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BIORTHOGONAL LAURENT POLYNOMIALS WITH
BIORTHOGONAL DERIVATIVES

ERIK HENDRIKSEN AND OLAV NJASTAD

ABSTRACT. If V,; and Y;, are monic polynomials of degree
n with V,(0) # 0 and Y, (0) # O such that {V,(z),z7 "1
Yn(2)}22, is a biorthogonal system (BOS) with respect to a
moment functional ® on the algebra of Laurent polynomials
in z with complex coefficients, then {V»(2),z7 "~ 1Y, (2)}2
is called a regular BOS.

It is shown that if {Va(2),2 "7 Yn(2)}2, and {(1/(n +
1))V7;+1(z),z’”’1(1/(n+ )Y, ,1(2)}52, are regular BOSs,
then {Vin(2),2 " 1Y (2)}2, is a so-called classical BOS,

i.e., one of the systems of 7Ilix(;mples 1-3 below. In this way
we obtain a characterization of classical BOSs of Laurent
polynomials, analogously to Hahn’s [3] characterization of
classical ordinary polynomials.

1. Introduction. It is well known that the derivatives of the classi-
cal polynomials, including the Bessel polynomials, are again orthogonal
polynomials. In 1935, W. Hahn [3] showed that this property is char-
acteristic for the classical orthogonal polynomials with positive weight
function on a real interval. A few years later, in 1938, H.L. Krall
[6] observed that Hahn’s procedure also applies in the case of gener-
alized orthogonality, i.e., orthogonality with respect to an eventually
indefinite moment functional. Krall showed that the only generalized
orthogonal polynomial systems with generalized orthogonal derivatives
are, apart from a linear change of variable, the classical generalized
orthogonal polynomials.

In the present paper we give a similar characterization of a certain
class of biorthogonal systems of Laurent polynomials which is closely
related to the class of the classical orthogonal Laurent polynomials as
treated in [4], where a characterization of classical orthogonal Laurent
polynomials in terms of second order differential equations is given (see
[2] for ordinary polynomials).
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302 E. HENDRIKSEN AND O. NJASTAD

2. Preliminaries. A system of Laurent polynomials {Q,}2, is
called simple if the Q,, are of the form

Q2n(2) = qO 27 + B0 27 4 g2)2m,

Qani(2) = Ut e gBrtpmm g g2

with ¢ € C, ¢% # 0, ¢"7) £ 0 and ¢ = ¢V = 1,
n = 0,1,2,.... The system of Laurent polynomials {Q,}>, is
orthogonal with respect to a moment functional ®, defined on the
algebra A of Laurent polynomials with complex coefficients, if ® is
linear and ®(Q,Q%) =0asn # k and ®(Q2) #0,n,k=10,1,2,... . It
follows easily from [5, Theorem 1.1] that a simple system {@,}>%, of
Laurent polynomials is orthogonal with respect to a moment functional

if and only if the @, satisfy the recurrence relations

Qant1 = (1 — aznt12 1) Q2n — Bont1Q2n -1,

(2.1)

Q2n+2 = (Z - azn+2)Q2n+1 - ﬂ2n+2Q2m
with agn+1, @2n+2, B2nt1; Bant2 # 0, =10,1,2,... ,and Q1 = 0 and
Qo = 1.

If q(f:) =0 or ¢ = 0 for some n while {Qn}52, is still
orthogonal, it may happen that the @, do not satisfy three term
recurrence relations as in (2.1). For this reason we only consider simple

orthogonal systems of Laurent polynomials.

Using the corresponding ordinary polynomzials
%n(z) = ZnQZn(Z)a ‘/2n+1(z) = Zn+1Q2n+l(z)7 n = 07 17 27 DRI

we see that the simple system {Q,,}52, is orthogonal if and only if the
V., satisfy

(22) Vo =(z—an)Vp1—BnzVu2, n=12...,V.1=0,V, =1,

with o, 20, n =1,2,... and 8, #0,n =2,3,....

