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POSITIVE SOLUTIONS AND J-FOCAL POINTS
FOR TWO POINT BOUNDARY VALUE PROBLEMS

PAUL W. ELOE, DARREL HANKERSON AND JOHNNY HENDERSON

ABSTRACT. Cone theory is applied to a class of two point
boundary value problems for ordinary differential equations.
Criteria for the existence of extremal points are obtained.
These criteria are in terms of the existence of nontrivial
solutions that lie in a cone, and in terms of the spectral radius
of an associated compact linear operator.

1. Introduction. Let n > 1 be a positive integer, and let o < S,
ke{l,...,n—1},and j € {0,... ,k} be given. Let p; € Cla, 3], for

i=0,...,7, and consider the linear ordinary differential equation,
j .
(1.1) y™ = Zpi(m)y(l), a<z<p.
i=0

We shall be concerned with extremal point properties of (1.1) with
respect to the family of two point boundary conditions,

(4) - P
y (o) =0, 1=0,...,k—1,
(1.2p) (3

y@(b) =

where b € («,8]. Note that, if j = 0, then (1.2;) represents conjugate
boundary conditions, if j = k, then (1.2;) represents right focal
boundary conditions, and if j € {1,... ,k — 1}, then (1.2) represents
boundary conditions that are “between” conjugate and right focal
boundary conditions.

i=j, .. m—k+j—1,

Definition. by € (a, 8] is the j-focal point of (1.1) corresponding to
(1.2) if, and only if,

bop = inf{b > | (1.1),(1.2;) has a nontrivial solution}.
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Note that, if by exists, then by > « and there exists a nontrivial solution
of the boundary value problem (1.1), (1.2).

Our purpose in this paper is to obtain, under certain sign conditions
on the coefficients, p;, ¢ = 0,... ,j, relationships among the existence
of a j-focal point, by of (1.1) corresponding to (1.2;), the existence
of a nontrivial solution of the boundary value problem (1.1), (1.2),
that is positive with respect to a cone, and properties of the spectral
radii of associated linear, compact, integral maps. For example, if
p € Cla, B], then by is the conjugate point of 3" = p(x)y corresponding
to y(a) = y(b) = 0 if and only if there exists a nontrivial solution of
y" = p(2)y, y(a) = y(bp) = 0, that does not vanish on («,by); see [3,
15].

Although this classical result can be established by elementary meth-
ods, the theory of cones in a Banach space has been employed to
carry this result over to other families of boundary value problems.
Schmitt and Smith [18] applied the theory of cones to second order,
m-dimensional systems of two point conjugate boundary value prob-
lems; Hankerson and Henderson [9] extended the techniques of Schmitt
and Smith [18] to problems of the form (1.1), (1.2), with k =n — 1,
j = n—2. Recently, Eloe, Hankerson, and Henderson [7] extended these
techniques to apply to multipoint conjugate boundary value problems.
A number of other authors have studied similar questions for two point
right focal boundary value problems; see, for example, [8, 11, 19].

This particular paper is largely motivated by the work of Schmitt and
Smith [18], whose techniques have been extended by Hankerson and
Henderson [9], and more recently, by Eloe, Hankerson, and Henderson
[7]. The key argument in each of these papers is that a mapping,
which maps a linear, compact operator, depending on b, to its spectral
radius, is strictly increasing as a function of b. In [18, 9], the
arguments to establish the strict monotoneity are geometric and rely
on the specific boundary conditions. The geometric arguments have
not readily carried over to other families of boundary value problems.

In [2], Bates and Gustafson prove that the Green’s functions for
a family of multipoint boundary value problems satisfy specific sign
properties with respect to boundary points. In [7], this observation is
exploited to obtain the monotoneity employed by Schmitt and Smith
[18] and Hankerson and Henderson [9]. In this paper, we shall carry
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the results of Bates and Gustafson over to Green’s functions for the
family of boundary value problems, y(™ = 0 satisfying (1.2;), and
hence, obtain the monotoneity as in [18, 9, 7]. We point out that the
techniques we present here are valid for j € {0,... ,k — 1} and are not
valid for the case, j = k. However, the case j = k (i.e., the right focal
case), has been resolved by Tomastik [19].

