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PROJECTIVE SUMMANDS
OF NOT SINGULAR MODULES

STANLEY S. PAGE

1. Introduction. Let R be an associative ring with identity. In
[3], Harada defined the term non-cosmall as follows: For a left R-
module M over an associative ring R, M is non-cosmall if and only if
there is an epimorphism of a free left R-module onto M such that the
kernel is not essential. It turns out that this is equivalent to saying
that the module is not singular, and we will adopt that term in this
paper. Oshiro [6] and Harada [3] considered the rings R for which every
left not singular module has a projective direct summand and called
this condition (*)*. A module M is called an extending module (or
is said to have the extending property) if every nonzero submodule of
M is essential in a direct summand of M. Oshiro [6] gives a complete
description of the rings which satisfy (*)* in the case that the ring has
acc on left annihilators. He calls these rings co-H-rings. His theorem
states that a ring R is a left co- H-ring if and only if every projective left
R-module is an extending module if and only if every left R-module is
a direct sum of a projective module and a singular module, if and only
if every essential extension of a projective R-module is projective. We
are concerned with rings which satisfy the more general condition that
every finitely generated not singular module has a nonzero projective
direct summand, and we will denote this condition by (F)*. If the
ring is left nonsingular and has finite left uniform dimension, we will
show that the ring R satisfies (F)* if and only if R is an FGSP ring
in the sense of Goodearl [1], i.e., a ring R is an FGSP ring if the
singular submodule is a direct summand of every f.g. module. We will
obtain results similar to those of Oshira and Harada for rings with
finite uniform dimension. We also show that the bounded rings which
satisfy (F')*, which are semi-perfect with nil radical, and have a unique
minimal projective module which cogenerates all the f.g. projective
modules are FQF-3 rings. We also show that if R is a semi-perfect ring
with NJ™ = 0 which is FQF-3, and each of its homomorphic images
is an FQF-3 ring, then each of the finitely generated modules over R
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decomposes into a direct sum of cyclic modules C;, i = 1,... ,n, such
that for each i, C; is either a uniserial nonsingular projective module,
or is injective over the ring R/ann(C;). These rings mimic the integers
to a very high degree.

2. Notation. In what follows, R is an associative ring with identity.
All modules will be left R-modules unless it is specifically mentioned to
the contrary. For an R-module M, we let E(M) be the injective hull of
M. The singular submodule of a module M will be denoted by Z(M).
For a submodule A of a module M, we will say that a submodule B of
M is a compliment of A in M if B is maximal w.r.t. AN B = 0.

We say the module M is a fgee if every cofinitely generated essential
extension of M is isomorphic to M: that is, if F is an essential extension
of M such that E/M is finitely generated, then FE is isomorphic to
M. Projective fgees are of interest since, whenever they appear as
a submodule of a finitely generated module, they are isomorphic to a
direct summand of the module. The notion of a fgee module also seems
to be dual to that of a flat module. Consider the following well-known
characterization of flat modules: A module M is flat if and only if
for any f.g. free module F' and map f : FF — M with kernel K, the
following holds: For any k in K there exists an f.g. free module G and
maps h: G — M and g : F — G such that k € ker g and gh = f.

A ring R is said to be left FQF-3 if there exists a faithful module
P, such that for each finitely generated faithful module M, there is
a direct summand of M which is isomorphic to P. We will say a
ring satisfies (F)* if every not singular finitely generated module has a
nonzero projective direct summand.

3. The results. We first observe the following:

Proposition 1. Let R be a ring which satisfies (F)* and such that
the identity is the finite sum of indecomposable idempotents. Then R
1s the finite direct sum of principal indecomposable uniform modules.

Proof. We first note that if the ring R has finite uniform dimension,
then R is the direct sum of finitely many principal idempotent gen-
erated left ideals. Let e be one of these principal idempotents. We
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want to show that Re is uniform. Suppose Re contains two nonzero
left ideals A and B with AN B = 0. Then Re/A is not singular and
contains a nonzero projective direct summand. This induces a map of
Re onto this projective module which must split, and this contradicts
the indecomposability of Re. O

Corollary 2. Any ring satisfying (F)* for which the identity is
the finite sum of primitive idempotents has finite uniform dimension.
In particular, any semi-perfect ring satisfying (F)* has finite uniform
dimension.

