sxαy)(siαj)ϕn(sxαy)−1 =

sx−i−(−1)j(Fnx+bn)α2y+j when y is odd;

sx+i−(−1)j(Fnx)α2y+j when y is even.

Now we analyze this identity more as follows:
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Case 1. j ≡ 0 or 2 mod 4.

We choose y to be even or odd respectively and then we can assume j = 0.

The exponents of s1 and s2 are then, respectively,

(I − Fn)x + i or (I − Fn)x− i− bn.

Case 2. j ≡ 1 or 3 mod 4.

We choose y to be even or odd, respectively, and then we can assume j = 1.

The exponents of s1 and s2 are then, respectively

(I + Fn)x + i or (I + Fn)x− i + bn.

Since det(I ± Fn) 6= 0, we have that Im(I − Fn) and Im(I + Fn) have finite

indices in Z2, and |Z2/Im(I ± Fn)| = |det(I ± Fn)|.
Consequently, we can choose a complete set of representatives of the Reide-

meister classes [siαj ]n in the quotient groups Z2/Im(I ± Fn). Namely,

R[ϕn] = {[si]n | i ∈ Z2/Im(I − Fn)}
⋃
{[siα]n | i ∈ Z2/Im(I + Fn)}.

When det(I ± Fn) 6= 0, we have that Im(I − Fn) and Im(I + Fn) have finite

indices in Z2, and |Z2/Im(I ± Fn)| = |det(I ± Fn)|. Thus in this case fn is

weakly Jiang.

Remark 5.8 (ω 6= ±1 odd). Let f be a self-map on K with induced homo-

morphism ϕ on Π of type (F,b, ω) where ω is odd, ω 6= ±1. In this case

N(fn) =
1

2
|1− ωn|(|det(I − Fn)|+ |det(I + Fn)|).

Note also that ϕn is of type (Fn,bn, ω
n). Observe that

ϕn(sxαy) =

sF
nx+bnαyω

n

when y is odd;

sF
nxαyω

n

when y is even,

and so

ϕn(sxαy)−1 =

sF
nx+bnα−yω

n

when y is odd;

s−F
nxα−yω

n

when y is even.

For each i ∈ Z2 and j ∈ Z, we then have

(sxαy)(siαj)ϕn(sxαy)−1 =

sx−i−(−1)j(Fnx+bn)αy(1−ωn)+j when y is odd;

sx+i−(−1)jFnxαy(1−ωn)+j when y is even.

Noting that 1− ωn is even, we will consider this identity according to j modulo

2(1− ωn). Let j ≡ j′ or j ≡ j′ + |1− ωn| so that 0 ≤ j′ < |1− ωn|. We choose

y to be even or odd respectively and then we can assume j = j′. The exponents

of s1 and s2 are then, respectively,

(I − (−1)j
′
Fn)x + i or (I − (−1)j

′
Fn)x− i− (−1)j

′
bn.
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This implies that

R[ϕn] = {[siαj ]n | i ∈ Z2/Im(I − Fn); j = 0, 2, . . . , |1− ωn| − 2}

∪ {[siαj ]n | i ∈ Z2/Im(I + Fn); j = 1, 3, . . . , |1− ωn| − 1}.

6. The Nielsen type numbers: non-weakly Jiang case I

Now we will evaluate the Nielsen type number of periodic points of f in the

case when fn is not weakly Jiang, i.e. 0 6= N(fn) 6= R(fn). Explicitly, we should

consider the following two cases in this subsection and the next subsection:

• n is odd, ω = −1, and exactly one of I − Fn and I + Fn has zero

determinant.

• ω 6= ±1 is odd and exactly one of I−Fn and I+Fn has zero determinant.

Notation 6.1. Let n = pe00 . . . pett be the prime decomposition of the positive

integer n so that p0 = 2 with e0 ≥ 0 and the other pj ’s are distinct odd primes.

Then a proper maximal divisor m of n is of the form n/pj . Write for each

j = 0, . . . , t and for each nonempty subset {k0, . . . , ks} ⊂ {0, . . . , t},

nj =
n

pj
and (nk0 , . . . , nks) = gcd(nk0 , . . . , nks) =

n

pk0 . . . pks
.

Before computing the Nielsen type numbers, we observe the following neces-

sary and elementary facts.

Lemma 6.2. If F is any integer square matrix and p, q are relatively prime

numbers, then

Im(I + F p + . . .+ F pq−p) ∩ Im(I + F q + . . .+ F pq−q)

= Im(I + F + . . .+ F pq−1).

Proof. The following observation

(I + F + . . .+ F pq−1) = (I + F p + . . .+ F pq−p)(I + F + . . .+ F p−1)

= (I + F q + . . .+ F pq−q)(I + F + . . .+ F q−1),

implies that the right-hand side is contained in the left-hand side.

For the reverse inclusion, choose any element x in the left-hand side. Then,

for some y, z ∈ Z2,

x = (I + F p + . . .+ F pq−p)y, x = (I + F q + . . .+ F pq−q)z.

Thus

(I + F + . . .+ F p−1)x = (I + F + . . .+ F p−1)(I + F p + . . .+ F pq−p)y

= (I + F + . . .+ F pq−1)y ∈ Im(I + F + . . .+ F pq−1).
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Similarly, we have

(I + F + . . .+ F q−1) x ∈ Im(I + F + . . .+ F pq−1).

Since Im(I +F + . . .+F pq−1) is a subgroup of Z2 and is invariant under F k for

all non-negative integer k. We may assume that p < q. Write

q = `p+ r, 0 < r < p, (`, r ∈ Z).

Then gcd(p, r) = 1 and

(I + F + . . .+ F r−1) x

= (I + F + . . .+ F q−1) x− (F r + F r+p + . . .+ F q−p)(I + F + . . .+ F p−1) x

∈ Im(I + F + . . .+ F pq−1).

Similarly, writing p = `′r + r′, 0 < r′ < r, (`′, r′ ∈ Z), we have

gcd(r, r′) = 1, (I + F + . . .+ F r
′−1) x ∈ Im(I + F + . . .+ F pq−1).

Continuing this process, we can show that x ∈ Im(I + F + . . .+ F pq−1) as it is

required, and hence completes the proof. �

Corollary 6.3. If F is any integer square matrix and p, q are relatively

prime numbers, then

(a) Im(I + F pm + . . .+ F pqm−pm) ∩ Im(I + F qm + . . .+ F pqm−qm)

= Im(I + Fm + . . .+ F pqm−m).

(b) Im(I − F pm + F 2pm − . . .+ (−1)q−1F (q−1)pm) ∩ Im(I − F qm + F 2qm −
. . .+ (−1)q−1F (p−1)qm) = Im(I −Fm +F 2m− . . .+ (−1)pq−1F (pq−1)m).