In Section 2, in order that the paper be self-contained, we provide
preliminary definitions and results from the theory of cones in a Banach
space. In Section 3, we shall obtain the sign properties of Green’s
functions that we will employ in Section 4 to define appropriate cones
in Banach spaces. In Section 4, we shall apply the results from
Section 2 and obtain criteria for the existence of a j-focal point of
(1.1) corresponding to (1.2p).

2. Cone theoretic preliminaries. In this section, in order that
the paper be self-contained, we shall provide definitions and results
from the theory of cones in a Banach space. We refer the reader to
Krasnosel’skii [12] and also to the works of Amman [1], Deimling [4],
Krein and Rutman [13], Schmitt and Smith [18], and Zeidler [20] for
accounts of the definitions and results stated here.

Let B be a real Banach space and let P be a nonempty, closed subset
of B. P is a cone provided: (i) du+ yv € P for all u,v € P and all
4,7 >0, and (ii) if u,—u € P, then u = 0. A cone is reproducing if for
each € B, there exist u,v € P such that = u — v.

A Banach space, B, is called a partially ordered Banach space pro-
vided there exists a partial ordering, <, on B which satisfies: (i) u < v,
for u,v € B, implies tu < tv, for all t > 0 and for ¢t < 0, tu > tv and
tu # tv, and (i) w3 < vy, ug < vg, for uy,us, vy, v2 € B, implies that
u1 +uz < v; +vz. Let P C B be a cone and define u < v, for u,v € B,
if and only if v — u € P. Then < is a partial ordering on B, and we
shall say that < is the partial ordering induced by P. Moreover, B is
a partially ordered Banach space with respect to the partial ordering
induced by P.

Let N1, N2 : B — B be bounded, linear operators. We shall say that
N; < Ny with respect to P provided Nju < Nau, for all u € P. If
N : B — B is bounded and linear, we shall say that N is positive with
respect to P if N(P) C P.
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Remark. In this paper < denotes partial orderings with respect
to cones and the usual partial ordering on R induced by R*. The
particular implied ordering will be clear by context.

If B is a real Banach space and N : B — B is a bounded, linear
operator, we shall employ 7(IV) to denote the spectral radius of N.

A proof of the following theorem is found in [16].

Theorem 2.1. Let Ny, a« < b < B, be a family of compact,
linear operators on a Banach space such that the mapping b — N
18 continuous in the uniform operator topology. Then the mapping
b— r(Np) is continuous.

Proofs of the following three theorems can be found in [1, 12]. In
each of the following theorems, assume that P is a reproducing cone
and that N, N;, N, : B — B are compact, linear, and positive with
respect to P.

Theorem 2.2. Assume r(N) > 0. Then r(N) is an eigenvalue of
N, and there is a corresponding eigenvector in P.

Theorem 2.3. If N; < Ny with respect to P, then r(Ny) < r(Na).

Theorem 2.4. Suppose there exists > 0, u € B, —u ¢ P such that
Nu > pu. Then N has an eigenvector in P which corresponds to an
etgenvalue, A > p.

3. Sign properties of Green’s functions. In this section, we
state in a sequence of corollaries, sign properties of Green’s functions
for the family of boundary value problems, y(™) = 0 satisfying (1.2;).
These properties will be employed in Section 4 to define the cones in
Banach spaces in which we shall then apply the results listed in Section
2. The following theorem is proved by Eloe [5].

Theorem 3.1. Let G(j,b;xz,s) be the Green’s function for the
boundary value problem, y™ = 0, (1.2,). Then (07 /027)G(j,b;x, s)
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is the Green’s function for the conjugate boundary value problem,
y(n—j) =0,

y(z)(a)zo, i=0,...,k—j—1,
y D (b) =0, i=0,...,n—k— L1

Corollaries 3.2-3.5 now follow immediately from Theorem 3.1 and
known sign properties of Green’s functions for conjugate type boundary
value problems. For Corollaries 3.2 and 3.3, see [3, 6, 14]. For
Corollaries 3.4 and 3.5, see [2, 7, 17].

Corollary 3.2. (—1)"7%(87/027)G(j,b;x,s) > 0 on (a,b) x (a,b).
Corollary 3.3. (—1)" *(8%/0z*)G(j,b;c, s) > 0 on (a,b).