Corollary 3. If R is a left nonsingular (F)*-ring with finite left
uniform dimension, then every finitely generated monsingular module
18 projective.

Proof. Let P be a finitely generated nonsingular module, and let F
be a finitely generated free module which maps onto P. Let K be the
kernel of this map. Since P is nonsingular, let A be a compliment to
K. Since P is nonsingular, K is a compliment to A. It follows that
A embeds as an essential submodule of P, and therefore P has finite
uniform dimension. Now P has a projective direct summand P; with
P, ®Q = P. If Q is not zero, then @) has a projective direct summand
Py, with P = P; ® P, ® Q2. We can continue in this manner to take a
summand of Q2 which is projective in case @2 is not zero. This process
must stop since P has finite uniform dimension. ]

Theorem 4. Let R be a left nonsingular ring with finite uniform
dimension. Then R satisfies (F)* if and only if R is an FGSP.

Proof. Let M be a nonsingular and finitely generated module. Let
f:F — M — 0 be an epimorphism with F' a finitely generated free
module. Let K = ker f. Since M is not singular, K is not essential in
F. So there exists a submodule A which is maximal with respect to
AN K = 0. Next, it follows that A embeds as an essential submodule
into F/L, where L is the essential closure of K, i.e., L is the maximal
essential extension of K in F. Such an L exists since R is nonsingular.
Now A is nonsingular and has finite uniform dimension, so the same is
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true of F)/L. We have that F'/L is finitely generated and nonsingular,
and so F'/L is projective by the argument in the proof of Corollary 3.
But it is clear that F/L is isomorphic to M/Z(M) and so Z(M) is a
direct summand of M.

In [1, Theorem 2.15], Goodearl shows that if every nonsingular R-
module is projective, then R is Morita equivalent to a finite product
of full upper triangular matrix rings over division rings. If we could
show that a ring which satisfies (*)* is left nonsingular and left perfect,
every nonsingular module is projective, we could then apply Goodearl’s
result to obtain one of the equivalences of Phan [8, Theorem 7]. We
will show that a left nonsingular left perfect ring which satisfies (F)* is
left Artinian. It then follows easily that for these rings the injective hull
of every projective module is projective. We will show that every finite
dimensional projective module does have the extending property if R
satisfies (F')* and has finite uniform dimension. Then for left perfect
rings, (F)* will imply (*)* by Theorem 4 of [8]. O

Proposition 5. Let R be a ring with finite uniform dimension. Then
every finitely generated projective module has the extending property if
and only if R satisfies (F)*.

Proof. Assume that R satisfies (F')*. We proceed by induction on
the uniform dimension of the f.g. projective P. Let P be a uniform
projective. Then it is trivial that P has the extending property.
Suppose every projective module of dimension less than k has the
extending property and P has dimension k. Let A be a submodule
of uniform dimension less than k. We can suppose the dimension of A
is k—1 for, if not, we can add a submodule B with BN A = 0 to A with
the appropriate uniform dimension so that A+ B has uniform dimension
k — 1. If we can show that A 4+ B is essential in a direct summand, this
summand will have uniform dimension k£ —1 and will be projective. The
induction hypothesis then will give us the desired direct summand of P
in which A is essential. To this end, let C' be a submodule maximal with
respect to CN A = 0, and let D be maximal with respect to DNC =0
and contains A. Now C' is uniform, and the uniform dimension of D
is still kK — 1. Hence, A is essential in D. Consider P/D. We claim C
is embedded in P/D as an essential submodule. If the image of C is
not essential, then this would contradict the maximality of D. We have
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that P/D is a uniform not singular module since D is not essential. It
follows that P/D is projective and hence that D is a summand of P.