(c) 1 +x+ . . .+xpq−1 is the least common multiple of 1 +xp + . . .+x(q−1)p

and 1 + xq + . . .+ x(p−1)q.

Proof. We obtain (a) and(b) by replacing F by Fm and −Fm, respectively,

in Lemma 6.2.

When F = [x] is an integer 1× 1 matrix, Im(I +F p + . . .+F pq−p) is the set

of all multiples of 1 + xp + . . .+ xpq−p. Thus we can get (c) by Lemma 6.2. �

Lemma 6.4. If n = 2pm where p is an odd prime number, then

Im(I−F pm)∩Im(I+F 2m+. . .+Fn−2m) = Im((I−Fm)(I+F 2m+. . .+Fn−2m)).

In particular, (1− x2pm)/(1 + xm) = (1− xm)(1 + x2m + . . .+ x(p−1)2m) is the

least common multiple of 1− xpm and 1 + x2m + . . .+ x(p−1)2m.

Proof. Note that

I − F pm = (I − Fm)(I + Fm + . . .+ F pm−m),

I+F 2m + . . .+ F 2pm−2m = (I−Fm+ . . .+ |!F pm−m)(I + Fm+ . . .+F pm−m).
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Thus the right-hand side is contained in the left-hand side. Write the right-hand

side by

Z = Im((I − Fm)(I + F 2m + . . .+ Fn−2m))

= Im((I − F 2m)(I − Fm + F 2m − . . .+ F pm−m)).

Choose any element x in the left-hand side. Then for some y, z ∈ Z2

x = (I − F pm) y, x = (I + F 2m + . . .+ Fn−2m) z.

Hence

(I − Fm + . . .+ F pm−m) x ∈ Z, (I − Fm) x ∈ Z.
Since the group Z is invariant under F k for all non-negative integer k,

x = (I − Fm + . . .+ F pm−m) x + Fm(I + F 2m + . . .+ F (p−3)m)(I − Fm) x ∈ Z.

Hence the left-hand side is contained in the right-hand side. �

Theorem 6.5. Let f be a self-map on K of type (F,b,−1). If n = pe11 . . . pett
is odd and det(I + Fn) = 0 but det(I − Fn) 6= 0, then the prime Nielsen–Jiang

periodic number of period n is

NPn(f) = |det(I − Fn)|+
∑

{k1,...,ks}⊂{1,...,t}

(−1)s|det(I − F (nk1
,...,nks ))|,

where the summation runs through the family of nonempty subsets {k1, . . . , ks}
of {1, . . . , t}.

Proof. Suppose that det(I−Fn) 6= 0 and det(I+Fn) = 0. It is Remark 5.7

that

R[ϕn] = {[si]n | i ∈ Z2/Im(I − Fn)} ∪ {[siα]n | i ∈ Z2/Im(I + Fn)}

where the first set is finite but the second set is infinite. Note also that for m | n,

I−Fm is a factor of I−Fn and hence if det(I−Fn) 6= 0 then det(I−Fm) 6= 0.

But one cannot expect that if det(I + Fn) = 0 then det(I + Fm) = 0.

We will show first that {[si]n |, i ∈ Z2/(I − Fn)(Z2)} is the set of all essen-

tial classes. The Reidemeister class [si]n corresponds to the fixed point class

p(Fix(sif̃n)) of fn. Recalling from Lemma 4.6 that

f̃ = (δ,D) =

([
b/2

∗

]
,

[
F 0

0 ω

])
=

([
b/2

∗

]
,

[
F 0

0 −1

])
,

we have

sif̃n =

([
i

0

]
+

[
bn/2

∗

]
,

[
Fn 0

0 −1

])
.

By a simple computation we see that Fix(sif̃n) and hence p(Fix(sif̃n)) consist

of a single element. This tells that the correspondence Reidemeister class [si]n
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is essential. Since N(fn) = |det(I − Fn)|, it follows that all other classes are

inessential.

Next we will observe which are irreducible among the essential classes [si]n.

Suppose [si]n is reducible to the level m. Then ιm,n([sxαy]m) = [si]n for some

[sxαy]m ∈ R[ϕm]. So m |n and y = 0. Note that as n is odd, both m and n/m

are odd.

Now a calculation shows that

ιm,n([sx]m) = [siϕm(sx)ϕ2m(sx) . . . ϕn−m(sx)]n = [sxm,n ]n

where xm,n = (I + Fm + F 2m + . . .+ Fn−m)x. If x ∈ Im(I − Fm) then clearly

xm,n ∈ Im(I − Fn); if xm,n ∈ Im(I − Fn) then x ∈ Im(I − Fm). For if

xm,n = (I−Fn)j for some j then (I+Fm+F 2m+. . .+Fn−m)((I−Fm)j−x) = 0

and as I − Fn is invertible it follows that (I − Fm)j− x = 0. This observation

shows that the homomorphism defined by multiplication by I+Fm+ . . .+Fn−m

is an isomorphism

(6.1) x ∈ Z2/Im(I − Fm)

7→ xm,n ∈ Im(I + Fm + F 2m + . . .+ Fn−m)/Im(I − Fn)

and that the essential class [si]n is reducible to m if and only if

i ∈ Im(I + Fm + . . .+ Fn−m)/Im(I − Fn) ⊂ Z2/Im(I − Fn).

Obviously, when n = 1 all the essential classes [si]1 are irreducible. Furthermore,

for n > 1 if m |m′ | n and the essential class [si]n is reducible to m, then it is

reducible to m′. Consequently, the essential class [si]n is reducible if and only if

for some proper maximal divisor m of n

i ∈ Ci := Im(I + Fm + . . .+ Fn−m)/Im(I − Fn).

Thus the set of essential irreducible classes is a one-to-one correspondence with

the set

Z2/Im(I − Fn)−
t⋃

j=1

Ci.

By (6.1), #Ci = |det(I − F (ni))|. For 1 ≤ i < i′ ≤ t, by Corollary 6.3(a),

Ci ∩ Ci′ = Im(I + F (ni,ni′ ) + . . .+ Fn−(ni,ni′ ))/Im(I − Fn)

and so, by (6.1) again, #(Ci ∩ Ci′) = |det(I − F (ni,ni′ ))|. Using induction, we

have

#

( s⋂
i=1

Cki

)
= |det(I − F (nk1

,...,nks ))|.
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Consequently,

#

( t⋃
i=1

Ci

)
=

∑
{k1,...,ks}⊂{1,...,t}

(−1)s−1|det(I − F (nk1
,...,nks ))|.

Finally, we will find the length of each ϕ-orbit of the essential irreducible classes

[si]n. By definition,

〈[si]n〉 = {[si]n, [ϕ]([si]n), . . . , [ϕ]`−1([si]n)} = {[si]n, [sF i]n, . . . , [s
F `−1i]n

}
,

where ` = `([si]n) is the length of [si]n. Then ` | n and [si]n = [sF
`i]n. This

implies that (I−F `)i = (I−Fn)j for some j ∈ Z2. So, (I+F `+. . .+Fn−`)j = i or

i ∈ Im(I+F `+ . . .+Fn−`)/Im(I−Fn). Thus this shows that all the irreducible

essential Reidemeister classes have the same length n.

