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MORE ON C-FRACTION SOLUTIONS
TO RICCATI EQUATIONS

K.D. COOPER, S. CLEMENT COOPER*, AND WILLIAM B. JONES*

ABSTRACT. An algorithm due to Merkes and Scott for
finding C-fraction solutions of certain Riccati differential
equations is generalized to apply to a larger class of Riccati
equations. Remarks on computational aspects of the algo-
rithm are made and several examples are presented.

1. Introduction. Continued fractions have been used theoretically
to solve Riccati differential equations for many years. Euler [6, 7] and
Lagrange [11] seem to be the originators of this approach. They both
concentrated on very special forms of Riccati equations and found C-
fraction solutions. More recently, Merkes and Scott [12], Stokes [13],
Fair [8], Chisolm [3], Cooper [5], and Cooper, Jones and Magnus [ 4]
have made contributions using various continued fractions.

Riccati equations have the special property that they are invariant (in
a sense) under linear fractional transformations (lfts). More precisely,
under an 1ft,

_a(z)w+ B(2)
- v P )
a Riccati equation,
(1.2) y' = fo(2) + f1(2)y + fa(2)y%,

is transformed into another Riccati equation

(1.3) w' = fo(2) + fi(2)w + fa(z)w?.
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The fundamental role played by lfts in the development of continued
fractions [9] makes a continued fraction approach to Riccati equations
quite natural.

Since we will be discussing formal continued fraction solutions, we
begin with the definition.

Definition 1. Let D be a (formal) differential operator. A continued
fraction with nt" approximant f,(z) is said to be a formal solution of
a differential equation D[W(z)] =0 at z = 0 if

(1.4) Ao(Dfa(2)]) = O(""),

where lim,, o, k, = c0. Here Ag(f) denotes the Laurent series about
z = 0 for a function f meromorphic in a neighborhood of zero.

The symbol O(z*») denotes a power series (possibly divergent) whose
first nonvanishing term has degree k,, or greater.

Merkes and Scott [12] solve Riccati differential equations of the form
(1.5) R[W(2)] := zA(2) + B(2)W(2) + C(2)W?(z) — 2"W'(z) := 0,

where A(z), B(z), and C(z) are analytic at z = 0 and k is a positive
integer, by finding a formal C-fraction solution

dyz¢t do2¢2 d, 2"

1.6
(1.6) 1 + 1 + + 1 +

where the numbers dj are complex constants and the ex’s are positive
integers. Notice that these Riccati equations have a singularity at
z=0.

Stokes [13] considered Riccati equations of the form
(1.7) R[Y]:= A(z) + B(x)Y + C(2)Y? + zD(z)Y’' =0,

where A(z), B(z),C(z), and D(z) are real valued polynomials of the
real variable x. He obtained regular C-fraction solutions of the form

(%)) a1xr anT

1.8 y=2 == .
(18) 1+ 1 +  + +
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or

Qpr T QnT

1.9 y = 2%~ ==
(1.9) 1 + 1 + + 1 +

b}
where the a;’s are real constants for i € Z*, by using a method very
similar to that of Merkes and Scott.

From a computational point of view, the C-fraction approach had
some advantages over the other continued fraction solutions (including
the general T-fraction approach [4, 5]), so we have concentrated on
C-fractions here. The method used in this paper is an extension of
that used by Merkes and Scott. Their algorithm has been modified so
that it can also handle Riccati equations without a singularity at zero,
such as

(1.10)  R[W(2)] := A(2) + B(2)W(2) + C(2)W?(z) — W'(z) = 0,

where A(z), B(z), and C(z) are analytic at z = 0. This modification
is of some importance since such nonsingular equations seem to arise
in applications more frequently than singular equations. In the next
section we will discuss the algorithm and its theory in some detail.

