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PADE-TYPE APPROXIMANTS FOR
FUNCTIONS OF MARKOV-STIELTJES TYPE

LENNART KARLBERG AND HANS WALLIN

ABSTRACT. The denominator of Padé approximants of
functions of Markov-Stieltjes type are closely connected to
orthogonal polynomials which leads to control of the location
of the poles and to convergence of the approximants. We
investigate to which extent the convergence also holds for
Padé-type approximants where the location of the poles is
changed.

0. Introduction. Let f be a function of the following type (Markov-
Stieltjes type)

(0.1) fo)= [ 29

11+Zt

where z € C, the complex plane, and « is a finite positive measure
whose support is an infinite subset of [—1,1]. Let P,_1/Q, be the
(n — 1,n) Padé approximant of f, i.e., P,_1 and Q,, @, # 0, are
polynomials of degree at most n — 1 and n, respectively, satisfying the
following interpolation condition at zero

(0.2) (fQn — Po_1)(2) = 0(z*) as z — 0.

Then ¢,(z) := 2"Q,(—1/z) is the n-th degree orthogonal polynomial
for o (see Section 2.1). This means that the zeros of @), (z) are simple
and located on |—oo, —1[ U1, 0o[, and from this it can be proved that
P,_1/Qn — f locally uniformly in C\(]—o0,—1] U[1,00[) (Markov’s
theorem [8]) with geometric degree of convergence (Gragg; see, for
instance, [6]). Furthermore, if o is absolutely continuous and o/(z) >
0 almost everywhere in [—1,1], the zeros of g,(z) are distributed
asymptotically according to the arcsine distribution, i.e., according
to the equilibrium distribution of [—1, 1] for the logarithmic potential
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(Erdés-Turan’s theorem; see, for instance, [7, p. 247]). Generalizations
to complex measures « have been treated by Nuttall, Stahl, Al. Magnus
and others; see the surveys [7, p. 269] and [9, p. 42] for discussion and
references. The analogue of Markov’s theorem for the case when « is
supported by a half-axis was treated by Stieltjes and Carleman (see
[6]).

In the Padé approximant all poles and zeros are free in the sense that
they are determined by the interpolation condition (0.2). The problem
which we want to discuss here is the effect on the convergence of the
approximants of (0.1) by a perturbation of the zeros of @,. More
precisely, how is the convergence affected if the Padé approximant
is replaced by the so-called Padé-type approximant (PTA, Section
1) where we choose the location of some, or all, of the poles of the
approximant in advance and determine the rest of the poles and the
zeros of the approximant by a modified interpolation condition of the
type (0.2)? In Section 2 we treat the case when all the poles are
preassigned and « in (0.1) is replaced by a general complex measure
with compact support. In this case some basic facts (see Theorem
2.2) follow from investigations by Walsh [14, Chapter 8] and Bagby
[2] on interpolation by rational functions with preassigned poles. The
fact that we here treat functions of the form (0.1) gives more explicit
and detailed results. The method in Section 2 is based on a direct
application of Cauchy’s integral formula. In Section 3 we treat the case
when some of the poles are preassigned. The method here is based on
numerical quadrature and is inspired by the corresponding treatment
in the Padé approximation case. It is connected to results by Jacobi,
Stieltjes and M. Riesz. This paper is an extension of [5] which was part
of the author’s thesis.

1. Padé-type approximants. Let f be any formal power series in
one complex variable z, let n and m be nonnegative integers, and let
v(z), v(z) # 0, be an arbitrary polynomial of degree k where 0 < k& < m.
We choose polynomials P(z) and w(z), w(z) #Z 0, of degree at most n
and m — k, respectively, so that we get the following interpolation
condition at zero:

(1.1) F(2)o(2)uw(z) - P(z) = O(zmm—k+1)
where the right-hand member denotes a power series in z with lowest
order term of degree n+m — k+ 1. We define P/(vw) to be the (n,m)
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Padé-type approzimant (PTA) of f with preassigned poles at the zeros
of v.

By (1.1), P/w is the (n,m — k) Padé approzimant (PA) of fv. Since
the PAs exist and are unique we see that the (n,m) PTA exists and is
uniquely determined by f,n,m and v. Note that, since P may be zero
at a zero of v, the zeros of v need not, as a matter of fact, be true poles
of the PTA. We have, in a natural way, three different types of PTAs:

1° No pole is preassigned (k = 0); we may then take v = 1 and P/w
is the classical PA of f.