For the converse, suppose M is a not singular f.g. module. Let F' be
a f.g. free module and f an epimorphism of F' onto M with K = ker f.
We have that K is essential in a direct summand @ of F. Since M is
not singular, ) is not all of F'. Hence, the module M has a nonzero
projective quotient which is isomorphic to a summand of M. ]

Proposition 6. Let R be a ring which satisfies (F)* and has finite
uniform dimension. Let R = Re; @ Rea @ --- ® Re,, where each of
the e; is primitive. Let P be any uniform projective module. Then P
embeds in one of the Re;’s.

Proof. Let P be a uniform projective module. Then for some @ we
have that P®Q = F'is a free f.g. module and is isomorphic to the direct
sum of copies of the Re;’s. If the projection of P onto each summand
is not a monomorphism, then the image of P in F is singular. Since P
is not singular, one of the projections must be a monomorphism, and
we have the desired embedding. u]

Let R be a ring which satisfies (F)* and has finite uniform dimension.
As above, write R = Re; ® Rey @ - - - @ Re,, where each of the e;’s is
primitive. Choose the indices of the summands so that for i =1,... ,k
we have Hom (Re;, Re;) is contained in the singular ideal of R if ¢ is not
equal to j, and for any h > k, Rep embeds in one of the Re; for j < k.
Clearly, this can be done. Call a set constructed in the above manner
a minimal primitive cogenerating set. When the ring satisfies (*)* and
has finite uniform dimension, by [6] the principal indecomposables in
any minimal primitive cogenerating set are all injective. We will say a
ring has a unique minimal primitive cogenerating set if any two minimal
primitive cogenerating sets have each element of one set isomorphic to
one element of the other. In the more general setting we are concerned
with, we obtain the following:

Proposition 7. Let R be a ring satisfying (F)* with finite dimen-
sion. Let Re; be a member of a minimal primitive cogenerating set.
Let M be any finitely generated submodule of the injective hull of Re;.
Then M can be embedded in Re;.
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Proof. We can assume that M contains Re;. But then M is
a uniform not singular module and is therefore a finitely generated
indecomposable projective. It follows that M is embeddable in one of
the members of the minimal primitive cogenerating set to which Re;
belongs. Since Re; is contained in M, it follows that this member must
be Rei. O

With the hypothesis as in Proposition 7, we have the following
Corollaries.

Corollary 8. Any finitely generated submodule of E(R) embeds in
an f.g. free R-module.

Proof. Let {Re;,i =1,... ,n} = C be a minimal primitive cogenerat-
ing set. Since each principal indecomposable embeds in one of the mem-
bers of C, it follows that E(R) ~ @ ) E(Re;;), where each Re;; isin C.
If M is any f.g. submodule of E(R), then clearly, M C N = @) Nyj,
where each N;; is a cofinitely generated essential extension of Re;;.
Proposition 7 allows us to embed each of the IV;; in a finitely generated
free R-module. This then gives the result. o

An R-module M is called torsionless if M embeds in a product of
copies of R and is called Lambeck torsion free if it embeds in a product
of copies of E(R).

Corollary 9. Ewvery f.g. Lambeck torsion free module is torsionless.

Proof. By considering the projections onto the direct factors of a
product of copies of E(R), the proof follows easily from Corollary 8.
]

A left ideal L of the ring R is called dense if Hom g(R/L, E(R)) = 0,
and is called closed if R/L is Lambeck torsion free. For any subset X
of the ring R, let I(X) be the left annihilator of X in R and let r(X)
be the right annihilator of X in R.
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Corollary 10. Let L be a left ideal of the ring R. Then
a) L is closed if and only if L =1(X) for some set X C R;
b) L is dense if and only if r(L) = 0.

Proof. We have that a) follows directly from Corollary 8. To
prove b), notice that since R/L is finitely generated, by Corollary 8,
Hom (R/L,E(R)) = 0 if and only if Hom (R/L, R) = 0 if and only if
r(L)=0. o

Corollary 11. E(R) is flat.