In discussing the computational aspects of C-fraction solutions, we
consider regular C-fractions

diz  dpz dnz

(1.11) e = L. v
1 +1 + + 1 +

which are C-fractions with e;, = 1 for all k € Z™T, separately from the
more general C-fractions in which e, > 1 for some k € Z*. There are
some desirable consequences of having a regular C-fraction solution,
but, unfortunately, not every Riccati equation has such a solution.
Section 3 will be devoted entirely to regular C-fraction solutions and
the advantages associated with them. In Section 4 we concentrate on
the more general C-fractions and some of their drawbacks. We conclude
with some examples in Section 5.

2. The algorithm. Merkes and Scott [12] developed an algorithm
for finding a formal C-fraction solution,
dyz¢t do2¢2 d, 2"
1+ 1 + + 1 +

(2.1)
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to Riccati equations of the form
(2.2) R[W(2)] := 2A(2) + B(2)W(2) + C(2)W?3(2) — 2*W'(z) = 0,

where
(i) A(z),B(z) and C(z) are analytic at z = 0, and
(ii) k is a positive integer.

We generalize their algorithm to apply to Riccati equations of the form
(2.3)  R[W(2)]:= A(2) + B(z)W(2) + C(2)W?(2) = W'(2) = 0,

where A(z), B(z), and C(z) are analytic at z = 0.

For the moment, let us focus our attention on the algorithm due to
Merkes and Scott [12]. As mentioned in the introduction, Riccati equa-
tions have the spectral property that a linear fractional transformation
of the dependent variable yields another Riccati equation in the new
dependent variable. It is this property that is exploited to generate the
C-fraction solution (2.1). We start with

Definition 2. A Riccati equation of the form (2.2) is said to be
admissible if the following conditions are satisfied:
(i) A(z), B(z) and C(z) are analytic at z = 0;
(ii) B(0) and C(0) are not both zero;
(iii) k is a positive integer;
(iv) if k =1, B(0) is not a positive integer, and, if k£ > 1, B(0) # 0.

By using the transformations

1 267+
(2.4) Wi(z) = -2HL2

= I 2 T —01,...,
1+Wn+1

a sequence of Riccati equations
(2.5)
{Ra[Wn(2)] i= 240 (2)+ B (2)Wa(2) +Cn(2) Wi (2) =" Wy (2) = 0},

(where the subscript zero is attached to the original equation) is
generated. Note that k is fixed for the sequence and all of the equations
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have the same form. Let

ZAn(Z) = aan—l,nza" + aan,nzanJrl + - ) aan—l,n 7é 07
(26) Bn(z) = b()’n =+ bl,nz =+ e 5
Cn(z)=con+cinz+---.

Merkes and Scott [12] proved the following theorem.

Theorem 3. If
(2.7)
Rp[Wi(2)] := 240(2) + Bp(2)Wy(2) + Cr(2)W2(2) — 2FW/(2) = 0

is admissible and A,(z),Bn(z) and Cn(z) are given by (2.6), then
R, 41[Wit1(2)] = 0 is admassible if and only if

€n+1 = Qn, dn+1 = iazz;’n fOT‘ k=1
(2.8) S

—Qa,—1,n

entl = Qn, dpi1 = “hon for k> 1.

A direct consequence of this theorem is

Corollary 4. If the Riccati differential equation of the form (2.2) is
admissible, then a C-fraction of the form (2.1) can be constructed from
it with the constants determined uniquely by (2.8).

Proof. Use the transformations

dn+lze"+1

(2.9) Wi(z) = T+ Won®

to generate the sequence of Riccati equations. From the sequence of
equations, determine {e,}5>; and {d,}52; as in Theorem 3. O

Notice that the C-fraction terminates if and only if A,(z) = 0 for
some n € ZT.

Now let us consider Riccati equations of the form (2.3) where
A(z),B(z) and C(z) are analytic at z = 0. We can also construct
a C-fraction in this case.
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Definition 5. A Riccati equation of the form (2.3) is said to be
admissible if the functions A(z), B(z) and C(z) are analytic at z = 0.

Theorem 6. If the Riccati equation (2.3) is admissible, then it is
possible to construct a C-fraction of the form (2.1) from it.