A pair of sequences of Laurent polynomials {A,, B,}52, is said to
be a biorthogonal system (BOS) with respect to a moment functional
Qon A if Q is linear and Q(A4,B;) = 0if n # k and Q(4,B,) # 0,
n,k=0,1,2,....
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If {Qn}22, is a simple system of Laurent polynomials, orthogonal
with respect to ®, and V,, are the corresponding ordinary polynomials,
then (see [5])

=0, ifk=1,2,...,n
iy _kVn ) ) &y )
(2 ){7&0, ifk=0ork=n+1,
and it is easily seen that {V,,z " (V41 — 2V,)}3%, is a BOS with
respect to .

Conversely, let {V,,,27"71Y,,}5; be a BOS with respect to ®, where
V,, and Y,, are ordinary polynomials with degV,, = n, degY,, < n, V,
monic, V,(0) #0, Y,(0) #0, n =0,1,2,.... Then, clearly,

®(z7*V,)=0, k=1,2,...,n, n=0,1,2,...
Bz, #0, n=0,1,2,....

Let n > 2. Then there is an o, € C such that V,(0)+a,V,_1(0) =0, so
there is also a 8, € C such that deg(V,,—2V,—1+anVi—1+r2Vh—2) <
n — 2. But then

W=V, —2Vh_1+ anVa_1 + BnzVh_o € span {z,zz, .. ,z”*2},

so there are Ag,...,An_3 such that z71W = XV + M Vi + -+ +
A3V 3. Since ®(z7*"1271W) =0, k = 0,1,... ,n — 3, it follows
from the biorthogonality that Ag = --- = A,,_3 = 0. Hence,

Vi = (Z - an)Vn—l - /BnZVn—2a n > 2.

With V_; = 0 this relation is trivially true for n = 1. Since V,,(0) # 0,
we have o, #0, n =1,2,...,and 0 = (2 "V,,) = (2 ""1V,,_;) -
an®(z7"V, 1) — Bu®(z7 "MV, 5), n = 2,3,..., implies 3, # 0,
n=2,3,.... By the Favard-type theorem [5, Theorem 1.1], it follows
that {Q,}22,, defined by Qan = 27"Vap, Qont1 = 27" Wapyqy is
a simple orthogonal system of Laurent polynomials. Hence, there is
a one-to-one correspondence between BOSs {V,,z "1V, }2°, with
Vi, Y, polynomials such that degV,, = n, V,(0) # 0, degY,, < n,
Y, (0) # 0, V,, and Y,, monic, and the simple orthogonal systems of
Laurent polynomials {Q,}3,. Consequently, if {V,,, 2771V, }2°, is
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such a BOS, then Y,, = K,,(V,,+1 — zV,,) for some nonzero constant K,
n=01,2,....

In this paper we only consider BOSs in A of the form

{An, 27" B, }°,, where A, and B,, are ordinary polynomials. Such
aBOS {A4,,2 " 1B,}2, is called regular if deg A, = deg B,, = n, A,
and B, are monic and A4,,(0) # 0 and B,(0) #0, n =0,1,2,....

The collection of all the regular BOSs {V,,,27"71Y,,}>°, such that
{(1/(n+1)V, 1,2 11/ (n+1))Y, 1 }52 is again a regular BOS, will
be referred to as class D. Sometimes {(1/(n+ 1))V, 1,2z " *(1/(n+
)Y, 1}y will be called the derivative of the system

{Vi, 2771y, }oo .

As we wish to determine all the systems belonging to class D, we
first derive some properties of systems of D . To this end, we assume
{Vo,27"71Y, )0, € D;

(2.2)

Vo=(z—an)Vno1—BnzVh—2, n=12,..., V_1=0,Vp=1,
with a,, 8, € C, ap, #0,n =1,2,..., and B, #0, n = 2,3,..., and
p1=0;

(2.3) lV’Z(Z—O/)LV/ —B'zLV' n=2,3

. nn nn_l n—1 nn_2 n—22 1y
(1/(n—=2))V,)_o=0if n=2), with o,,8, € C, al, #0,n = 2,3, ...,
and 8, #0,n=3,4,..., and 85 = 0.