Proof. Corollary 8 implies that E(R) is the union of f.g. projective
modules, and it is well known that this implies E(R) is flat. To see this
we notice that any finitely generated submodule of E(R) is contained in
a direct sum @ > U;, i =1,...,1, where each Uj is a finitely generated
essential extension of a principal indecomposable summand of R. By
Proposition 7, we can embed each U; in a cyclic uniform projective.
It follows that the injective hull of each U; contains a projective cyclic
module which contains U;. From this, we see that the finitely generated
projective submodules of E(R) are cofinal in the set of projective
submodules of E(R). u]

Now we consider the case where R is semi-perfect and has a finitely
generated radical. In this case we can show that the structure of the
members of a minimal primitive cogenerating set are of three types.

Proposition 1.2. If R is a semi-perfect ring with f.g. radical J such
that NJ™ = 0 and satisfies (F)*, then for Re; in a minimal primitive
cogenerating set, either

a) Re; is injective and a nonsingular uniserial module, or Z(Re;) =
Jte; for some t < {the uniform dimension of R};

b) Re; is nonsingular and uniserial.
Moreover, each principal indecomposable Re; is either nonsingular and

uniserial or for some t > 0 Z(Re;) = Jte; and all submodules of Re;
that properly contain Z(Re;) are projective.
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Proof. Assume that Re; is not injective. Then there is an element
q € E(Re;) and ¢ ¢ Re;. Form Re; + Rq = M. Now M is imbeddable
in Re;. If M is isomorphic to Re; for all such ¢ not in M, then Re;
is an fgee module and is uniserial by the proof in [7] of Proposition
3. If M embeds in Re; as a proper submodule, we see that Je; is a
projective cyclic module since it contains M. We also have that under
this embedding Re; maps to a cyclic submodule T of itself. Now every
submodule between T" and Re; is cyclic, projective and has a unique
maximal submodule. It follows that Re;/T is uniserial. Moreover, T
must have the form J'e; for some ¢. It follows that Re; is uniserial
and is nonsingular. Now assume Re; is an injective. Then since J'e;
is uniform for all ¢, we have that J'e; is either projective or singular
for each ¢ > 0. In case J'e; is projective, J'e; is cyclic and contains a
unique maximal submodule. It follows that if J?e; is not singular for all
t, that Re; is uniserial. If for some t > 0, Je; is singular, by taking the
least such t we see that J'e; = Z(Re;). Moreover, all the submodules
of Re; which strictly contain J'e; are projective, linearly ordered, and
nonisomorphic. It follows that ¢ < {the uniform dimension of R}.
Finally, since each principal indecomposable embeds in one of the
members of the minimal primitive cogenerating set, we see that every
principal indecomposable has one of the forms cited in the theorem.
O

Corollary 13. If R is a left perfect left nonsingular ring which
satisfies (F)*, then R is left Artinian.

Proof. When the ring is left perfect, then the ring has acc on left
principal ideals by [5]. As we have seen, all f.g. submodules of a
principal indecomposable are cyclic and, therefore, each of the principal
indecomposable left R-modules is Noetherian and uniserial. But any
left perfect left Noetherian ring is left Artinian. o

A ring R is called a left FQF-3 ring if there exists a faithful left module
P which is a direct summand of every f.g. faithful module. Using the
results of [7], we obtain the following:
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Proposition 1.4. Let R be a semi-perfect ring with f.g. radical J
such that NJ™ = 0. If R satisfies (F)*, is essentially bounded and has
a unique minimal primitive cogenerating set, then R is left FQF-3.