2% Some, but not all, poles are preassigned (0 < k < m); this is the
in-between case treated in Section 3.

3% All poles are preassigned (k = m); this gives the Walsh-Bagby
interpolation problem treated in Section 2.

For a general f it is difficult to get information on the location of the
poles of the PA. This has been a main reason to study PTAs. For some
further information on PTAs, we refer to Brezinski [3].

2. All poles are preassigned. In order to get simpler formulas
we formulate, in this section, our problem in a different but equivalent
form. We interpolate at infinity instead of at zero as in (1.1) and,
instead of functions written in the form (0.1), we assume that f has
the form

(2.1) o= [ da(t)

z—1

where E C C is compact and « is a complex measure supported by E,
supp o C E. We consider rational functions P, /@, of type (n—1,n),
ie, P, 1 and Q,, @, # 0, are polynomials of degree at most n — 1
and n, respectively.

2.1. Let us first briefly treat the PA case. If f is any function analytic
and zero at infinity the (n—1,7n) PA of f (with interpolation at infinity)
is the unique rational function P, 1/Q,, of type (n — 1,n) such that

(2.2) (fQn— P 1)(2) =0(z™""Y) as z — oo.

We multiply (2.2) by 27 and integrate over a contour surrounding E
and the origin, insert f given by (2.1) and use Fubini’s and Cauchy’s
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theorems. This gives
/ Qn(t)t! da(t) =0, for 0<j<n—1,
E

i.e., the PA denominator @,, is the n-th degree orthogonal polynomial
for o as discussed in the introduction. From this, Markov’s theorem
then follows by using basic facts on orthogonal polynomials.

2.2. In the rest of Section 2, let P, 1/Q, be a rational function
of type (n — 1,n) where @, is any polynomial of degree n chosen in
advance and P,_; is determined by maximal interpolation at infinity,

(23) (an - n—l)(z) = O(Z_l) as 2z — OQ.

This works for any f which is analytic and zero at infinity and means
that P,_1/Q is the (n — 1,n) PTA of f with prescribed poles at the
zeros of @), (and interpolation at infinity). If I' is any simple closed,
positively oriented contour such that f is analytic outside and, on T,
we obtain by Cauchy’s theorems,

(fQn— Pn 1) /Qn t, z outside I,
C2mi —

then, by using (2.1), Fubini’s and Cauchy’s theorems, and dividing by
Qn(2),

R4 -Pea/QIE) = [ 8((?) (‘io‘_(tz), L O\E,

where € is the extended complex plane. We let Q),, be monic and
denote the zeros (not necessarily distinct) of @Q,, by Bjn, 1 < j < n, i.e.,

(2.5) H —Bin),  Bin€C.

2.3. Let us first use (2.4) to note that we cannot expect local uniform
convergence in C\E of the PTAs if the zeros 3, of @, may cluster in
C\E Let o be the Dirac measure at a point tg € E, tg # B;» for all j
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and n. By (2.1), f(z) = 1/(z — to) and, since Q,(ty) # 0, we see from
(2.4) that P,_1/Q. has a pole at every f3;, € C\E We sum up:

Theorem 2.1. Assume that E is nondenumerable and that the set
{Bjn, 1 <j<mn, n=12,...} has a limit point in C\E Then there
exists a function f of the form (2.1) such that the (n — 1,n) PTA of
f with prescribed poles at Bjn, 1 < j < n, does not converge locally
uniformly in C\E .

2.4. Now we introduce the associated measure i, to the zeros Bjn,
1 < j < n, of @, as the probability measure with point mass 1/n at
Bjn, for each j, 1 < j < n. The logarithmic potential of a measure y is
denoted by u(z; p), i.e.,

1
u(z; p) = /1og T du(t),
and the logarithmic capacity of E by cap E. We assume that E is
regular in the sense that cap £ > 0 and that there exists a unique
probability measure 7 on E, the equilibrium distribution of E, such
that u(z; 7) is identically constant on E; equivalently, the unbounded
component of C\E has a classical Green function with pole at infinity.