Because Y, = K, (V11 —2V0) = —Kp(an+1 Ve + Bn412Vn-1) and Y,
is monic, we have a,4+1 + Br+1 # 0 and
(2.4)

_ CVn+1‘/n + ﬂn+1zvn71
Ap41 +ﬂn+1

(Vn+1—ZVn) , TLZO,l,... -

n

N Apt1 +ﬂn+1

In the same way we find o, 5 + f;,,5 # 0 and

1 -1 1 1
Y’ — VI _ —VI
nF 1 a4 B <n+2 SEEREES! "“)
B O/n+2n+HVr:+1 + Bry2zrVa
O‘;z+2 + B:H—Q

(2.5)
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In the sequel we write o, = @, + B, n =1,2,...,and o, = o, + 6.,
n=2,3,.... Note that o1 = a; and o} = o}.

Differentiation of (2.4) yields

eri _ ri+1 _ZVr; -V
(2.6) n NOpt1
an+1V7; + ﬂn+1ZV,,;,1 + ﬂn+1Vn71 n—=1.2
nomit , g lyenn s

With n replaced by n — 1, (2.5) reads

1 1 1 1
2= (i)
n+1
1

1 1
= o (O/nJrIEV'r: +/8;L+1ZEV/L1> , n=1,2,...,

(1/(n=1))V!_ ;=0asn=1).

From (2.6) and (2.7) we obtain, by elimination of Y}/,
(2.8)

n  Opt1 , On+1 ’
Vo=11- Vi.,—(1-— Vo, n=1,2,...,
" ( n+1 U;H—l) i ( ‘7;-1-1) "

and
(2.9)
al n n 1 ’:‘L n
Vo, = < e U/+2 - - +2> 'ri+1 - <1_ n—+ ﬂ +2 U/+2> ZVria
Btz Opyo  Bntz N Bnt2 0p4o
n=12,....

Since V;,(0) # 0 and V,;,;(0) # 0, (2.8) and (2.9) must be identical,
$0

0_/ 14 !
(2.10) et M Pnadn o5
On+41 n—1 6n+1 On

Now we partially follow Hahn’s method [3] to show that 3, /(n—2) =
Brn/(n—1), n=3,4,.... Differentiation of (2.2) gives

(2.11) V) = (z—an)Vy_1—BnzVy_o+ Va1 —BnVa2, n=1,2,...,
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and also, by (2.2),
(2.12) 2V = (z—an)2Vi_1—Bn2?V,) o+ Votan Va1, n=12,....

Elimination of V,!_, from (2.3) and (2.12) gives
(2.13)
Bn  Bn Bn B
(725 0) = 25 —en = g o] v
! 6’

(8%
+n_"2vn+n"_2 1, n=34,...,

and elimination of V,, from (2.3) and (2.11) gives, after replacing n by
n+1,

(2.14) [za”“ . Za;l“} V!

n+1 n "
6n+1 B;H-l ! 1 Bn—i-l
— — v - —V, Ve, =1,2,....
(n—|—1 n—1)"" 17 11 +n+1 Lo

It is easily verified that 8, /(n—2) = ,,/(n—1) if (2.13) and (2.14) are
identical. If (2.13) and (2.14) are not identical, then, by elimination of
V.., we obtain the nontrivial relation

(2.15)

n—1 B, Bn BI CY’ +1 Up41 ’
n_ n n _ v
[n(n—i—l) <n—2 n—1>z+n—2 n n+1 "
1 Bn B
— z
n+l\n—-2 n-1
1 By 0B n B nit Bt
n+l\n—-2 n-1 n—2\n—-1 n+1l
L (an + Bni1)By

(e79) +/8n+1)
T -2ty "

V!

n—1

n=34,....