It will be shown later that this C-fraction is the unique formal C-
fraction solution that vanishes at z = 0.

Proof. Use the transformation
(2.10) Wo(z)

to obtain the Riccati equation

(2.11) Ry[Wy(2)] := 2zA1(2)+ By (2)W1(2)+C1(2)Wi(2)—2W{(z) = 0,

where

zA1(z) i= €1 — 27;1+IA0(Z) — 2By(z) — d122T1Cy(2),
(2.12) Bi(z) :==e1 — 2Z7de11+1 Ag(z) — 2Bo(2),

_e1tl

Ci(z) == di Ap(2).
Let
(2.13) Ag(z) = LLD“]_L():/:"‘W1 F 80,02+, Qap-1,0 # 0, ap > 1.
Define
(2.14) e1 = ag and dq := Gao-1,0

€1

Then A;(z), B1(z) and C4(z) are analytic at z = 0 and B;(0) = —e; =
C1(0), and hence R;[W1(z)] = 0 is admissible. Therefore, by Corollary
4 we can construct the C-fraction

dqz¢t do2€2 dy 2"

2.15
(2.15) 1+ 1 + 4+ 1 +
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from it. Thus, we can construct the C-fraction (2.1) from the Riccati
equation (2.3), where d; and e; are given by (2.14) and dj, = dy_1 and
e, =€,_1fork=2,3,....0

Note that the transformation (2.10) introduces a singularity at z = 0
which will be retained by the subsequent equations.

The C-fractions constructed are formal continued fraction solutions
to their respective differential equations. Furthermore, there is a very
nice relationship between the formal continued fraction solution and
the formal power series solution. The following lemma will be useful in
establishing this.

Lemma 7. (A) Let the C-fraction (2.1) be constructed from the
admissible Riccati equation

(2.16) Ro[Wo(2)] := Ao(2) + Bo(2)Wo(2) + Co(2) W5 (2) — Wi(2) = 0.
Let f,(2) be the n** approzimant of (2.1). Then

(2.17) Ao[Ro(fn)] = O(z").

(B) Let the C-fraction (2.1) be constructed from the admissible Riccati
equation
(2.18)

Ro[Wo(2)] := zA0(2) + Bo(2)Wo(2) + Co(2)WE(2) — 2"W}(2) = 0.

Let f,(2) be the n** approzimant of (2.1). Then

(2.19) Ao[Ro(fn)] = O(z").

Proof. (A). Since Wy(z), W1(z), ..., Wy, (z) are related to each other
by

dyz¢t do2¢2 dy26m
2.20) W = .
(2:20) Wo(2) 1 + 1 + + 1+ W,(z)’
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setting W, (z) = 0 determines Wy(z), W1(z),... , Wr_1(2). In particu-
lar, by setting W,,(z) = 0, we have Wy(z) = f.(2) and

djey1 241 dp 2"

(221)  Wi(2) e

k=1,2,...,n—1.

Also note that direct substitutions yield the relations

—dyz° -1

(2:22) Ro[Woy(2)] = WRl[Wl(z)]
and
(2.23) Rp[Wi(z)] = %RW[WM(@], k=1,2,....
Thus, we have
k
_ S (et (d)
(2.24) Ro[Wy(2)] = (71)kz i 1+ Wj(z))Q R [Wi(2)],
k=1,2,....
Therefore,
(2.25)

Ro[fn(2)] = (_1)%2;;1@]- H % CAn(z), n=1,2,....

Since Ag[Wi(z)] = O(z), we have Ag[1/(1+Wi(2))] = O(1), and hence,

n

(2.26) Ao[Ro(fa(2))] = O(z5=1).
Taking note that e; > 1 for all j, equation (2.17) now follows.
The proof of (B) is completely analogous so we omit it. O

The next Theorem is a direct consequence of Lemma 7.

Theorem 8. (A) Let (2.3) be an admissible Riccati equation. Then
the C-fraction solution whose existence is guaranteed by Theorem 6 is
a formal continued fraction solution to (2.3).
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(B) Let (2.2) be an admissible Riccati equation. Then the C-fraction
solution whose ezistence is guaranteed by Corollary 4 is a formal
continued fraction solution to (2.2).