Theorem 2.2. Let E be a compact reqular set in C with connected
complement and let f be given by (2.1) with a complex measure «. Let
P,_1/Q. be the (n—1,n) PTA of f with poles at the preassigned zeros
Bin, 1 < j < n, of Qn, and assume that the set Bjn, 1 < j < n,
n =1,2,..., has no limit point outside E. Let u, be the associated
measure to Bjn, 1 < j < n, and let T be the equilibrium distribution of
E. Then we have

19 If u(z; pun) — u(z;7), as n — oo, for all z € C\E, then
limsupmlz?,x|f — Pn_lQn|1/" <1,

n— oo
for every compact set K C C\E In particular, we have locally uniform
convergence of P,_1/Qy to f in C\E.

20 If there ezists at least one point z € C\E where u(z; pu,,) does not
converge to u(z;T), then there exists a positive measure o in (2.1) and
a point in C\E where P, _1/Q, does not converge to f.
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In the main, this theorem follows from Walsh [14] and Bagby [2], and
we give only the key steps in the proof and refer to [12, Section 2.2]
and [13] for details.

Proof. 1°. The key to the proof is to use (2.4) and the identity

(2.6) 8:((?) = exp{—n(u(t; un) — u(z; pn))}-

From the assumption and basic facts on potentials, it follows, for
compact sets K C C\E, that u(z; u,) — u(z;7) uniformly on K and
that

max u(z;7) < log(1/cap E).

Also, for € > 0 and n > n(e),

min u(t; pn) > log(1/cap E) — e.

These estimates combined with (2.6) and (2.4) give 1°.

20, By choosing a subsequence, if necessary, we may assume that s,
converges in the weak* sense to a probability measure  on E and that
u(z; ) # u(z;7) on C\E. Potential theory gives (see Section 3 of [13])
that

There exists zg € C\E such that u(zp; ) > log(1/cap E), and there
exists Eyg C E such that cap Ey > 0 and

u(t;p) <log(l/cap E) and liminfu(t;u,) = u(t;pn), fort € Ey.
These properties and (2.6) give

Qn(t)
Qn(20)

By choosing, for instance, a as the Dirac measure at a fixed t € Ey, we
get divergence at zo which proves 2°. O

lim sup =oo forallte Ey.

2.5. In Theorem 2.2, 2° we do not know where in the complement
of F that the divergence point z is located and we do not get good
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information on the class of measures o and poles {§;,} for which we
get divergence. We shall investigate the case E = [—1,1], a positive,
and use the geometry of [—1, 1] and the positivity of a to obtain more
precise information. Consequently, we assume that « is a nontrivial
positive measure on [—1, 1] and that

1) o) - [ 21

_1271:.

Let zp be any fixed point satisfying [z — 1| < 2 and Imzg # 0. We
consider two disjoint, nonempty closed subintervals I and J of [—1,1]
where I lies to the left of J; typically, the left-hand endpoint of I is —1
and the right-hand endpoint of J is 1. We assume that « is supported
by I and that 8, € J for all j and n. Finally, we assume that I and
J are chosen so that, for a fixed a > 1,

(2.8) dist (I,y)/lz0 —y| > a>1, forallyelJ.

Here dist (I, y) is the distance from I to y and, since |zp — 1| < 2, it is
possible to choose I and J in this way. We recall that P,_1/Q, is the
(n —1,n) PTA of f with poles at the preassigned zeros §;, of Q,. We
introduce k,, and h,(t) so that

n t u t— in
) T ZO_%M — knha(t),

j=1
|kn| =1 and hy,(t) = |Qn(t)/Qn(20)|. Observe that k, is independent

of t, for t € I, and that, by (2.8), h,,(t) > a™ for ¢t € I. This, (2.4) and
the fact that Im (1/(z9 — t)) is either positive for all ¢ € I or negative

for all ¢t € I, give
P,_1/Qn = knhn(
7~ Pas/@ol = | [ rana0 222 < [ o 220

/ < _120> da(t)| = a” /—1Im (t—lz0> doz()‘—mo.

Hence, P, _1/Q diverges to infinity at zo for every positive, nontrivial
o supported by I for all Bj, € J,1<j<n,n=12,....
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By picking zy close to the left-hand endpoint of J we realize that
we may choose J large by taking I small (in a small neighborhood of
—1). As long as (2.8) holds, we get divergence at zy. In particular, if,
for some £ > 0, J = [-1 + ¢,1], there exists a supported by [—1,1]
giving divergence at certain points outside [—1, 1] for all §;,, satisfying
Bjn € J, for all j and n.