Comparing the nontrivial relation (2.15) with (2.8) with n replaced
by n—1 and observing that the V,) do not have common zeros since the
V, satisfy (2.3), it follows that again 3, /(n —2) = 8,/(n — 1). Hence,

B Bn
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In order to derive further relations between ay,, By, o, 35, we write

5](-") e C, f,(ln) =1,4j=0,1,...n,n=0,1,... . It follows easily from
(2.2) and (2.3) that
(2.17) ¢ = (=) ogag---om, n=01,...,
L .n
(2.18) ¢ = ()" ahah--aly, n=1,2,...,
n
and

(219) " =6l "V - BTV, n=12,....
Elimination of {én), (gnfl),dn),énfl) from (2.17)—(2.19) gives

a:z(an—l + ﬂn)[(” + l)a'ln—i-l - ”an+1]

(2.20) = on_1(an + Bus)[nd, — (0 — Daw], n=2,3,....

Comparing the coefficients of 2”1 in (2.2) and coefficients of 2" 2 in
(2.3) we get

(n) _ ¢(n=1) _ g "ol =20y s
€1 —&pp ton=0 an n €n1 n—1£”’2 + 0, =0,
n=23,...,

and elimination of 57(Ln:21), f,(:i)l, §£n+1) from
£n+1) _ 67(:1)1 + Ony1 = O
T + ol = 0
ey - g o+ e =0
et - oEen) + o =0

n=23,...,
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yields (n + 1)o,,y — (n — 1)o,, = nopyr — (0 —2)op, n = 2,3,....
From (2.2) and (2.3) with n = 2 we easily get 204, = a1 + a2 + B2, so
20l = 01 + 09. Thus,

(221) (n+ 1)y 1 — (n—1)o), =nopi1 — (n—2)o,, n=12,....

As Y, and (1/(n + 1))Y,,,, satisfy three-term recurrence relations
similar to (2.2) and (2.3), there are formulae similar to (2.20) and (2.21)
corresponding to the polynomials Y, and (1/(n + 1))Y, ;. Indeed, it
follows from (2.4) that

(222) Vo =(2—an)Yn-1—b,2Y, 2, n=12,...,Y 1=0,Yy=1,

with a, = (on/0nt1)nt1, n = 1,2,..., and b, = (0pn-1/00)Bn,
n =2,3,.... Since {V,,27 " 1Y, }>, has the same structure as its
derivative {(1/(n +1))Vy 1,2 " 1(1/(n+ 1))Y, 1}, we also have
(2.23)

1 1
n+ 1Y7:+1 =(z— a;+1)EYri - 'lrL—Q—lszr;—l? n=23...,
(1/(n = D)Y;_y = 0if n = 1) with a1y = (0711/0742) 040
n=12,...,and b}, |, = (0,/0,,,1)Bn 1, n=2,3,....

Ounly the analog of (2.20) is needed in this paper. With the just
mentioned expressions for a,,al,, b,,b.,, and with (2.16), we get
(2.24)
App10n+1[(n +1)af o — nanya] = anonie[neg g — (n— Dagqa],
n=23,....

The following examples of BOSs belonging to class D can be derived
from the examples in [4].

Example 1.

(C)n

Vn:(_a) 2F1(fn,—a;—cfn+l;z), n=0,1,...,
(C+1)n

V= SR e lime—miz), n=0L...,
—a—1),

a+1,—ca—c#0,1,2,...,
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(Notice that o F1(p+1,q;7;2) — oF1(p, g+ 1;752) = L2205 Fi(p+ 1,9+
Lr+1;2)),