It is well known that each C-fraction corresponds to a unique power
series. Merkes and Scott proved the following theorem relating the
C-fraction solution to the formal power series (fps) solution.

Theorem 9. If the Riccati equation (2.2) is admissible, then the
formal continued fraction solution whose existence is guaranteed by
Corollary 4 corresponds to the unique formal power series solution that
vanishes at z = 0.

We will prove the analogous theorem for the generalization.

Theorem 10. If the Riccati equation (2.3) is admissible, then the
formal continued fraction solution whose existence is guaranteed by
Theorem 6 corresponds to the unique formal power series solution that
vanishes at z = 0.

Proof. 1t is easy to show that R[W(z)] = 0 has a unique fps solution
L(z) that vanishes at z = 0. Let L*(z) be the fps to which the formal C-
fraction corresponds. The relationship between the C-fraction solution
and its corresponding fps is characterized by

n+1

(2.27) L*(2) = Ao(fn) = O(z4=i=1 7).
Therefore,

(2.28) L*(2) — Ao(fn) = O(z"Mh).
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Now compute

RIL*(2)] = R[fn(2) + L7(2) = fu(2)]
= A(2) + B(2)[fn(2) + (L7(2) = fn(2))]
+ C(2)fal2) + (L*(2) = fu(2))]?
— [fu(2) +(L7(2) - (Z))]'
—R[fn( )]+ B(2)[L*(2) = fu(2)]
CUL*(2))* = fa()] = [(L*(2)) = fal(2).
Thus,
Ao(R[L"(2)]) = O(2") + O(z") + O(z") — O(z")
=0(z"),
where the derivative of L*(z) is taken formally. Since this result
holds for all n € Z™T, it follows that Ag(R[L*(z)]) = 0, and, hence,

L(z) = L*(2). O

The next theorem states that the formal C-fraction solution to a
Riccati equation (2.2) or (2.3) is unique.

Theorem 11. (A) If the Riccati equation (2.3) is admissible, then it
has a unique formal C-fraction solution of the form (2.1).

(B) If the Riccati equation (2.2) is admissible, then it has a unique
formal C-fraction solution of the form (2.1).

Proof. (A). Existence of a formal C-fraction solution to (2.3) of the
form (2.1) is established by Theorems 6 and 8. Let

dqz¢t do2€2 dy 2"
1 + 1 + + 1 +

be an arbitrary formal C-fraction solution to (2.3). Let f,(z) be the
b approximant of (2.29). By Definition 1,

(2.30) Ao(R[fa(2)]) = O(z"),

where lim,, , k, = co. Let L*(z) be the unique fps to which the
formal C-fraction solution corresponds. By an argument analogous to
that in the proof of Theorem 10,

(231)  A(RIL()]) = O(*) + O(z") = O(zmtknnd).

(2.29)
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This holds for all n, which implies that Ag(R[L*(z)]) = 0. Thus, L*
must be the fps solution to R[W(z)] = 0 which vanishes at z = 0. This
fps is unique and corresponds to a unique C-fraction, hence the formal
C-fraction solution is unique.

The proof of (B) is completely analogous. O
Merkes and Scott [12] also proved part (B) of the following theorem.

Theorem 12. (A) If the Riccati equation (2.3) is admissible, and
if its formal C-fraction solution converges uniformly in a neighborhood
of z = 0 to a function W(z), then W(z) is the unique solution of
R[W (z)] = 0 that is analytic at z = 0 satisfying W(0) = 0.

(B) If the admissible Riccati equation (2.2) has a formal C-fraction
solution that converges uniformly in a neighborhood of z = 0 to a
function W (z), then W (z) is the unique solution of R[W(z)] = 0 that
is analytic at z = 0 satisfying W(0) = 0.

