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OSCILLATORY AND NONOSCILLATORY
BEHAVIOR OF A SECOND ORDER
FUNCTIONAL DIFFERENTIAL EQUATION

M. CECCHI AND M. MARINI

Section 1. In this paper we are concerned with establishing cri-
teria for the oscillatory behavior of the solutions of the second order
nonlinear differential equation with deviating argument

(1) p(t)A()2' (@) + q(t) f(2(9(t)) =0, " =d/dt,

and of the corresponding ordinary differential equation

(T2) [p(t)h(z)z'(1)]" + q(t) f(z(t)) = O,
where

H1) q: [to, +o0) — R is continuous and does not eventually vanish,
i.e., there exists {tx}, tx — 400, such that g(tx) # 0;

H2) p: [tg,+00) — R is positive continuously differentiable;

H3) g : [tp,+00) — R is positive continuously differentiable such
that ¢'(t) > 0 and g(t) — +oo as t — +oo;

H4) h:R — R is continuously differentiable and h(u) > 0 for u # 0;

H5) f:R — R is continuously differentiable such that uf(u) > 0
for u # 0 and df (u)/du > 0.

Throughout by a solution of (I;) [(Iz)] we shall mean a twice contin-
uously differentiable function which exists on some half-line [¢,, +00),
satisfies (I;) [(I2)] and does not eventually vanish. For results concern-
ing the continuability we refer the reader to [3, 11, 12, 14, 20] and
references therein.

As usual, a solution of (I;) [(I2)] is said to be oscillatory or nonoscil-
latory according to whether it does or does not have arbitrarily large
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zeros. A nonoscillatory solution = of (I;) [(I2)] is said to be weakly
oscillatory if ' changes sign for arbitrarily large values of ¢ (see, for
example, [14, 15]).

Many physical systems are modeled on equations (I;) and (Iz). Such
equations arise, for instance, in the study of celestial mechanics, of
gas dynamics and fluid mechanics, of chemically reacting systems and
also in many electromagnetic problems on atomic fields. An ample
bibliography is contained in [5, 16, 20].

There are several results concerning oscillation criteria for the equa-
tions (Iy) or (Iz). Among the numerous papers dealing with this subject
we refer in particular to [5, 8, 14, 20, 22] and to the references con-
tained therein. The equation z'" + ¢(¢)|z(t)|"sgnx(t) = 0 has been
especially deeply investigated. As contributions to the study of this
problem from the point of view of the behavior of the integral average
of the function g, we refer to the recent papers [4, 9, 13, 19, 21]. How-
ever, only a few results are known concerning the existence of weakly
oscillatory solutions of (I;) or (Iy) especially if the function ¢ is allowed
to change sign for arbitrarily large values of ¢.

When ¢ < 0 for all large ¢, the equations (I;) and (Iz) have been
considered in [5, 6], respectively. The aim of this paper is to consider
the cases “g > 0” and “g changes sign for all large t,” to give
sufficient conditions in order that every solution of (Iy) [(Iz)] is either
oscillatory or weakly oscillatory and to study the asymptotic nature of
nonoscillatory solutions of (Iy) [(I2)].

When g is allowed to take on negative values for arbitrarily large ¢,
equation (I) has been considered by many authors. In particular in
[9] some criteria on the oscillatory behavior, which extend and improve
previous results in [2, 4, 8] are established. Such criteria require,
among other conditions, that f is strongly superlinear at infinity, i.e.,
such that

teo ]

This condition, which is also required by the majority of the quoted
authors, is not assumed in our paper; results here obtained involve only,
in certain cases, conditions on the integral of the function h(uw)/f(u)
for u sufficiently small.
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Further, by using averaging techniques, we shall be concerned with
the existence of eventually monotone solutions of (I;) and (Iy) and with
their asymptotic behavior. As is well known, Sturm’s theorem fails for
equations (I;) and (Iz) and so both oscillatory and monotone solutions
may exist simultaneously. In addition, the relationship between the
oscillatory behavior of the equations (I;) and (I2) is considered and the
existence of bounded solutions is discussed.

Relationships and comparisons with known results will be made
throughout the paper.

Section 2. Consider the equations (I;) and (I3) in the form

(D [p(t)h(z)’ (1)) + q(t) f((g(t))) = O.

Taking into account that ¢ does not eventually vanish, any eventually
constant function different from zero is not a solution of (I).

With respect to their asymptotic behavior, all the solutions of (I)
may be a priori divided into the following classes:

MT™ = {z = z(t) solution of (I) (not eventually vanishing): there
exists t, > to : z(t)z'(t) > 0 for t > t,}

M~ = {z = =(t) solution of (I) (not eventually vanishing): there
exists t, > to : x(t)z'(t) <0 for t > t,}

O = {z = z(t) solution of (I) (not eventually vanishing): there exists
{tn}, tn = +o0 : z(t,) =0}

WO = {& = z(t) solution of (I): z(t) # 0 for ¢ sufficiently large and
for all & > 0 there exists to, > «, there exists to, > a1 2'(ta, )2 (ta,) <

0}.