In all, we obtain that

On(ϕ) =
1

n
#

(
Z2/Im(I − Fn)−

t⋃
i=1

Ci

)

=
1

n

(
#(Z2/Im(I − Fn))−#

( t⋃
i=1

Ci

))
=

1

n

(
|det(I − Fn)|+

∑
{k1,...,ks}⊂{1,...,t}

(−1)s|det(I − F (nk1
,...,nks )|

)
The conclusion now follows from the definition: NPn(f) = n×On(ϕ). �

Theorem 6.6. Let f be a self-map on K of type (F,b,−1). If n = pe11 . . . pett
is odd and det(I − Fn) = 0 but det(I + Fn) 6= 0, then the prime Nielsen–Jiang

periodic number of period n is

NPn(f) = |det(I + Fn)|+
∑

{k1,...,ks}⊂{1,...,t}

(−1)s|det(I + F (nk1
,...,nks ))|,

where the summation runs through the family of nonempty subsets {k1, . . . , ks}
of {1, . . . , t}.

Proof. Let f be a self-map on K of type (F,b,−1). Suppose that n is odd

and det(I−Fn) = 0 but det(I+Fn) 6= 0. As it has been observed before, we may

replace F by −F . This means that f is homotopic to a self-map on K of type

(−F,b,−1), see Theorem 4.4. Since n is odd, the conditions det(I − Fn) = 0

and det(I+Fn) 6= 0 become det(I+(−F )n) = 0 and det(I− (−F )n) 6= 0. Using

the fact that the prime Nielsen periodic number is a homotopy invariant and

applying Theorem 6.5, we have

NPn(f) = |det(I − (−F )n)|+
∑

{k1,...,ks}⊂{1,...,t}

(−1)s|det(I − (−F )(nk1
,...,nks ))|.

This proves our result. �
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7. The Nielsen type numbers: non-weakly Jiang case II

In this subsection we will discuss the remaining case where ω 6= ±1 is odd and

exactly one of I−Fn and I+Fn has zero determinant. Our computation problem

of the Nielsen type numbers can be done in a similar, but much complicated way

as we have done in the previous section by the following general four steps.

Step 1. Finding the Reidemeister classes R[ϕn].

By Remark 5.8, we have

R[ϕn] = {[siαj ]n | i ∈ Z2/Im(I − Fn); j = 0, 2, . . . , |1− ωn| − 2}

∪ {[siαj ]n | i ∈ Z2/Im(I + Fn); j = 1, 3, . . . , |1− ωn| − 1}.

Step 2. Finding the essential Reidemeister classes.

Recalling from Lemma 4.6 that

f̃ = (δ,D) =

([
b/2

∗

]
,

[
F 0

0 ω

])
,

we have

siαj f̃n =

([
i

j/2

]
+

[
(−1)jbn/2

∗′

]
,

[
(−1)jFn 0

0 ωn

])
,

where ∗′ = (1 + ω + . . . + ωn−1)∗. By a simple computation we see that

Fix(siαj f̃n) is:

when j is even,

Fix(siαj f̃n) =

{[
x

y

] ∣∣∣∣ (I − Fn)x = i +
1

2
bn, (1− ωn)y =

j

2
+ ∗′

}
;

when j is odd,

Fix(siαj f̃n) =

{[
x

y

] ∣∣∣∣ (I + Fn)x = i− 1

2
bn, (1− ωn)y =

j

2
+ ∗′

}
.

We consider first the case that det(I−Fn) 6= 0 and det(I+Fn) = 0. When j

is even Fix(siαj f̃n)) and hence p(Fix(siαj f̃n)) consist of a single element. This

tells that the correspondence Reidemeister classes [siαj ]n are essential. Since

N(fn) = |1−ωn||det(I −Fn)|/2, it follows that all other classes are inessential.

Thus the essential classes are

EC1 := {[siαj ]n | i ∈ Z2/Im(I − Fn); j = 0, 2, . . . , |1− ωn| − 2}.

If the other case occurs, in a similar way we can see that the essential classes are

EC2 := {[siαj ]n | i ∈ Z2/Im(I + Fn); j = 1, 3, . . . , |1− ωn| − 1}.
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Before moving to the next steps, we recall that

ϕk(sxαy) =

sF
kxαω

ky when y is even;

sF
kx+bkαω

ky when y is odd.

Let m |n. When y is even,

ιm,n([sxαy]m) = [(sxαy)ϕm(sxαy)ϕ2m(sxαy) . . . ϕn−m(sxαy)]n

= [(sxαy)(sF
mxαω

my)(sF
2mxαω

2my) . . . (sF
n−mxαω

n−my)]n

= [s(I+Fm+F 2m+...+Fn−m)xα(1+ωm+ω2m+...+ωn−m)y]n

:= [sx
′
m,nαym,n ]n;

when y is odd,

ιm,n([sxαy]m)

= [(sxαy)ϕm(sxαy)ϕ2m(sxαy) . . . ϕn−m(sxαy)]n

= [(sxαy)(sF
mx+bmαω

my)(sF
2mx+b2mαω

2my) . . . (sF
n−mx+bn−mαω

n−my)]n

:= [sx
′′
m,n+bm,nαym,n ]n,

where

x′m,n = (I + Fm + F 2m + . . .+ Fn−m)x,

ym,n = (1 + ωm + ω2m + . . .+ ωn−m)y,

x′′m,n = (I − Fm + . . .+ (−1)n/m−1Fn−m)x,

bm,n = −bm + b2m − . . .+ (−1)n/m−1bn−m.

Note here that 1 + ωm + . . .+ ωn−m is an odd integer if n/m is odd; otherwise

it is an even integer.

Lemma 7.1. If n = pqm where m is even and p, q are relatively prime odd

numbers, then

(bpm,n + Im(I − F pm + F 2pm − . . .+ Fn−pm))

∩ (bqm,m + Im(I − F qm + F 2qm − . . .+ Fn−qm))

= bm,n + Im(I − Fm + F 2m − . . .+ Fn−m).

Proof. By a simple computation, we can show that

I − Fm + . . .+ Fn−m = (I − F pm + . . .+ Fn−pm)(I − Fm + . . .+ F pm−m),
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and

bm,n = (−bm + b2m) + . . .+ (−b(p−2)m + b(p−1)m)− bpm

+ (b(p+1)m − b(p+2)m) + . . .

+ (b(2p−2)m − b(2p−1)m) + b2pm + . . .

+ (b((q−2)p+1)m − b((q−2)p+2)m) + . . .