Proof of (A). Let f,(z) be the n'® approximant of the C-fraction
solution. By Theorem 5.13 in [9], W (z) = lim, 00 fn(%2) is analytic in
a neighborhood of z = 0, and the Taylor series expansion of W (z) is
the power series L*(z) to which the C-fraction corresponds at z = 0.
By Theorem 9, L*(z) is a fps solution of R[W(z)] =0 at z =0. It is
therefore a solution in the neighborhood of z = 0 in which it converges.
The assertion follows from the fact that W(z) = L*(z) for z in this
neighborhood. O

3. Regular C-fraction solutions. In Section 2 we saw that, given
an admissible Riccati equation of either form (2.2) or (2.3), we are
guaranteed a formal C-fraction solution

dyzt do 2¢2 d,z"
3.1 vy dp€eC,n=1,2,....
(3-1) 1 + 1 + + 1 +
Ife,=1forn=1,2,..., then we have a regular C-fraction solution.

There are certain advantages computationally to having a regular C-
fraction solution, and it is the objective of this section to highlight
these. We start with a theorem that tells us exactly when a Riccati
equation has a regular C-fraction solution.
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Theorem 13. The admissible Riccati equation R[W (z)] = 0, of the
form (2.2) or (2.3), has a regular C-fraction solution

diz dsz dpz
(3-2) %+%+'”+T+”" o € C,
if and only if A,(0) £ 0 forn=0,1,....
Proof. Recall that, for n =0,1,...,
(3.3) Ap(2) = any—102%" oy n 2% 0y gy —1m # 0,
and
(3.4) Ent+1 = Q.

The result follows directly. O

The next theorem is the key to the advantages inherent in a regular
C-fraction solution.

Theorem 14. (A) Let R[W(z)] = 0 be an admissible Riccati equation
of the form (2.2) that has a regular C-fraction solution. Then d,, is a
function of the first n coefficients of A(z) and B(z) and the first n — 1
coefficients of C(z) (Note that di does not depend on any coefficients
of C(2))-

(B) Let R[W(z)] = 0 be an admissible Riccati equation of the form
(2.3) that has a regular C-fraction solution. Then d, is a function of
the first n coefficients of A(z), the first n — 1 coefficients of B(z) and
the first n — 2 coefficients of C(z) (In case n — 2 is equal to zero, d,
does not depend on C(z); if n—1 =0, then d,, depends on neither B(z)
nor C(z)).

Proof. (A). Let

An(z) = ao,n +a1,n2+ +ak7nzk + e ,
B"(z) = bO,n +b1,nz+ +bk,nzk + .- ,
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and
Co(2) = o+ Crnz+ -+ epnzt+--0.

An inductive argument gives us that

(1) ag,n is a function of ag,0,@1,0,--- , Gk+n,0,00,05- - - »bk+n,0, and
€0,0 - -+ » Ck+n—1,05
(11) if n Z 2, bkm is a function of ag,0y--- ,ak+n_170,b070,...,
bk4n—1,0, and cop,..., then cyyn_2,0; otherwise, by, is a function of
a070, ey ak+n,1,0, and b070, e 7bk:+n71,0;
(i) if n > 2, ¢k, is a function of agg,... ,@k+n—1,0,00,05-- -,
br+n—1,0, and cp0,..., Ckyn—2,0; otherwise, c , is a function of ag,

veey Ak4n—1,0 and b070.

Since dp+1 = —aon/bon if k=1 o0r dyy1 = agn/(1 —boy) if k> 1,
for n =0,1,..., the result now follows.

(B). This follows from the proof of Theorem 6 and from part (A) of
this theorem. O

Perhaps the most significant consequence of this theorem is that
when computing we may approximate the coefficient functions by
polynomials without introducing any error into the computations due
to these approximations. As an example, suppose an admissible Riccati
equation of the form (2.2) has a regular C-fraction solution. In order to
calculate accurately the first n elements of the continued fraction, all
we need to use are the (n—1)5* degree Taylor polynomials (at z = 0) for
A(z) and B(z) and the (n — 2)*? degree Taylor polynomial (at z = 0)
for C'(z).