1 n
n—HVT:H:%ZFl(—n,—a—i-l;—c—n—i-l;z), n:0,1,...,

1 , (c+ 1),

R mzﬂ(—n,—a;—c—n;z)a n=0,1,...,

{Va, 27771Y,, }22, is biorthogonal with respect to

{n+_1 w1,z 1Y) o0 s biorthogonal with respect to

n+l-"n
~1),
@(z‘")zu, n € Z.
(©)n
Moreover, (2.2), (2.3), (2.22), (2.23) are valid with
_c+n—1 5, = (n—1)(c—a+n—2)
T T -1 " (~a+n—-2)(-a+n-1)
o _ ctn-—1 P _(n—=1)(c—a+n—-1)
LT a4 " (—a+n—1)(—a+n)’
. — c+n b — (n=1)(c—a+n-—2)
" —a+n-—2 " (~a+n-3)(—a+n-—2)’
, c+n , (n—1)(c—a+n—-1)
Apt1 = —— [ 1> bn+1 = )
—a+n-—1 (ma+n-2)(-a+n-1)
n=12,....
Example 2.

Vo= (1D)")n1Fi(—n;—c—n+1;-2), n=0,1,...,
Yn:(*l)”(cﬁ-l)n 1F1(7Tl;7cfn;fz), n:O,]_,‘__ ,
—c#£0,1,2,...,
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(Notice that 1 Fy(p;r;—2) — 1Fi(p+ 1;r;—2) = (1/r)z1Fi(p+ L;r +
]-;_Z))a

1

n+1 r:+1:Vn7 nzo,l,...,
1

n——|—]_Y7;+1:Yn7 7’1/:0,1,...,

{Va, 27"71Y,, }22, is biorthogonal with respect to

1 —n—1 1 = —n—1 o)
{n—i—l 1) 2 n—i—lY",'H} ={V,,z Y.}o2,.

In (2.2), (2.3), (2.22), (2.23) we have :

on =0 =c+n—1, B, =0,,,=-n+1,
an:a;+1:c+n7 bn:b;+1:_n+]—7
n=12,....
Example 3.
1
n= 7~ 2fol—N,—a;—2), n=VUl,...,
V a) Fy( ) 0,1
—a),
1
Yn:ﬁzﬂ)(—n,—a—l;—z), n=20,1,...,
—a—1),
a#-1,0,1,2,...,

(2Fo(p,g+1;—2) — 2 Fo(p+ 1,4, —2) = (¢ — p)z2Fo(p+ 1,0+ 1; —2)),

1 1

— V! = ———Fy(-n,—a+1;-2), n=0,1,...,
n+l "M (Cat1),’ o(=m,—at Li=z), n

1, 1

2F0(—n,—a;—2), ’I’lZO,].,... ’

n+1 "t (—a)n
{Vn, 27"71Y,, }52, is biorthogonal with respect to

®(z7") =(a)n, neZ,
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Tl ALY} is biorthogonal with respect to

{n%_l 'r:—i—lvz
O0(:z")=(a-1),, necZ

In (2.2), (2.3), (2.22), (2.23) we have

1 3 n—1
an:_—7 n: )
—a+n-1 (ma+n-2)(-a+n-1)
1 n—1
’ _ ’ _
anJrl - 7a_’_n7 /BnJrl (7a_’_n71)(7a+n)7
1 n—1
an:_77 bn: )
—a+n—2 (—a+n—-3)(—a+n-2)
’ 1 n—1

e —— bl =
Ont1 —a+n—-1 """ (—a4+n-2)(—a+n-1)

n=12,....

The Pochhammer symbol (z), occurring in the above examples is
defined as (z), = I'(x + n)/T'(z) for z € C\N and n € Z.

3. The characterization. In this section it will be shown that
the only BOSs which belong to class D are essentially the BOSs of
Examples 1-3. Therefore, the BOSs of Examples 1-3 will be called
classical biorthogonal systems. The classical BOSs correspond to a large
subclass of the classical orthogonal Laurent polynomials as treated in
[4]. Only the classical orthogonal Laurent polynomials of 2 F}-type with
a = —1 and of 2 Fj-type with a = —1 do not correspond to classical
BOSs.