+ (b((q−1)p−2)m − b((q−1)p−1)m) + bn−pm

+ (−b((q−1)p+1)m + b((q−1)p+2)m) + . . .+ (−b(pq−2)m + b(pq−1)m)

= bpm,n + (I − F pm + . . .+ Fn−pm)Fm(I + F 2m + . . .+ F (p−3)m)bm.

This implies that

bm,n − bpm,n ∈ Im(I − F pm + . . .+ Fn−pm).(7.1)

A similar computation yields that

bm,n − bqm,n ∈ Im(I − F qm + . . .+ Fn−qm).(7.2)

Now it follows that the right-hand side is contained in the left-hand side.

For the reverse inclusion, we assume

i− bpm,n ∈ Im(I − F pm + . . .+ Fn−pm),

i− bqm,n ∈ Im(I − F qm + . . .+ Fn−qm).

By (7.1) and (7.2), we have

i− bm,n ∈ Im(I − F qm + . . .+ Fn−qm) ∩ Im(I − F pm + . . .+ Fn−pm).

By Corollary 6.3-(2),

i− bm,n ∈ Im(I − F pm + . . .+ Fn−pm) ∩ Im(I − F qm + . . .+ Fn−qm)

= Im(I − Fm + . . .+ Fn−m).

This shows the reverse inclusion. �

Lemma 7.2. Let n = 2e0pe11 . . . pett be even. Let

J ′0 = {j | 0 ≤ j < |1− ωn|, j = (2k + 1)(1 + ω(n0)) for some k},

Ji = {j | 0 ≤ j < |1− ωn|, j = 2`(1 + ω(ni) + . . .+ ωn−(ni)) for some `}.

For each i = 1, . . . , t, we have

J ′0 ∩ Ji = {c |1 + ω(n0,ni) + . . .+ ωn−(n0,ni)| |

c is odd with 0 < c < |1− ω(n0,ni)|}.

In particular, J ′0 ∩ Ji has |1− ω(n0,ni)|/2 elements.
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Proof. Fix i ∈ {1, . . . , t}, and let p = pi, n = 2pm and x = ωm = ω(n0,ni).

By Lemma 6.4,

gcd(1 + xp, 1 + x2 + . . .+ x2(p−1)) =
(1 + xp)(1 + x2 + . . .+ x2(p−1))

1 + x+ x2 + . . .+ x2p−1

=
1 + x2 + . . .+ x2(p−1)

1 + x+ x2 + . . .+ xp−1
= 1− x+ x2 − . . .+ xp−1.

Thus

(2k + 1)|1 + xp| = 2`|1 + x2 + . . .+ x2(p−1)|,

with 0 ≤ 2k + 1 < |1− xp| and 0 ≤ 2` < |1− x2|

turns into

(2k + 1)|1 + x| = 2`|1 + x+ x2 + . . .+ xp−1|.
Since gcd(1 + x, 1 + x+ x2 + . . .+ xp−1) = 1, we must have

2k + 1 = c|1 + x+ x2 + . . .+ xp−1|, 2` = c|1 + x|

for some odd c with 0 < c < |1− x|. This finishes the proof. �

Corollary 7.3. The set J ′0 ∩
( s⋂
i=1

Jki

)
has |1−ω(n0,nk1

,...,nks )|/2 elements.

Proof. By Corollary 6.3, j ∈
s⋂
i=1

Jki if and only if 0 ≤ j < |1−ωn| and j is

a multiple of 2(1 + ω(nk1
,...,nks ) + . . . + ωn−(nk1

,...,nks )). Next, we simply apply

Lemma 7.2 and finish the proof. �

Now, according as n is odd or even we will consider the next two steps.

7.1. When n is odd. For any m with m | n, both m and n/m are odd.

Case 1. det(I − Fn) 6= 0 and det(I + Fn) = 0.

In this case, we will consider the next two steps in a row.

Step 3. Finding the irreducible essential Reidemeister classes.

The essential classes are

EC :=
{

[siαj ]n
∣∣ i ∈ Z2/Im(I − Fn); j = 0, 2, . . . , |1− ωn| − 2

}
whose cardinality is |det(I − Fn)| × |1− ωn|/2. Suppose [siαj ]n is reducible to

the level m. Then [siαj ]n = ιm,n([sxαy]m) = [sx
′
m,nαym,n ]n for some [sxαy]m ∈

R[ϕm]. Because n is odd and j is even, as we observed above, ym,n is even

if and only if y is even. This tells that we only need to consider the essential

Reidemeister classes of the form [sxαy]m where y is even and i ∈ Z2/Im(I−Fm)

under the boost function ιm,n.

We observe that x ∈ Im(I − Fm) if and only if x′m,n ∈ Im(I − Fn) as

before (see the proof of Theorem 6.5). Moreover, if 0 ≤ y < |1 − ωm| then



350 K.Y. Ha — J.B. Lee

0 ≤ ym,n < |1 − ωn|, and the converse holds. This observation gives rise to an

one-one correspondence between

Z2/Im(I − Fm)× {y | y even, 0 ≤ y < |1− ωm|}

and

Im(I + Fm + . . .+ Fn−m)/Im(I − Fn)

× {j | j is a multiple of 2(1 + ωm + . . .+ ωn−m), 0 ≤ j < |1− ωn|}.

Furthermore, if m | m′ | n and the essential class [siαj ]n is reducible to m, then

the essential class [siαj ]n is reducible to m′. Consequently, the essential class

[siαj ]n is reducible if and only if for some i ∈ {1, . . . , t},
• i ∈ Im(I + Fni + . . .+ Fn−ni)/Im(I − Fn),

• j is a multiple of 2(1 + ωni + . . .+ ωn−ni).

For each i = 1, . . . , t, let

Ci =
{

[siαj ]n ∈ OC
∣∣ i ∈ Im(I + F (ni) + . . .+ Fn−(ni))/Im(I − Fn);

j is a multiple of 2(1 + ω(ni) + . . .+ ωn−(ni))
}
.

Then

#Ci = |det(I − F (ni))| × 1

2
|1− ω(ni)|

and for 1 ≤ i < i′ ≤ t, we have that [siαj ]n ∈ Ci ∩ Ci′ if and only if

• i ∈ Im(I + F (ni,ni′ ) + . . .+ Fn−(ni,ni′ ))/Im(I − Fn),

• j is a multiple of 2(1 + ω(ni,ni′ ) + . . .+ ωn−(ni,ni′ )).

Here, the conditions above follow from Corollary 6.3(a) and (c). This shows that

#(Ci ∩ Ci′) = |det(I − F (ni,ni′ ))| × 1

2
|1− ω(ni,ni′ )|.

By induction, we have

#

( s⋂
i=1

Cki

)
= |det(I − F (nk1

,...,nks ))| × 1

2
|1− ω(nk1

,...,nks )|.