On the other hand, by picking 2 close to 1 we may instead choose I
large by taking J small. By a variation of this idea we can prove

Theorem 2.3. Let f be given by (2.7) where a is a positive,
nontrivial measure on [—1, 1] with supp a # [—1,1]. Then the (n—1,n)
PTA P, 1/Qn of f with poles at the preassigned zeros [jn of Qn
diverges at certain points outside [—1,1] for certain Bj, € [—1,1], for
all 7 and n.

Proof. Pick a small interval J, J C [—1, 1]\supp a and 2, close to J,
Im zy # 0, so that (2.8) holds with I replaced by supp @. Now ¢ — y,
t € supp a, y € J, may be positive or negative. By taking n to be even,
we may proceed as above to get divergence at zg. O

2.6. We have here treated the PTA with interpolation at one point
(infinity). It would be natural to investigate the multipoint PTA where
we interpolate at different points. A formula analogous to (2.4) holds
also in this case (see [14, Sections 8.1 and 8.4]) and the convergence now
depends on the interplay between the poles {£;,} and the interpolation
points. This new difficulty was analyzed by Walsh and Bagby.

3. Some poles are preassigned. In this section we assume
that f is given by (0.1) which means that f is a series of Stieltjes
f(z) = Y cj27 where ¢; = (—l)jf_lltj da(t) for some finite positive
measure o whose support is an infinite subset of [—1, 1]. Let S, (a; g) =
2?21 Ajng(ajn) =~ fjlg da be an n-point quadrature formula with
simple real nodes aj,. We assume that a;, € [—1,1] and that the
PTA is defined as in Section 1. We can now formulate the following
theorem which describes the connection between quadrature formulas
and PTAs to a series of Stieltjes.
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Theorem 3.1. Let P,_1/Qn be a PTA to a series of Stieltjes
f. Let us assume that we have chosen k, 0 < k < n, simple poles
Bin, 1 < j < k, Bjn € ]—00,—1] U [1,00[, of Pr—1/Qn in advance.
Assume that Sp(a;9) = X251 \jng(ajn) is ezact for polynomials of
degree < 2n — k — 1 and that Bj, = —1/aj,, 1 < j < k. Then
Pac1(2)/Qn(2) = Su(as 1/(1 + 21)).

The proof of this theorem is omitted because it is very similar to the
proof of the corresponding result for PAs (the case k = 0). We refer to
[6, Section 4] for details.

It follows from Theorem 3.1 that we can use results and methods
from the theory of numerical quadrature to prove convergence results
for PTAs. von Sydow [10] has obtained estimates of the error commit-
ted when using the Gauss-Jacobi quadrature formula to approximate
integrals. If we use his method and Theorem 3.1, we can prove

Theorem 3.2. Let P, 1/Q, be a PTA to a series of Stieltjes
f. Suppose that we have chosen k, 0 < k < n, simple poles Bjn,
1<j <k, Bjn€]-00,-1U[Ll,00], of Po_1/Qn in advance. Assume
that there ezists a quadrature formula Sy (c; g) = 2?21 Ajng(ojn) with
the properties (a) and (b):

(a) Sy is exact for polynomials of degree < 2n —1 — k.
(b) ajn =—-1/Bjn, 1 <j <k, and a;, € [-1,1], 1 <j < n.

Let K C C\(]—o0,—1] U [1,0]) be a compact set. Then there exist
constants R > 1 and M such that

/11 1—:215 da(t)=Fn-1(2)/@n(2)

< M(oz([—l, 1])+i1 I/\jn|>R2"+k,

forall z € K.