Corollary 3.4. (—1)"7%(9/0b)((87 /0z7)G(j, b; x,s)) > 0 on (a, b) x
(a, b).

Corollary 3.5. (—1)"%(9/0b)((0*/0z*)G(j,b;a,5)) > 0 on (a,b).

We remark that in addition to the results of [2, 7, 17] concerning
the existence and properties of 9G/9b, it can be proved in analogy to
a result in Hartman [10, p. 97] that (0?/0z0b)G = (0%/0bdx)G. This
is also used in establishing Corollaries 3.4 and 3.5.

4. Properties of j-focal points. In this section we employ
the inequalities provided in Section 3 to construct appropriate cones
and then apply the results of Section 2. Throughout this section,
j€{0,...,k— 1} is fixed. Let

B={ycCYWp]|y?(a)=0,i=0,...,5},

with norm ||y|| = max;—o, . j{sup,<,<p |y (z)|}. Let P C B be the
cone defined by

P={yeB|(-1)"*yU)(z) >0, a <z <8}
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We note first that P is a reproducing cone. To see this, let (z(z))* =
max{z(z),0} and (z(z))~ = max{—z(z), 0}, for each &« < 2z < 8. Then,
if y € B, y(z) = (y(=))" - (y(«))”, if j = 0, and

y(z) = /Om ((;_f))! . (y9(s)* ds—/oz ((;.C_ls))! i (y9(s))" ds,

if 1 <j<k-—1. As a consequence, when suitable compact, positive
operators are defined on B, Theorems 2.2-2.4 will be applicable. We
note second that, if y € P, then

(—D)" Fy@D(z) >0, a<z<B,i=0,...,]
Further, for each b € (a, 8], we define another Banach space
By ={yc C" Va,b] | yP(a) =0, i=0,... ,k—1},

with norm |[|y|l, = max;—o, . n-1{SUPs<,<p |y ()|}, and we define
the cone P, C B, by

P,={yeBy|(-1)"*y(z) >0, a <z <b}
Again, we note that, if y € Py, then

(-1 ky@D(z) >0, a<z<b i=0,...,]
Moreover, although int P = &,

intPy,={yeBy | (—1)" *yW(z) >0, a<z<b,
and (—1)" %y (a) > 0}.

For each b € (a,f], we now consider the boundary value problem
(1.1), (1.2p); in addition, we assume hereafter that p; € C|a, ] and
(—1)"Fp;(x) >0, <z < B, for each i = 0,...,7, and that py does
not vanish identically on each compact subinterval of [«, 5]
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For each b € (a, B8], define a linear operator NV, : B — B by

Nyy(z)
be (, b5, 8) (0_o i (8)y@(5)) ds, a<z<b,

7o b 12 0 GG b, 5) (S pi(s)y(s)) ds, b<z<B.

Then

b J . i i
(Noy) D (z) = {fa 53 G U b2, 8) (i pi(s)y @ (s))ds, a <z <,
0, b<z<p.
Observe that, if y € P, then p;(s)y®(s) > 0fora < s < B8,i=0,...,7,
and so by Corollary 3.2, N(P) C P. In the discussion that follows, we
shall also restrict the operator N, to By; that is, define IV : By, — By
by

(4.2) Npyy(x /G’j,bws(Zpl ) a<z<b.

Throughout the remainder of the paper, we shall specify the domain, B
or By, when referring to the operator Ny, in order to avoid confusion.
We observe that again by Corollary 3.2, Nu(P;) C Py,

Remark. Properties of G(j,b; z, s) and the Arzela-Ascoli Theorem are
readily employed to show that NV, defined on B or By, is a compact
operator for each b € (a,8]. Moreover, note that A # 0 for all
eigenvalues of the boundary value problem,

j
(4.3) y) = )\Zpi(x)y(i)(w) and (1.2p), a<z<b.

If y is an eigenvector corresponding to an eigenvalue Aof (4.3) on [a, ],
then we can extend y to [a, 8] by y(z) = S7_o((x — b)/1)y W (b), for
b < x < B. This extension, y, satisfies y = ANy, where N, is defined
on B. Conversely, if y € B is an eigenvector for N, corresponding
to an eigenvalue, p # 0, then the restriction of y to [a,b] is a
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nontrivial solution of the boundary value problem, (4.3) corresponding
toA=1/p.