Proof. For a ring which is semi-perfect, satisfies (F)*, and has a
unique minimal primitive cogenerating set, the elements of any minimal
primitive cogenerating set are all fgees. To see this, as we have seen,
if Re is an element of a minimal primitive cogenerating set with ¢ in
E(Re), then Re + Rq embeds in Re and is isomorphic to a principal
indecomposable. We could replace Re with Re + Rq and form a new
minimal primitive cogenerating set. The uniqueness then gives us that
Re and Re+ Rq are isomorphic. Now let M be an f.g. faithful module.
Let A be the annihilator of Z(M). We claim Z(M) is f.g. Since M is
faithful and f.g. and R is bounded, we see that Z(M) is not M. We
can write M = P®Y, where Z(Y) =Y and P is an f.g. projective. We
have that Y is f.g. We claim that Z(P) is f.g. Since P is isomorphic to
a direct sum of principal indecomposables, the singular submodule of
P is isomorphic to a finite direct sum of modules of the form Jte; for
primitive idempotents e;, and each of these is f.g. since J is f.g. Since
R is essentially bounded, we have that A is essential as a two-sided
ideal. Now let Re be a member of a minimal primitive cogenerating
set. If the kernel of every map of Re into M is essential, it follows
that Re embeds into the product of copies of Z(M). But this implies
that Re is annihilated by A, which in turn implies that Re is singular,
a contradiction. So each member of a minimal primitive cogenerating
set is imbeddable in M; and since each member of a minimal primitive
cogenerating set is a projective fgee, it follows that M contains a direct
summand isomorphic to the direct sum of the members of a minimal
primitive cogenerating set. This direct sum is then a faithful module
which is isomorphic to a direct summand of each f.g. faithful module,
and our ring is left FQF-3. O

A similar result holds for nonsingular rings which satisfy (F)*.

Proposition 15. Let R be a left nonsingular ring which satisfies
(F)* and has finite uniform dimension. If R is essentially bounded and
has a unique minimal primitive cogenerating set, then R is left FQF-3.
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Proof. Let M be any f.g. faithful module. As M is faithful and R is
essentially bounded, M is the direct sum of a projective module and
singular module. By arguing as we did in the proof of Proposition
9, we see that each member of a minimal primitive cogenerating set
must embed in the projective part as a direct summand. Again, each
member of a minimal primitive cogenerating set is a fgee, no two of
which are isomorphic; and so it follows that any f.g. faithful projective
module contains a direct summand isomorphic to a direct sum of the
members of a minimal primitive cogenerating set.

There is a class of rings which have all their finitely generated modules
behaving very much like finite Abelian groups. Call a ring a CFQF-3
ring if every homomorphic image of R is FQF-3. O

Proposition 16. Let R be a semi-perfect left CFQF-3 ring with
radical J such that NJ™ = 0. If M is a f.g. left R-module, then M is
isomorphic to Py @® Py ---® P,,, where each P;, i = 1,... ,n is projective
over R/A; with A; the annihilator of P;. Moreover, each of the P; is the
direct sum of uniform modules which are either uniserial or injective
over R/A;.

Proof. In order to prove the proposition, we need to show that every
homomorphic image 7' = R/A of the ring R has the property that
NK™ = 0, where K is the Jacobson radical of T. We claim that K is
(A+ J)/A. To see this, write R = Re; @ Rez @ -+ & Re,, with the
e;’s primitive orthogonal idempotents. Now suppose x is in K and not
in A+ J. We can write x = rie; + rees + --- + rpe,. Since K is a
two-sided ideal, ze; is in K as well. If ze; is not in J, then K contains
Re; which is an idempotent left ideal. It follows that e; must be in
A, and therefore that xze; is in A or in J. We can argue in a similar
manner for each of the terms xe;, from which it follows that x was in
A+ J.

We can now proceed to decompose any f.g. module M over R as
follows. Let Aj be the annihilator of M and form T} = R/A; which
is left FQF-3. Since M is faithful as a Ti-module, we can find a Ti-
projective direct summand P; of M so that M = P; & N>. Now consider
Ny and let Ay be the annihilator of No. Let T5 be R/As. Since T is
left FQF-3, Ny has a direct summand which is projective over T,. We
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can continue in this manner for only a finite number of steps since M
is finitely generated and the ring is semi-perfect. The structure of the
P; is given by Proposition 3 of [7] since at each stage we can take the
P; to be the minimal faithful module of the ring T;. O

It should be noted that if R is a left nonsingular, left FQF-3 ring with
finite uniform dimension, then Corollary 8 holds and, therefore, so do
Corollaries 9-11.
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