Thus

#

( t⋃
i=1

Ci

)
=

∑
{k1,...,ks}⊂{1,...,t}

(−1)s−1|det(I−F (nk1
,...,nks )| × 1

2
|1−ω(nk1

,...,nks )|.

Step 4. Finding the length of irreducible essential Reidemeister classes.

Let [siαj ]n be an irreducible essential Reidemeister class. By definition,

〈[siαj ]n〉 = {[siαj ]n, [ϕ]([siαj ]n), . . . , [ϕ]`−1([siαj ]n)}

=

{[siαj ]n, [sF iαωj ]n, . . . , [s
F `−1iαω

`−1j ]n} when j is even;

{[siαj ]n, [sF i+b1αωj ]n, . . . , [s
F `−1i+b`−1αω

`−1j ]n} when j is odd,



The Nielsen Type Numbers 351

where ` = `([siαj ]n) is the length of [siαj ]n. Then ` | n and

[si]n = [ϕ]`([siαj ]n) =

[sF
`iαω

`j ]n when j is even;

[sF
`i+b`αω

`j ]n when j is odd.

Since j is even, [siαj ]n = [sF
`iαω

`j ]n. This implies that

sF
`iαω

`j = (sxαy)(siαj)ϕn(sxαy)−1

for some sxαy ∈ Π. By Remark 5.8, this identity turns into

sF
`iαω

`j =

s−i+(I−Fn)x−bnαy(1−ωn)+j when y is odd;

si+(I−Fn)xαy(1−ωn)+j when y is even.

Since (1 − ω`)j = (1 − ωn)(−y), we have j = (1 + ω` + . . . + ωn−`)(−y). As

n is odd 1 + ω` + . . . + ωn−` is odd; hence as j is even y must be even. As

a result, (I − F `) i = (I − Fn)(−x), (I + F ` + . . . + Fn−`)(−x) = i or i ∈
Im(I + F ` + . . . + Fn−`)/Im(I − Fn). Thus this shows that the essential class

[siαj ]n is reducible to `. Hence if it is irreducible its length must be n. That is,

all the irreducible essential Reidemeister classes have the same length n.

In all,

NPn(f) = #

(
EC −

t⋃
i=1

Ci

)
= #(EC)−#

( t⋃
i=1

Ci

)
=

1

2

(
|det(I − Fn)| × |1− ωn|

+
∑

{k1,...,ks}⊂{1,...,t}

(−1)s|det(I − F (nk1
,...,nks )| × |1− ω(nk1

,...,nks )|
)
.

Case 2. det(I − Fn) = 0 and det(I + Fn) 6= 0.

Recall that f is homotopic to a self-map on K of type (−F,a, ω). Thus in

this case it holds that det(I − (−F )n) 6= 0 and det(I + (−F )n) = 0. Applying

the above case for −F , we can deduce the following:

• The essential classes are

{[siαj ]n | i ∈ Z2/Im(I − (−F )n); j = 0, 2 . . . , |1− ωn| − 2}.

• The essential class [siαj ]n is reducible if and only if for some i∈{1, . . . , t},
(a) i ∈ Im(I + (−F )ni + . . .+ (−F )n−ni)/Im(I − (−F )n),

(b) j is a multiple of 2(1 + ωni + . . .+ ωn−ni).

• NPn(f) =
1

2

(
|det(I − (−F )n)| × |1− ωn|

+
∑

{k1,...,ks}⊂{1,...,t}

(−1)s|det(I− (−F )(nk1
,...,nks )|× |1−ω(nk1

,...,nks )|
)
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=
1

2

(
|det(I + Fn)| × |1− ωn|

+
∑

{k1,...,ks}⊂{1,...,t}

(−1)s|det(I + F (nk1
,...,nks )| × |1− ω(nk1

,...,nks )|
)

.

7.2. When n is even. In this subsection, we will analyze Step 3 first and

then Step 4 in a row.

Step 3. Finding the irreducible essential Reidemeister classes.

Case 1. det(I − Fn) 6= 0 and det(I + Fn) = 0.

The essential classes are

EC1 :=
{

[siαj ]n | i ∈ Z2/Im(I − Fn); j = 0, 2, . . . , |1− ωn| − 2
}

whose cardinality is |det(I − Fn)| × |1 − ωn|/2. Let n = 2e0pe11 . . . pett be the

prime decomposition of the even integer n. We ascertain the following:

Claim. The essential class [siαj ]n is reducible if and only if for some i ∈
{0, . . . , t}

• i ∈ Im(I + F (ni) + . . .+ Fn−(ni))/Im(I − Fn),

• j is a multiple of 2(1 + ω(ni) + . . .+ ωn−(ni))

or

• i ∈ −b(n0) + Im(I − F (n0))/Im(I − Fn),

• j − (1 + ω(n0)) is a multiple of 2(1 + ω(n0)).

We recall from Step 2 the following:

ιm,n([sxαy]m) =

[sx
′
m,nαym,n ]n when y is even,

[sx
′′
m,n+bm,nαym,n ]n when y is odd.

Notice that we are concerned with the case where ym,n = (1 +ωm +ω2m + . . .+

ωn−m)y is even. In this case, we have either y is even or y is odd and n/m is

even.

Assume that y is even. We note that x ∈ Im(I − Fm) if and only if x′m,n ∈
Im(I − Fn) (see the proof of Theorem 6.5). Furthermore, if 0 ≤ y < |1 − ωm|
then 0 ≤ ym,n < |1− ωn|, and the converse holds. This observation gives rise to

an one-one correspondence between

Z2/Im(I − Fm)× {y | y even, 0 ≤ y < |1− ωm|}

and

Im(I + Fm + . . .+ Fn−m)/Im(I − Fn)

× {j | j a multiple of 2(1 + ωm + . . .+ ωn−m), 0 ≤ j < |1− ωn|}.

Furthermore, if m |m′ |n and the essential class [siαj ]n is reducible to [sxαy]m

where y is even, then the essential class [siαj ]n is reducible to [sx
′
αy
′
]m′ where



The Nielsen Type Numbers 353

y′ is even. Consequently, the essential class [siαj ]n is reduced to an (essential)

Reidemeister class of the form [sxαy]m where y is even if and only if for some

i ∈ {0, . . . , t}
• i ∈ Im(I + Fni + . . .+ Fn−ni)/Im(I − Fn),

• j is a multiple of 2(1 + ωni + . . .+ ωn−ni).