From (2.10) and (2.16) we get 0y 41/0,, 1 = on/oy,, n=2,3,...,s0
there is a p € C\{0} such that

On

(3.1) —=p, n=23,....

Hence, (2.21) can be written as

(n—i—l)U"H —n—l—l—p(nan'H —n+2>, n=23,...,

Un n
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and it follows that

Intl :n—l—p(n—2), n=23,....
On n+1l—pn

From (2.21) with n = 1 we get o3 + 01 = 20}, so 02 + 01 = (2/p)o2 by
(3.1), and we also have

92 _ _P
or 2—p
Hence,
n —-1- -2
(3.2) Int1 _ 1 Pn=2) 1o

On n+1—pn

The case p # 1. Then, with a =1/(p — 1), (3.2) can be rewritten as

On+1 —a+n-—2

= , n=1,2,...,
On —a+n
soa# —1,0,1,... since 0, #0,n =1,2,... . Moreover,
On On—1 02
O'n: . ---—-0’1
On—1 Onp-2 01
—a+n—-3 —a+n-4 —a —a—1

—a—i—n—l.—a+n—2”.—a+2'—a+l'a1

B —a(—a— 1)y
 (~a+n-2)(-a+n-1)

n=12,...,

SO

—a(—a — 1)y

(3:3) on = (—a+n—-2)(—a+n—-1)’

n=12,....

Elimination of 3,, from

n—2 1
Oéln‘f'_n_l/gn:U;L:;Una n=23,...,

An + PBn=0pn, n=12,...,
gives

—a+n-—2

(34)  (n—-1ay, —(n—2)a, = “a_1

On, M=2,3,....



LAURENT POLYNOMIALS 313

Combination of (2.24) and (3.4) yields

! p— p—
I _ atn 2, n=3,4,....
Q1 —a+n-1
Since also
o 0y 0302 1 —a-1_ -a
[e%1 o1 09 01 p —a+1 —a+1’
we have
!
— -2
(3.5) N S
Qp—1 —a+n-1
From (3.3), (3.4) and (3.5) we get
—a+k—2 —a+k-—1 —ao
—_— g — = k=3,4,...;
k—2 1T TR YT k-2 -1) e

hence, for n > 3,

—a+n-—1 —a+k—2 —a+k—-1
(—a+1)062—n7 _Z( Qk—1— ﬁak)
=S (5
- k-1 k-2
k=3

1 1
= ax -
w1

- n—2
= —atq _1.

This leads to

(3.6)

o (—a+1)az(n —1) + aci(n — 2)

" —a+n-—1
:77[(7a+1)a2+aa1]n+(fa+1)a2+2aa1 n=1.9
Epre— , 2y

If n =1or n =2, then (3.6) is trivially true. Now we put K =
—(—a+ 1)ag — aa;. Then
K(n-1)4+aa;

oy =——"—", n=12...,
—a+n-1
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and we calculate f3,, from (3.3):

Bn =0n —an
ala+ 1)y K(n—1)4aa;
(—a+n—-2)(-a+n-1) —a+n-1
(n—1D[K(n—1)— (a+ 1)K + aoy]

(—a+n—-2)(—a+n-1) e LS

Here we distinguish between K # 0 and K = 0.
Assume K # 0. Then

Qn in—-1 6, (-1 —-a+n-2) L9
K —a+n—-1"K (—a+n-2)(—a+n-1)’ o
and, with ¢ = (aa1)/K, we get
fo' c+n—-1 p, (n—1)(c—a+n-2) 19
K —a+n—-1 K (—a+n—-2)(—a+n—-1) o
where

a#-1,0,1,2,...,

—c#0,1,2,... since a,, #0,m =1,2,...
and
a—c#0,1,2,... since B, #0,n=2,3,....
Since, for A # 0, V,,(z) satisfies