Another consequence is that one can considerably reduce the com-
putation by calculating fewer terms of the coefficient functions at each
step. Returning to the example above, to calculate di,ds,... ,d,, we
start with the (n — 1)® degree Taylor polynomials for A(z) and B(z)
and the (n —2)™® degree Taylor polynomial for C'(z). At each step, the
degree of the polynomials is reduced by one unit until, at the last step,
just the constant terms of A(z) and B(z) (and nothing for C(z)) are
calculated. These two terms are all that are needed to calculate d,,.
Thus, the program is quite efficient.
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Unfortunately, not every Riccati equation has a regular C-fraction
solution. In the next section, we discuss what the ramifications are
when we do not have a regular C-fraction.

4. C-fraction solutions. Given an admissible Riccati equation of
either form (2.2) or form (2.3), we are guaranteed a formal C-fraction
solution (2.1). By Theorem 13, we know that if A,,(0) = 0 for some n,
then the equation does not have an infinite regular C-fraction solution.
There are two possibilities. Either A4,(z) = 0, or A,(0) = 0 but
Ap(z) # 0. In the first case, the Riccati equation has a finite regular C-
fraction solution, and hence, the solution is a rational function. In the
second case, the equation has a C-fraction solution that is not regular.
There is one important difference between regular C-fraction solutions
and C-fraction solutions in general. This is partially characterized by
the following theorem.

Theorem 15. (A) The admissible Riccati equation R[W (z)] =0, of
the form (2.2), has a C-fraction solution of the form
dqz¢t do €2 d,z"

(4.1) .
+ 1 +  + 1 +

-, d,e€Cande, €Z".

Let
(4.2) O = Zej and vy, = Zej.
j=1 j=2

Then d,, is a function of the first 6,, coefficients of A(z), the first v, +1
coefficients of B(z) and the first v, +1 — 61 coefficients of C(z).

(B) The admissible Riccati equation R[W (z)] = 0, of the form (2.3),
has a C-fraction solution of the form (4.1) where d,, is a function of the
first 6, coefficients of A(z), the first v, coefficients of B(z) and the first
Yn — 01 coefficients of C(z). (Note that we are using the convention
that if any of the quantities describing the number of coefficients is
nonpositive, then d,, does not depend on any of the coefficients of the
respective function.)

Proof. (A). Let
An(z) = aan—1,nza"71 + a0, n2"" + 1, Gap-1,n #0,
B

(
n(Z) :b07n+b1,nz+“‘+bk,nzk+... ,
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and
Co(2) = o+ Crnz+ - +epnzt +--0.

An inductive argument gives us

(i) ak,n is a function of

Qo — e, Q -1 b ...,b -1
ap—1,0, ) n Otj,O’ 0,0, ’ (ZZ;I Dtj)+170’

j=1
... n— for k > -1
c0,07 7C(Zj:11 aj)fag+k+l,0’ © k Z Op )

(ii) bk, and cg ., are functions of

Qog—1,09 - - 7a(Z;;01 a;)+k—1,0° b0,0a Tt b(2:;11 aj)+k,0’
and ¢y g, .. - '€ ;;11 o)) —ao+h,0"
Since ep+1 = an and dpy1 = aa,-1,n/(n — bon) if B = 1 or
dpt1 = —aq, —1,n/bon if k> 1for n=0,1,..., the result now follows.

(B) This follows from the proof of Theorem 6 and from part (A) of
this theorem. O

Note that if the continued fraction solution is a regular C-fraction,
then e, = 1 for n = 1,2,... and Theorem 14 is just a special case
of Theorem 15. If the C-fraction solution is not a regular C-fraction,
then the numbers of coefficients needed to calculate d,, accurately are
functions of ey, eq, ... ,e,. Therefore, one cannot be sure of the degree
polynomial to use in approximating the coefficient functions A(z), B(z)
and C(z) without a priori knowledge of the exponents in the continued
fraction. As one of the examples in Section 5 illustrates, this is not of
concern in every problem. If the coefficient functions are polynomials,
then, of course, there is no need to approximate.