Assume that n/m even. Then I + Fm is a factor of I − Fn and so det(I +

Fm) 6= 0. This implies that N(fm) = R(fm) and so fm is weakly Jiang,

even though fn is not weakly Jiang. Assume in addition that y is odd and so

x ∈ Z2/Im(I + Fm) (see Step 1). If there is m′ < n such that m | m′ | n and

m′/m is even, then (1 + ωm + . . .+ ωm
′−m)y is even. Hence the boost function

ιm,m′ sends a Reidemeister class [sxαy]m with y odd to a Reidemeister class

[sx
′
αy
′
]m′ with y′ even. Therefore this case turns into the case where y is even,

and it was treated in the above. Therefore we have to consider the case where if

m′ < n with m | m′ | n then m′

m is odd. This happens only when m = n/2. The

correspondence x 7→ x′′m,n + bm,n = (I − Fm)x − bm gives rise to an one-one

correspondence

Z2/Im(I + Fm)
∼=−→ Im(I − Fm)/Im(I − Fn)

←→ −bm + Im(I − Fm)/Im(I − Fn).

Also, there is an one-one correspondence from {y | y odd, 0 ≤ y < |1 − ωm|}
onto {

j

∣∣∣∣ j = |1 + ωm|(2k + 1), 0 ≤ k < |1− ω
m|

2

}
.

Remark that when m = n/2, the boost function ιm,n sends a Reidemeister class

[sxαy]m with y even to a Reidemeister class [sx
′
αy
′
]n, where y′ is a multiple of

2(1 +ωm). This tells that any two Reidemeister classes [sx1αy1 ]m and [sx2αy2 ]m
with y1 even and y2 odd are boosted to two distinct Reidemeister classes in level

n. Hence the essential class [siαj ]n is reducible to m = (n0) = n/2 if and only if

either

• i ∈ Im(I + F (n0))/Im(I − Fn),

• j is a multiple of 2(1 + ω(n0))

or

• i ∈ −b(n0) + Im(I − F (n0))/Im(I − Fn),

• j − (1 + ω(n0)) is a multiple of 2(1 + ω(n0)).

This completes the proof of our claim.

Now let

C ′0 =
{

[siαj ]n ∈ EC1 | i ∈ −b(n0) + Im(I − F (n0))/Im(I − Fn);

j a multiple of 2(1 + ω(n0)) plus |1 + ω(n0)|
}
,
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and let, for each i = 0, . . . , t,

Ci =
{

[siαj ]n ∈ EC1 | i ∈ Im(I + F (ni) + . . .+ Fn−(ni))/Im(I − Fn);

j a multiple of 2(1 + ω(ni) + . . .+ ωn−(ni))
}
.

Then

#C ′0 = |det(I + F (n0))| × 1

2
|1− ω(n0)|,

#Ci = |det(I − F (ni))| × 1

2
|1− ω(ni)|.

As it was observed before,

#(C0∩C ′0) = 0, #

( s⋂
i=1

Cki

)
= |det(I−F (nk1

,...,nks ))|× 1

2
|1−ω(nk1

,...,nks )|.

Now to determine C ′0 ∩ Ci, first we claim that

(−b(n0) + Im(I − F (n0))) ∩ Im(I + F (ni) + . . .+ Fn−(ni)) 6= ∅.

This is equivalent to show that there exist x,y such that

−(I + F + . . .+ F (n0)−1)b + (I − F (n0))x = (I + F (ni) + . . .+ Fn−(ni))y.

Multiplying the inverse of I + F (n0,ni) + . . . + F (n0)−(n0,ni) on both sides, we

obtain

− (I+F + . . .+F (n0,ni)−1)b + (I−F (n0,ni))x [= (I−F (ni) + . . .+Fn−(ni))y]

= y − (I − F (n0,ni))(F (n0,ni) + F 3(n0,ni) + . . .+ F (n0)−(ni))y.

Thus we can choose x, y, in fact we choose

y = −(I + F + . . .+ F (n0,ni)−1)b,

x = −(F (n0,ni) + F 3(n0,ni) + . . .+ F (n0)−(ni))y

so that the above equality holds. Now we fix i0 such that

i0 ∈ (−b(n0) + Im(I − F (n0))) ∩ (Im(I + F (ni) + . . .+ Fn−(ni))).

Then it can be seen easily that

(−bn0
+ Im(I − Fn0)) ∩ (Im(I + Fni + . . .+ Fn−ni))

= i0 + (Im(I − Fn0) ∩ Im(I + Fni + . . .+ Fn−ni)).

By Lemma 6.4, we have

Im(I − Fn0)/Im(I − Fn) ∩ Im(I + Fni + . . .+ Fn−ni)/Im(I − Fn)

= Im((I − F (n0,ni))(I + Fni + . . .+ Fn−ni))/Im(I − Fn)

∼=Z2/Im(I + F (n0,ni)).
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By Corollary 6.4 and 7.3, we can conclude that

#(C ′0 ∩ Ci) = |det(I + F (n0,ni)| × 1

2
|1− ω(n0,ni)|.

By induction, we have

#

( u⋂
i=1

(C ′0 ∩ Cki)
)

= |det(I + F (n0,nk1
,...,nku )| × 1

2
|1− ω(n0,nk1

,...,nku )|.

Consequently, we have

#

(
C ′0 ∪

( t⋃
i=0

Ci

))
= #C ′0 + #

( t⋃
i=0

Ci

)
−#

(
C ′0 ∩

( t⋃
i=0

Ci

))

= #C ′0 + #

( t⋃
i=0

Ci

)
−#

( t⋃
i=1

(C ′0 ∩ Ci)
)

=
1

2
|det(I + Fn0)| × |1− ωn0 |

− 1

2

∑
{k1,...,ks}⊂{0,...,t}

(−1)s|det(I − F (nk1
,...,nks ))| × |1− ω(nk1

,...,nks )|

+
1

2

∑
{k1,...,ku}⊂{1,...,t}

(−1)u|det(I + F (n0,nk1
,...,nku ))| × |1− ω(n0,nk1

,...,nku )|.

Case 2. det(I − Fn) = 0 and det(I + Fn) 6= 0.

The essential classes are

EC2 :=
{

[siαj ]n | i ∈ Z2/Im(I + Fn); j = 1, 3, . . . , |1− ωn| − 1
}

whose cardinality is |det(I + Fn)| × |1− ωn|/2. Recall again from Step 2 that

ιm,n([sxαy]m) =

[sx
′
m,nαym,n ]n when y is even;

[sx
′′
m,n+bm,nαym,n ]n when y is odd,

where ym,n = (1 +ωm + . . .+ωn−m)y is odd. So, we must have both y and n/m

are odd. Thus we need to observe the identity

ιm,n([sxαy]m) = [sx
′′
m,n+bm,nαym,n ]n.

We observe that x ∈ Im(I + Fm) if and only if x′′m,n ∈ Im(I + Fn) as before.

And if 0 ≤ y < |1 − ωm| then 0 ≤ ym,n < |1 − ωn|, and the converse holds.

