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REPRESENTATION OF THE ATTAINABLE SET
FOR LIPSCHITZIAN DIFFERENTIAL INCLUSIONS

ARRIGO CELLINA AND ANTONIO ORNELAS

1. Introduction. In this paper we consider the Cauchy problem
(CP) S F(t)x)a I(O) =¢,

where F' is Lipschitzian with respect to z, with values that are closed
(not necessarily convex nor bounded) subsets of R™ and & ranges in a
compact subset = of R™. We show that the map that assigns to each ¢
the set of solutions of (CP), S(§), can be continuously represented as

The same result holds for the map from & to the attainable set at time
T, Ar(&), which in general is not a closed set. Similar representations
of set valued maps were known in case the values are compact convex;
see [3, 7, 8].

In order to obtain our representation, we prove first a continuous
selection theorem from the map S(€), which is more precise than the
result presented in [2]. Moreover, we do not assume the boundedness
of the values of F', and our proof is considerably simpler than the proof
in [2]. In particular, we do not need either Liapunov’s theorem on the
range of a vector measure or any previous existence result.

2. Notation and preliminary results. In what follows we denote
by dl(A, B) the Hausdorff distance between the sets A, B C R™ (see
[6]). The distance of a point z from a set A, d(z, A), is inf{|lz—a| : a €
A}. T is the interval [0, T]; the characteristic function of a subset E of
I is Xg. We consider AC the space of absolutely continuous functions
from I to R™ with norm ||z||ac = |z(0)] + fOT |2’ ()| dr. We assume
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that = is a compact subset of R™ with diameter D. F' is a set valued
map from I x R™ into the subsets of R"™ satisfying the following

Condition C. (a) the values of F are closed, nonempty subsets of R";
(b) t— F(t,x) is measurable [5];
(c) there exists k in L'(I) such that

dl[F(t,z), F(t,2')] < k(t)|x — 2’| a.e. on I;

(d) there exists y in AC such that

t e d[y'(t), F(t,y(t))] isin L*(I).

It is known, from the results of Filippov [4] and Himmelberg-Van
Vleck [6] that, under the above condition, problem (CP) admits at
least one AC' solution for each ¢ in . We denote the set of all such
solutions, with the topology of AC, by S(£). The attainable set at T,
Ar(€), is the subset of R™ defined as {z(T) : z € S(£)}.

To construct the selection we shall use the following

Proposition. Let vy, ... vy, be in L', and let (I;(€)) be a partition
of I into a finite number of subintervals with endpoints depending
continuously on . Consider the map

p:E—¢€ +/0 ZXIj(g)(T)Uj(T) dr.
j=0

Then there exists o in L' (I) such that for every ¢ > 0 there exists § > 0
such that

€' — &| < & implies [£(£')'(t) — ¢(§)' ()| < a(t)Xm(t),

for some set E with measure (E) < ¢.

3. Main results.

Theorem. Let F satisfy condition (C); let sp be in S(&). Then
there exists a continuous ¢ : 2 — AC, a selection from S(&), such that
©(£0) = so-
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Proof. The proof is essentially Filippov’s construction of successive
approximations. As a function of the initial data, each approximation
would not be continuous. We modify it in order to obtain continuity,
by interpolating through continuous partitions of the interval I, as in

[1].
(a) Set y : 2 — AC to be y(&)(t) :=¢ +/0 so(7) dr,

and notice that y is continuous and verifies

dly(§)'(t), F(t,y(§)(1))] = dl(so(t), F(t, y(£)(t))]
< dALE(2, y(60) (1)), F (8, y(€)(£))] < k(t)|€0 — £l

Choose v°(€)(t) to be a measurable selection from F(t,y(£)(t)) [5] such
that

(&) (1) —v" () (D) = dly (€)' (1), F (£, y(§)(1)] < k(t)[&o —&|-
Hence v°(€) belongs to L. Fix some n > 0 and define
§(€) := min{27%n, | — &l/2} for € £ &, (&) =27 n.

Cover = with balls B(¢,6(§)), and let (B(&;,6(&5)))j=o0,...,m be a fi-
nite subcovering; in particular, £ belongs only to B(&p,d(&p)). Let
(pj) j=o0,...,m be a continuous partition of unity subordinate to this cov-
ering, and define Iy(§) := [0, Tpo(&)] and, for j > 0,

(&) == [T(po(&) + -+ pj—1(£)), T(po(&) + - -- + p;j (£))]-
Set

t>=:s+/zx1 (¢;)(r) dr

From the Proposition, it follows that y! is continuous from Z to AC.
Moreover, y' (&) = so, since Ip(§) = [0,7]. We have

v [ e |dv</2\v (€) ~ v(€)ldr

= /0 > Xiyek(r)|€ — &l dr < Dmft),
j
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where m(t) := fot k()d
Fix ¢ and let j be such that ¢t € I;(§). Then

(2)

dly' (€)' (1), F(t,y(€)(1))] = d[v°(&)(t), F(t,y(€)(1))]
<dl[F(t,y(§) (1), F(ty(€)(®)] < k()] —El
< 27%nk(t).