5. Numerical illustrations. The algorithms discussed in Section
2 can be viewed both as computational tools to find solutions to
specific Riccati equations and as ways to generate continued fraction
expansions for classes of functions. Merkes and Scott emphasized the
latter approach. They used the algorithm to find a continued fraction
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expansion for a ratio of 3 F} hypergeometric functions. They did this

by considering the Riccati equation

(5.1)
1

(1-2)
The equation thus defined is clearly admissible when c is not a negative

integer, hence the algorithm may be applied to yield a convergent
regular C-fraction (3.2) with coefficients

(%(b )z +[(b—a)z — W (z) — cW2(z)> —2W'(z) = 0.

(atn)(b—c=n) _
(5-2) d — m’ n_1’3’5,'."

(b+n)(a—c—n) _
Te+2n—1)(cr2n)’ n=2,4,6,....

The function to which this continued fraction converges is a solution

to the Riccati equation (5.1), as is the ratio

_ 2F1(aaba %) Z) o
oFi(a,b+1,¢+41;2)

(5.3) W(z)

Since the solution to the equation that satisfies W (0) = 0 is unique,
the two must be the same. A number of well known functions can be
written as such a ratio of 3 F; hypergeometric functions, for example,

sin~!z

(5.4) Vet

Another example of this use of the algorithm is to find the C-fraction
expansion of tan z. This function is clearly the solution of the Riccati
equation

(5.5) W =14+W?
that satisfies W(0) = 0. The algorithm applied to this problem yields
the well-known expansion
12 slp2 ol ol
+ 1 + 1 +

(5.6) tanz =

[l RN

This last example is also useful as an illustration of the other use of
the algorithms, namely that of numerical computation. The algorithms
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may be implemented on a computer using real or complex arithmetic
as described in Sections 3 and 4. In our examples we used real single
precision arithmetic in four computer programs, one for each algorithm
described in Section 2 using C-fractions and regular C-fractions. These
programs ran on several machines, among them a micro-VAX II and
an IBM PC/AT compatible.

In example (5.5) the program for the regular C-fraction expansion
predictably fails, while the C-fraction program gives an arbitrary num-
ber of coefficients d,, for the expansion correctly to machine precision.
This illustrates the fact that the algorithm gives exact results for the
coefficients of the continued fraction when the coeflicients are polyno-
mials. A more difficult problem in this vein is

(5.7) W' = sec® x + sec® W2,

The coefficients here are analytic at * = 0 with infinite power series.
The solution to this problem is W(z) = tan(tanz). Note that this
function has a singularity at =, = 1.0038848, and, hence, we would
expect a truncated continued fraction to have an increasing error as
x — x5. The first few terms of the C-fraction expansion for W are
given approximately by

xr  —.66667z2 < —.23333z2  —.2224532

5.8) W(z)==
(5:8) W) =7 , 1 T 1 T 1 +
—.171132%2  —.134422%2 —.18695z2 —.13809z2

1 + 1 + 1 + 1 +

Some results are summarized in Table 5.1. The errors given are rel-
ative errors between the true solution and the approximate solution
given by the algorithm. The notation Nieg is the number of terms
of the power series expansion for the coefficient function given, while
Nt is the number of correct terms in the continued fraction expan-
sion for the solution. Note in particular that two terms of the Taylor
series for sec? x (one of which is zero) are needed to calculate each addi-
tional nonzero term of the C-fraction. In other words, we must take two
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Neoett Neg. Error(:) Error(1)
3 2 .01041 .94468
) 3 .00064 .87188
7 4 .000069  .73328
9 5 .000009 .52593

19 10 <107? .01732
TABLE 5.1. Results for W/ = sec? z + sec? zW?2.

derivatives of the coefficient functions in order to get one term of the
continued fraction solution.