Furthermore, if m | m′ | n and the essential class [siαj ]n is reducible to m,

then [siαj ]n is reducible to m′. This observation implies that the essential class

[siαj ]n is reducible if and only if for some proper maximal divisor m of n with

n/m odd,

• i− bm,n ∈ Im(I − Fm + . . .+ Fn−m)/Im(I + Fn),

• j is odd and is multiple of (1 + ωm + . . .+ ωn−m).
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For each i = 1, . . . , t, let

Ci = {(i, j) ∈ EC2 | i− bni,n ∈ Im(I − Fni + . . .+ Fn−ni)/Im(I + Fn),

j is odd and a multiple of (1 + ωni + . . .+ ωn−ni)}.

Then

#Ci = |det(I + Fni)| × 1

2
|1− ωni |.

By Lemma 7.1 and Corollary 6.3, we have that [siαj ]n ∈
u⋂
i=1

Cki if and only if

• i−b(nk1
,...,nku ),n ∈ Im(I −F (nk1

,...,nku ) + . . .+Fn−(nk1
,...,nku ))/Im(I −Fn),

• j is odd and a multiple of 1 + ω(nk1
,...,nku ) + . . .+ ωn−(nk1

,...,nku ).

Thus we can conclude that

#

( u⋂
i=1

Cki

)
= |det(I + F (nk1

,...,nku )| × 1

2
|1− ω(nk1

,...,nku )|.

Consequently, we have

#

( t⋃
i=1

Ci

)
=

1

2

∑
{k1,...,ks}⊂{1,...,t}

(−1)s−1|det(I+F (nk1
,...,nks ))|×|1−ω(nk1

,...,nks )|.

Step 4. Finding the length of irreducible essential Reidemeister classes.

Let [siαj ]n be an irreducible essential Reidemeister class. By definition,

〈[siαj ]n〉 = {[siαj ]n, [ϕ]([siαj ]n), . . . , [ϕ]`−1([siαj ]n)}

=

{[siαj ]n, [sF iαωj ]n, . . . , [s
F `−1iαω

`−1j ]n} when j is even;

{[siαj ]n, [sF i+b1αωj ]n, . . . , [s
F `−1i+b`−1αω

`−1j ]n} when j is odd,

where ` = `([siαj ]n) is the length of [siαj ]n. Then ` | n and

[si]n = [ϕ]`([siαj ]n) =

[sF
`iαω

`j ]n when j is even;

[sF
`i+b`αω

`j ]n when j is odd.

Case 3. det(I − Fn) 6= 0 and det(I + Fn) = 0.

In this case j must be even. Thus [siαj ]n = [sF
`iαω

`j ]n. This implies that

sF
`iαω

`j = (sxαy)(siαj)ϕn(sxαy)−1

for some sxαy ∈ Π. By Remark 5.8, this identity turns into

sF
`iαω

`j =

s−i+(I−Fn)x−bnαy(1−ωn)+j when y is odd;

si+(I−Fn)xαy(1−ωn)+j when y is even.
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Since (1 − ω`)j = (1 − ωn)(−y), we have j = (1 + ω` + . . . + ωn−`)(−y). Thus

either n/` is even or n/` is odd and y is even.

Assume that n/` is even. Then ` | (n/2) and so we may assume that ` = n/2.

By the above identity, we can see that(I + F `)i = (I − Fn)x− bn = (I + F `){(I − F `)x− b`} when y is odd;

(I − F `)i = (I − Fn)(−x) = (I − F `)(I + F `)(−x) when y is even.

This yields that

i =

(I − F `)x− b` when y is odd;

(I + F `)(−x) when y is even.

These tell that [siαj ]n is reducible to ` = n/2, a contradiction.

Assume that n/` is odd and y is even. The fact that y is even implies that

(I −F `)i = (I −Fn)(−x), i = (I +F ` + . . .+Fn−`)(−x) or i ∈ Im(I +F ` + . . .

+Fn−`)/Im(I−Fn). Thus this shows that the essential class [siαj ]n is reducible

to `. Hence as it is irreducible its length must be n.

In all, all the irreducible essential Reidemeister classes have the same length n.

Therefore, we obtain that

NPn(f) = #

(
EC1 −

(
C ′0 ∪

( t⋃
i=0

Ci

)))

= #(EC1)−#

(
C ′0 ∪

( t⋃
i=0

Ci

))
=

1

2

(
|det(I − Fn)| × |1− ωn| − | det(I + Fn0)| × |1− ωn0 |

+
∑

{k1,...,ks}⊂{0,1,...,t}

(−1)s|det(I − F (nk1
,...,nks ))| × |1− ω(nk1

,...,nks )|

−
∑

{k1,...,ku}⊂{1,...,t}

(−1)u|det(I + F (n0,nk1
,...,nku ))| × |1− ω(n0,nk1

,...,nku )|
)
.

Case 4. det(I − Fn) = 0 and det(I + Fn) 6= 0.

In this case j must be odd. Thus [siαj ]n = [sF
`i+b`αω

`j ]n. This implies that

sF
`i+b`αω

`j = (sxαy)(siαj)ϕn(sxαy)−1

for some sxαy ∈ Π1. By Remark 5.8, this identity turns into

sF
`i+b`αω

`j =

s−i+(I+Fn)x+bnαy(1−ωn)+j when y is odd;

si+(I+Fn)xαy(1−ωn)+j when y is even.
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This yields that j = y(1 + ω` + . . . + ωn−`). As j is odd, so are y and n/`.

Furthermore,

(I + F `) i + b` − bn = (I + Fn) x = (I + F `)(I − F ` + . . .+ Fn−`) x

or

(I + F `) i− (I + F `) b`,n = (I + F `)(I − F ` + . . .+ Fn−`) x.

Hence i− b`,n ∈ Im(I − F ` + . . .+ Fn−`).

In all, the irreducible essential class [siαj ]n is reducible to ` and so ` = n.

Thus all the irreducible essential Reidemeister classes have the same length n.

Therefore, we obtain that

NPn(f) = #

(
EC2 −

t⋃
i=1

Ci

)
= #(EC2)−#

( t⋃
i=1

Ci

)
=

1

2

(
|det(I + Fn)| × |1− ωn|

+
∑

{k1,...,ks}⊂{1,...,t}

(−1)s|det(I + F (nk1
,...,nks ))| × |1− ω(nk1

,...,nks )|
)
.

With these observation so far, we have:

Theorem 7.4. Let f be a self-map on K of type (F,b, ω). If ω 6= ±1 is odd

and det(I−Fn) 6= 0 but det(I+Fn) = 0, then the prime Nielsen–Jiang periodic

number of f of period n is given as follows:

(a) when n = pe11 . . . pett is odd,

NPn(f) =
1

2

(
|det(I − Fn)||1− ωn|

+
∑

{k1,...,ks}⊂{1,...,t}

(−1)s|det(I − F (nk1
,...,nks )||1− ω(nk1

,...,nks )|
)

;

(b) when n = 2e0pe11 . . . pett is even,

NPn(f) =
1

2

(
|det(I − Fn)||1− ωn| − | det(I + F (n0))||1− ω(n0)|

+
∑

{k1,...,ks}
⊂{0,1,...,t}

(−1)s|det(I − F (nk1
,...,nks ))||1− ω(nk1

,...,nks )|

−
∑

{k1,...,ku}
⊂{1,...,t}

(−1)u|det(I + F (n0,nk1
,...,nku ))||1− ω(n0,nk1

,···,nku )|
)
.