This estimate is independent of j, hence it holds on I. By the same

reasoning,

(3) dly*(&)'(t), F(t,y"(€)®)] < dly' (€)' (2), F(t, y(€)(1))]
+AL[F(t,y(6)(1), F(t,y"(€)(0))] < k(t)[27°n + Dm(t)].
(b) In general we claim that for n = 1,2, ..., we can define a continuous
map y" : 2= — AC verifying y™(£y) = so and
(i)
/ ly"™ (€ §)| dr
< Dm;(t) 2! [2—2 5 erst))i] :

(i)
dly"™ (€)' (1), F(t, 3™ () ()] < n27"*k(2);

(i)
Ay (€)' (), Flt,"(©)0)
< ()™ 4 gy O
) i=0

i

(iv) there exists o™ in L! such that for every ¢ > 0 there exists § > 0
such that

€' — €] < ¢ implies [y"(£)'(t) —y" (&) (D] < ™ ()X (D),

for some E C I with measure (F) < .
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From the definition of y' and the Proposition, this claim holds for
n = 1. Assume that it holds for n — 1.

Choose v" (&) (t) € F(t,y"*(£)(t)) such that

ly™ 1) (1) — ™ HE (@) = dly™ (&) (1), F(t, y" H(€)(1)]
n—1 n—1 m i
< Dk() 1(;? RCRLO)S (2 Z,ft))

By (iv) of the recursive hypothesis, there exists &, > 0 such that
|€" — €| < §y, implies

" HEY (1) =y MO ()] < o H(OXE(),

for some E such that [, o"'(t) dt < 927773,
Define

6n(£) P= min{(s’rh 2—n—377, ‘g - £0|/2} for 6 7é §07
6n (&) : = min{6,,27"3n}.

Cover E with balls B(&, 6, (€)) and let

B( ;7(5”(6‘7))7 ]: 07 y M, g(T)L 2507

be a finite subcover; in particular, &y belongs only to B(&g, 6, (&0)). Let
(p]”)j:(),__ymn, be a continuous partition of unity subordinate to this
covering, and define I (§) := [0, T'pg (£)] and, for j > 0,

17(€) == [T(pg (&) + -+ + 97 1(£), TP (§) + - - + P} (€))].

Set

t Mn

y"(&)(t) :=¢ +/0 ZXI;(O(T)U"*I(@)(T) dr.
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From the Proposition, it follows that y™ is continuous from = into AC.
Moreover, y"(&) = so since I} (&) = [0,T]. We have

/0 (€Y — vl () dr

< / ley(g>|v"-l<sy> — ) dr

+/0 D Xl THE v )
< [(So) [pro =0 +nera 3 C ] 4

+ /Ot (Z XI;(&)) o™ (r)Xp(r) dr
(

+ 271173.

Hence, point (i) of the recursive hypothesis holds. Fix ¢ and let j be
such that ¢ € I7'(§). Then

dly™ (€)' (1), F(t,y™ 1 (€)(1))]
= d{"” 1(f")(lt),F(t,z‘/ ~HEOW)]
< APy (g ), Fty"H(E)®)]

< k(t) [|£;f . / W e -y (€ dr

< k)02 + 027" = 027" 2k().

This estimate is independent of j, so it holds on I. Thus (i) is proved.
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By the same reasoning,
dly™ (€)' (8), F(t,y™(€)())] < dly™ (€)' (1), F(t,y" " (€)(1))]
+AL[F(ty" 1 (€)(1), F(t,y™(6)(2))]

n—2 (t)
k()[?ﬂ +p™ !

+n27 ! i? 2"3]

i

< Dk(t) L()+ 27" k(t) E:
n!
=0

Applying the Proposition to 4™ the recurrence is completed.
(c¢) From (i) we have that

_ m"(t o1 2m
(@)~ " O)llac < D™D ppn-tean),

so that the sequence of continuous functions y™ : I — AC converges
uniformly to a continuous function ¢ such that ¢(&) = so. By (iii),
(&) belongs to S(§). O

The following corollaries show that the solution set map S(£) and
the attainable set map A (€) can be continuously parametrized, and
in particular that they are analytic sets.

Corollary 1. There exists a closed subset U of a separable Banach
space X and a continuous function g : 2 X U — AC such that

g(&,U) = S(&) for any & in E.

Proof. Set X to be the separable Banach space of continuous maps ¢
from the compact Z into the separable Banach space AC, with the usual
sup norm, and let &/ C X be the set of continuous selections from the
map £ — S(€). Define g to be the evaluation map g(&,u) = u(§).
Then the continuity of g is obvious, and the above theorem gives

g(&,U) = S(8). =
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Corollary 2. There exists a closed subset U of a separable Banach
space X and a continuous function h : = x U — R™ such that

h(&,U) = Ar(€) for any € in =.
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