Vi(z) = (2 — an)Vi-1(2) = BnzVp_2(2), n=1,2,...,
with V., = 0,Vp =1

if and only if W, (z) = A"V, (\z) satisfies

Wp(z) = (z - OéTn) Wh-1(z) — %ng_z(z), n=12,...,

with W_1 = O,Wo = ].,



LAURENT POLYNOMIALS 315

we see that

(C)n
7a)n

K"V, (Kz) = ( oF i (—m, —a;—c—n+1;2), n=0,1,...,

and {V,,,27""1Y,,}%2, is, apart from a change of scale, the BOS of
Example 1.

Suppose now that K = 0. Then

Qp 1 Bn n—1
Bl , n=1,2,...,
ao —a+n—-1" aoy (—a+n-2)(—a+n-1)
where a # —1,0,1,2,... . So, as above, we see that
1

(ac1)™"Vn(aa1z) = 2oFo(—n,—a;—2), n=0,1,...,

(*a)n

and {V,,,27""1Y,,}22, is, apart from a change of scale, the BOS of
Example 3.

The case p = 1. In this case we have
o, =0, mn=23,..., by(3.1)

and
op =01 =10, n=1,2,..., by (3.2).

From o, + 8, = 0 and o], + ((n —2)/(n — 1))B, =0, n =2,3,...,
we get

(3.7) (n—1a, —(n—2)a, =0, n=12,....

(It is obvious that (3.7) holds for n = 1 since a3 = o3 = o0.)
Combination of (2.24) with ¢,, = o and (3.7) now gives o}, /a,—1 = 1,

n = 3,4,..., while also ab/ay = o4/o1 = (04/02) - (02/01) = 1, so
ol =ap_1,n=2,3,.... Together with (3.7), this yields
el oD k=34,...,

k—2 k-1 (k—2)(k—1)
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and
an (ko1 ak
2 —1_Z<k—2 k:—1>
k=3
S .
B k-2 k-1
k=3
1
= ]_—
ek
—2
=" —To, n=34..,
hence,

ap=as(n—1)—c(n—2)=—LFon+oc+ 2, n=3,4,....
Since this relation is obvious for n = 1 and for n = 2, we have
(38) apn=oax(n—1)—-0a(n—-2)=—fon+o+p2, n=12,....
From a,, + 8, = o and (3.8) we obtain
(3.9) Bn=0(n—-1), n=12....
With ¢ = —o /s, formulae (3.8) and (3.9) can be written as

% _eyno1, P o), m=12,..
—B2 —PB2

where —c # 0,1,2,... since o, 20, n =1,2,.... Hence, in this case
(=B2) "Vo(=B22)=(-1)"(¢)n1F1(—n; —c—n+1; —2), n=0,1,2,...,

and {V,,2 " 1Y, }°, is essentially the BOS of Example 2.

We summarize the results of this section in the following theo-
rem. Recall that the class D is the class of all the regular BOSs

{Va, 27" 1Y},  which have a regular BOS {nL—H 1o
—n—1_1

z n+1

Y, 1} as their derivative.
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Theorem 3.1. If {V,,z ""1Y,}°, belongs to class D, then there
is a nonzero X € C such that {\""V,(A\2),2 " 1A "Y,(\2)}, is a
classical biorthogonal system of Laurent polynomials, i.e., {A\""V,(Az),
27" INTY, (A2) 150 is one of the systems of the Ezamples 1-3.

Remark 3.1. In [3] it is essential that the polynomials considered,
being orthogonal with respect to a nonnegative weight function on a
real interval, have simple zeros. As in [6], Hahn’s method is followed in
the case of generalized orthogonality, it is not clear whether, in [6], an
assumption about simple zeros is needed or that the polynomials have
simple zeros as a consequence of the orthogonality of these polynomials
and the orthogonality of their derivatives. See also [1]. In the approach
of the present paper assumptions about simple zeros are not needed.
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