Proof. We give only the key steps in the proof and refer to [10] for
details. We want to estimate the error

M@:/g@mw—&@m

-1
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Let Cg be the ellipse with foci at +1 and semiaxes (R + R~1)/2, and
let eg be the bounded component of the complement of Cg. If g is
holomorphic in €, we can derive an alternative expression for E,,. For
this purpose, we use Cauchy’s integral formula. This gives

B) = 57 [ 9(:)E, (5) &

It now follows that

z—t 2€Cr

a1 Bl g [ (e () e s oGl

We now estimate the right-hand side of (3.1). Let R, be a polynomial
of degree < n and introduce the notation p,(g) = inf sup, <, [9(z) —
T, (z)| where the infimum is taken over all polynomials 7;, of degree
< n. We now get

B0l = |[ 00)d00) ~ [ Fan s 4l datt)

(3.2) + Sn(a; Ran—1-k) — Sn(a; 9)

< <a([—1,1]) + znj Ajn|>p2n1k(g)-

j=1

To complete the proof we want an estimate for pa,_1_r((z —t)~!). But
it is known that

< 2|z — 22 — 12k
TV (- |r - V2 1P)

(see Achieser [1, p. 62] and von Sydow [10, p. 61]). If we use (3.1),
(3.2) and (3.3) we get

(3.3) P21 k((z=1)7)

n R72n+k:
< - ) —— .
B <2(a(l-1,1) +]_Z_1|Am|) T s ()

We now use this estimate with g(¢t) = 1/(1 + 2t) and the proof is
complete by Theorem 3.1. O
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Remark 1. In particular, Theorem 3.2 shows that if > |\;,|=O(R")
for all R > 1, then P, _1/Q, converges uniformly to f on compact
subsets of C\(]—o0, —1] U [1,00[). The special case when k& = n and
> |Ajn] = O(1) was given by Brezinski [3, Theorem 1.13].

Remark 2. For PAs (the case k = 0) the weights \;, are positive
and Y Aj, = o[—1,1]). Combined with Theorem 3.1, this leads to
Markov’s theorem and geometric degree of convergence as mentioned
in the introduction.

We now treat the case k = 1 where one of the poles is chosen in
advance. In this case, as in the PA case, we can use results from the
theory of numerical quadrature to obtain more detailed results. We
have the following theorem.

Theorem 3.3. Let P, 1/Q, be a PTA to a series of Stieltjes f.
Suppose that we have chosen one simple pole 51, = 1 in advance. Then

1 1 1
/ T de) - Paa()/@n(a)) <1

lim sup max
n—r 00

for every compact set K C C\(]—o0, —1] U [1, 0[).

Proof. We refer to [4, pp. 7879 and 80-81] or [11] for some
basic facts which we use below on quadrature formulas. We first
want to prove that, for each n, there exists a quadrature formula
Sn(a;9) = >7_1 Ajng(@jn), jn real, simple, such that S, is exact for
polynomials of degree < 2n —2, oy, = —1/f1, = —1 and o, € [—1,1]
for 1 < j <n,n e Z". Let {R,} be the unique sequence of monic
polynomials, degree R,, = n, which are orthogonal with respect to a,
that is,

1
/ Ru(®) R (t)da(t) =0,  n#m.
-1
We can now define sets of polynomials
0, :={P:P=R,+BR, 1,0 real}.

Jacobi has proved that a quadrature formula S, which is exact for
polynomials of degree < 2n—2 exists if and only if the node polynomial
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My(z) = [[j_1(z — @jn) € 0, and M, has real, simple zeros. But
R, _1(a1n) = Rp—1(—1) # 0 (the zeros of R,,_; are located in |—1,1[)
and we can choose § such that P(—1) = R,(—1) + SR,_1(—1) = 0.
We see that it is possible to choose oj, with a;, = —1 so that
[[j=1(z — @jn) € 0. It is also known (M. Riesz) that all polynomials
in the sets 6, have real, simple zeros (see [11, p. 482]). It now
follows from Jacobi’s result that there exists a quadrature formula
Sn(a;g) = 2?21 Ajng(ajn), 0un = —1, which is exact for polynomials
of degree < 2n—2. It remains to prove that o, € [-1,1]for 1 < j < n.
This follows from the fact that at least n—1 of the zeros of a polynomial
in 6, are in ]—1,1[ and a3, = —1. To complete the proof, we want an
estimate of 37 [Aju|. It is known (Stieltjes) that A;, > 0,1 < j <,
if S, is exact for polynomials of degree < 2n — 2 (see [11, p. 479]) and
this means that Z?:l [Ajn| = Z?:l Ajn = fil da(t). Theorem 3.3 now
follows from Theorem 3.2. O
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