Here the summation runs through the family of nonempty subsets {k1, . . . , ks} of

{1, . . . , t}.
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Theorem 7.5. Let f be a self-map on K of type (F,b, ω). If ω 6= ±1 is odd

and det(I−Fn) = 0 but det(I+Fn) 6= 0, then the prime Nielsen–Jiang periodic

number of f of period n is

NPn(f) =
1

2

(
|det(I + Fn)||1− ωn|

+
∑

{k1,...,ks}⊂{1,...,t}

(−1)s|det(I + F (nk1
,...,nks )||1− ω(nk1

,...,nks )|
)
,

where the summation runs through the family of nonempty subsets {k1, . . . , ks}
of {1, . . . , t}.

8. The Nielsen type numbers: weakly Jiang case

In this subsection we will finish our evaluation of the Nielsen type number

of weakly Jiang maps.

When fn is weakly Jiang with N(fn) = R(fn), due to Theorems 3.2 and 3.3

and Corollary 5.2 we can immediately state what the Nielsen type numbers are.

Namely,

Corollary 8.1 (Case N(fn) = R(fn)). Let f be a self-map on K of type

(F,b, ω) with N(fn) = R(fn). Then

NΦn(f) = N(fn), NPn(f) =
∑
m|n

µ(m)N(f
n
m )

where N(fk) = |1− ωk|(|det(I − F k)|+ |det(I + F k)|)/2.

Now we will work for the case where N(fn) = 0. If this is the case, there are

no essential classes and thus NPn(f) = 0. We are left to find NΦn(f). For this

we will use Theorem 3.3: NΦn(f) =
∑
k|nNPk(f).

Corollary 8.2 (Case ω = 1). Let f be a self-map on K of type (F,b, 1).

Then, for all n, NΦn(f) = NPn(f) = 0.

Proof. Since ω = 1, N(fk) = 0 and thus NPk(f) = 0 for all k; hence

NΦn(f) = 0. �

Corollary 8.3 (Case det(I ± Fn) = 0). Let f be a self-map on K of type

(F,b, ω) such that det(I ±Fn) = 0. Then n is odd and NΦn(f) = NPn(f) = 0.

Proof. If det(I ± Fn) = 0 then Corollary 5.3 states that n is odd and

N(fk) = 0 = NPk(f) for all odd k. By Theorem 3.3, we have

NΦn(f) =
∑
k|n

NPk(f) = 0.

The last identity follows from the fact that n is odd and so its factors k must be

odd and NPk(f) = 0. �
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Corollary 8.4 (Case ω = −1 and n is even). Let f be a self-map on K of

type (F,b,−1). Then for all even n,

NPn(f) = 0, NΦn(f) =
∑
m odd
m|n

NPm(f)

where

NPm(f) =



∑
k|m

µ(k)N(fm/k) when det(I − Fn) 6= 0,

or det(I − Fn) = 0 but det(I ± Fm) 6= 0;

|det(I + Fm)|+
∑

{k1,...,ks}⊂{1,...,t}

(−1)s|det(I + F (mk1
,...,mks )|

when det(I − Fm) = 0 6= det(I + Fm);

|det(I − Fm)|+
∑

{k1,...,ks}⊂{1,...,t}

(−1)s|det(I − F (mk1
,...,mks )|

when det(I − Fm) 6= 0 = det(I + Fm);

0 when det(I ± Fm) = 0.

Here the summation runs through the family of nonempty subsets {k1, . . . , ks} of

{1, . . . , t}.

Proof. If ω = −1 then for all even m, N(fm) = 0 and thus as before

NPm(f) = 0. By Theorem 3.3,

NΦn(f) =
∑
m|n

NPm(f) =
∑

m odd
m|n

NPm(f).

Since n is even, by Corollary 5.3 both det(I − Fn) and det(I + Fn) cannot be

zero. Let m be odd and m |n; since n is even, m < n and n/m is even. Since

n/m is even, I ± Fm is a factor of I − Fn.

Assume det(I − Fn) 6= 0. Then det(I ± Fm) 6= 0. This is the case where fk

is weakly Jiang with N(fk) = R(fk) for any k | m. By Corollary 8.1,

NΦn(f) =
∑

m odd
m|n

NPm(f) =
∑

m odd
m|n

∑
k|m

µ(k)N(fm/k).

Assume det(I − Fn) = 0.

Case 1. det(I ± Fm) = 0.

This happens only when the eigenvalues λi of F satisfy λ1 = −λ2 = ±1.

Furthermore, N(fm) = 0 and so NPm(f) = 0.

Case 2. det(I ± Fm) 6= 0.

Then fm is weakly Jiang with

N(fm) = R(fm) = 2(|det(I − Fm)|+ |det(I + Fm)|).
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By Corollary 8.1,

NPm(f) =
∑
k|m

µ(k)N(fm/k).

Case 3. det(I − Fm) = 0 6= det(I + Fm).

By Theorem 6.6,

NPm(f) = |det(I + Fm)|+
∑

{k1,...,ks}⊂{1,...,t}

(−1)s|det(I + F (mk1
,...,mks )|.

Case 4. det(I − Fm) 6= 0 = det(I + Fm).

By Theorem 6.5,

NPm(f) = |det(I − Fm)|+
∑

{k1,...,ks}⊂{1,...,t}

(−1)s|det(I − F (mk1
,...,mks )|.

Consequently, all the observations give rise to our result. �

9. Summary

We can tabulate where to find the formula for the prime Nielsen–Jiang pe-

riodic number of f , NPn(f), of maps f on the flat Riemannian manifold K as

follows:

w n det(I ± Fn) NPn(f)

even Corollary 8.1

1 Corollary 8.2

even Corollary 8.4

det(I ± Fn) = 0 Corollary 8.3

det(I − Fn) 6= 0

det(I + Fn) = 0
Theorem 6.5

−1
odd det(I − Fn) = 0

det(I + Fn) 6= 0
Theorem 6.6

odd det(I ± Fn) 6= 0 Corollary 8.1

odd

(Corollary 5.3)
det(I ± Fn) = 0 Corollary 8.3

det(I − Fn) = 0

det(I + Fn) 6= 0
Theorem 7.5

6= ±1
det(I − Fn) 6= 0

det(I + Fn) = 0
Theorem 7.4

det(I ± Fn) 6= 0 Corollary 8.1
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