On the other hand, many Riccati equations give rise to regular C-
fraction solutions. The equation

1 w2

r_
(5.9) W=

is one such example. It is worth noting that similar problems arise
frequently in physical applications; see [2, 10]. In this case we need
only calculate one new term of the Taylor series expansion for A(z) for
each correct term of the continued fraction solution

T —.5z 1.1667x —1.0238x

14+ 1+ 1+ 1 +
.02259z —.075565zx 13577x

1 + 1 + 1 + 7

(5.10)

These results are summarized in Table 5.2.

Neoei Neg  Error(3) Error(1)

2 2 .18049 1
3 3 .05138 3
4 4 .00084 .01031

) ) .00001 .00065
6 6 .000002  .00011

TABLE 5.2. Results for W/ = 1/(1 — ze~%) — W2.
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Finally, we should point out that when the solution to the Riccati
equation is a rational function, then the associated continued fraction
terminates, giving the exact solution with a finite number of terms.

REFERENCES

1. M. Abramowitz and I.A. Stegun, Handbook of mathematical functions with for-
mulas, graphs and mathematical tables, National Bureau of Standards, Washington,
D.C., 1964.

2. Richard Bellman, Robert Kalaba and G. Milton Wing, Invariant imbedding
and mathematical physics. I. Particle Processes, J. Math. Phys. 1 (1964), 280-308.

3. J.S.R. Chisolm, Continued fraction solution of the general Riccati equation,
Rational Approximation and Interpolation, Proc. of the UK-US Conf. (Tampa,
FL, 1983), Lecture Notes in Mathematics, vol. 1105, Springer-Verlag, Berlin, 1984,
109-116.

4. S. Clement Cooper, William B. Jones, and Arne Magnus, General T'-fraction
solutions to Riccati differential equations, in A. Cuyt (ed.), Nonlinear numerical
methods and rational approzimation, D. Reidel, 1988, 409-425.

5. S. Clement Cooper, General T-fraction solutions to Riccati differential equa-
tions, Ph.D. dissertation, Colorado State University, 1988.

6. L. Euler, Summatio fractionis continuare, cuius indices progressionem arith-
meticam constitunt dum numeratores omnes sunt unitates, ubi simul resolutio ae-
quationes Riccatianae per huiusmodi fractiones ducetur, Opuscula analytica II,
Petropoli (1785), 217-239.

7. , Analysis facilis aequationem Riccatianam per fractionem continuam
resolvendi, Mem. Acad. Imper. Sci. Petersb. 6 (1813-1814), 12-29.

8. W. Fair, Padé approzimation to the solution of the Riccati equation, Math. of
Comp. 18 (1964), 627-634.

9. William B. Jones and W.J. Thron, Continued fractions: analytic theory and
applications, encyclopedia of mathematics and its applications 11, Addison-Wesley
Publ. Co., Reading, MA, 1980 (distributed now by Cambridge Univ. Press, NY).

10. J. Kergomard, Continued fraction solution of the Riccati equation: applica-
tions to acoustic horns and layered-inhomogeneous media, with equivalent electrical
circuits, to appear in Wave Motion.

11. J.L. Lagrange, Sur l'usage des fractions continues dans le calcul intégrale,
Nouv. Acad. Royale Sci. Belle-Lettres de Berlin, Oeuvres, vol. IV, 1776, 301-332.

12. E.P. Merkes and W.T. Scott, Continued fraction solutions of the Riccati
equation, J. Math. Anal. Appl. 4 (1962), 309-327.

13. A.N. Stokes, Continued fraction solutions of the Riccati equation, Bull.
Austral. Math. Soc. 25 (1982), 207-214.



158 K.D. COOPER, S.C. COOPER, AND W.B. JONES

DEPARTMENT OF PURE AND APPLIED MATHEMATICS, WASHINGTON STATE UNI-
VERSITY, PuLLMAN, WA 99163-3113

DEPARTMENT OF PURE AND APPLIED MATHEMATICS, WASHINGTON STATE UNI-
VERSITY, PULLMAN, WA 99163-3113

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COLORADO, BOULDER, CO
80309-0426