Remark. In the following, r(IN) will be associated with the operator
Np as a map from B to B.

Theorem 4.1. For a < b < 8, r(Ny) is strictly increasing as a
function of b.

Proof. We first argue that for each a < b < 8, r(Np) > 0. In [6],
Eloe and Henderson showed that there exists A > 0 and u € P\{0}
such that, for z € [a,b], Nyu(z) = Au(z). Extend u to [a, ] by
u(z) = Y o((x — b)!/1)uB(b), b < = < B, and it follows that, for
z € [a, 8], Npu(z) = Au(z). Thus, r(Np) > X > 0.

Now, let a < by < by < . Since r(Np,) > 0, it follows by Theorem
2.2 that there exists u € P\{0} such that Ny, u = 7(Np,)u. Set
y1 = Np,u = r(Np, )u and ya = Np,u. Then, for z € [«, by],

e )@ = [

[e%

hrol .
[@G(J,bz;x,s) - @G(J»bl;w,s)}

Since v € P\{0} and py does not vanish identically on compact
subintervals of [a, 3], it follows from Corollary 3.4 that (—1)" *(ys —
y1)9) (x) > 0, for < x < by. Moreover, by Corollary 3.5, (—1)" *(y,—
y1)®)(a) > 0. In particular, the restriction of y2 — y1 to [, b;] is an
element of int P,,. Thus, there exists § > 0 such that y» — y; >
du, where this inequality is with respect to the cone Pj,. Since
(y1)P(z) = 0, for by < = < B, and y, € P, it readily follows that
Yo — y1 > du, where the inequality is now with respect to the cone P.
Thus, yo > y1 + 0u = (r(Np, + §)u. It now follows from Theorem 2.4
that r(Np,) > r(Np,) + 0 > 7(Np, ). The proof is complete. O

We now state and prove the main result of the paper.

Theorem 4.2. The following are equivalent:
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i) bg is the j-focal point of (1.1) corresponding to (1.2;);
ii) there exists a nontrivial solution, y, of the boundary value
problem, (1.1), (1.2y,), such that y € Ppy;

i) 7(NVp,) = 1.

Proof. That iii) implies ii) follows immediately from Theorem 2.2.

For ii) implies i), let u € Py, \{0} satisfy (1.1) and (1.2). In [6], Eloe
and Henderson employed a cone

Py, C By, = {y € C" Yo, bo] | y satisfies (1.2;)},
where
Py, ={y€By, | ()" My D (@) >0, a <z < by, i=0,...,j},

and showed that u € int Py, .

Now extend u to [a,8] by u(z) = gzo((ac — bo)! /1N u®(by), for
by <z < B. Then r(Ny,) > 1. If r(Np,) = 1, the proof is complete by
Theorem 4.1 since, for a < b < by, 7(Np) < 1 and the boundary value
problem, (1.1), (1.2) has only the trivial solution.

Assume then that r(N,) > 1. Let v € P\{0} be such that
Np,v = 7(Np,)v. Again, by the results of [6], we have v € int Py,.
But, since u € int Py, there exists § > 0 such that u > v, where this
inequality is with respect to the cone Py,. Note that u > §v implies that
(=) Fu@)(z) > (=1)""*60\9) (z), a < = < bp; in particular, u > Jv,
where this inequality is with respect to the cone Py,. Finally, we recall
that u has been extended, for by < = < 3, and that v)(z) = 0, for
by < x < B. Thus, u > dv, where this inequality is now with respect to
the cone P. Assume that § is maximal. Then,

u = Npyu > Ny, (0v) = §Npyv = 67(Npy ),

which contradicts the maximality of §, if r(INp,) > 1. Hence, r(Ny,) =
1, and in particular, by is the j-focal point of (1.1) corresponding to
(1.2).

For i) implies iii), it is clear that i) implies r(Ny,) > 1. Moreover,
we note that limy_,, 7(Ny) = 0. Thus, if r(Ny,) > 1, it follows
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from Theorem 2.1 and the Intermediate Value Theorem that, for
some a < b < by, there exists a nontrivial solution of the boundary
value problem (1.1), (1.2,). But this contradicts i). Consequently,
7(Np,) = 1, and the proof of the theorem is complete. O
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