With a very simple argument we can prove that MT, M~, O, WO
are mutually disjoint. By the above definitions, it turns out that
solutions in the class MT are eventually either positive nondecreasing
or negative nonincreasing, solutions in the class M~ are eventually
either positive nonincreasing or negative nondecreasing, solutions in
the class O are oscillatory, and, finally, solutions in the class WO are
weakly oscillatory.
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Lemma 1. If

t
(1) limsup/ q(7) dr = 400,

t—+oo Jitg

then for equation (1) we have MT = &.

Proof. Suppose that equation (I) has a solution x € M*. There is no
loss of generality in assuming that there exists ¢; such that z(¢) > 0,
z'(t) > 0, z(g(t)) > 0, 2'(g9(t)) > 0 for all ¢ > t; since the proof is
similar if z(¢) < 0, z(g(¢)) < 0 for all large ¢. From (I) we have (¢t > t;)

lg(0) @(g(tr)
¢ p(s)h(z(s)(s) f'(z(g()) (a(5))d'(5)
* / (@ (e(s)) s
(2) _ / a(s) ds

or

PG _ plht)e ) - [
T (a))) ) = /th”d'

From (1) we obtain

/!
L b))
totoo f(z(g(t)))
which contradicts the assumption z'(¢) > 0 for all large t. o

We point out that Lemma 1 does not require that the function f sat-
isfies hypotheses on superlinearity and/or sublinearity. Furthermore,
in Lemma 1, deviating type conditions are not assumed and so such
a result may hold for ordinary, retarded, advanced and mixed type
equations.

The following example shows that assumption (1) cannot be dropped
without violating the validity of Lemma 1.
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Example 1. Consider the ordinary differential equation
(E1) z" +costf(z) =0

where f(u) = 1 for w > 1. Let & be the solution of (E{) such that
z(0) =1, 2/(0) = 2. Assume that there exists 7 > 0 such that 2/(7) =0
and z’(t) > 0 for 0 < ¢t < 7. Integrating (E;) on [0, 7], we obtain the
contradiction —z'(0) + fOT cosrdr = —2 +sint = 0. Consequently,
2'(t) > 0 for all t > 0 and from (E;) we get z(t) = 2t + cost. Thus, z
is continuable for all ¢ > 0 and so x belongs to the class MT.

Let us now examine the problem of the existence of solutions of (I)
in the class M~. When the function h(u)/f(u) is locally integrable for
u sufficiently small, we have the following

Theorem 1. Assume that g(t) < t. If the function h(u)/f(u) is
locally integrable on (0,c) and (—c, 0) for some ¢ > 0, that is,

“ h(w) MW s oo
@) [ Fgauere [ figaes
and if
(4) lilfig.op/T ]%/T g(r)drds =+oo for all T > ty,

then for equation (I) we have M~ =

Proof. Suppose that equation (I) has a solution z € M. There is no
loss of generality in assuming that there exists ¢; such that z(t) > 0,
z'(t) <0, z(g(t)) > 0, 2'(g(t)) < 0 for all t > #; since the proof is
similar if z(¢) < 0, 2'(¢t) > 0 for all large t. From (2) we obtain (¢t > t;)

p(t)h(z(t)z'(t) _ p(tr)h(z(t1))a(t1)

f(=z(g(2))) f(z(g(t1)))
B /t p(s)h(x(s))z(s) f'(x(g(s)))z"(9(5))g'(5)
t f*(x(9(s)))
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or

h(z(t))«'(t)

1 t
) @) = ) / ls) ds.

Since z is a nonincreasing function for ¢ > ¢; and g(t) < ¢, we have
z(g(t)) > x(t) for every t > t; and so, by taking into account that f is
a nondecreasing function, from (5) we get

Ra)e'(t) _ hz®)a't) - 1 1
flx@®) = f(z(g(t))) = p(t) /tl q(s) ds.

Thus, we have

/:%dsg _/tltﬁ/:q(r)drds

Lo e [ st [ ore

which, because of (4), implies

or

z(t1) p,
(6) lim sup/ h(u) du = +o0.
t—+o0o Ja(t) f(u)
This contradicts condition (3). The proof is now complete. O

The following examples show that assumptions (3) and (4) cannot be
dropped without violating the validity of Theorem 1.

Example 2. Consider the ordinary differential equation

(Ez) (t*z'(t)) + tz(t) = 0.

Since the function z(t) = 1/t is a solution of (Eg) for ¢ > 1, we have
M~ # &. Moreover, assumption (4) holds since (T" > 1)
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t s
1
lim —/qT drds
t—=+oo Jp p(s) Jr (r)
= 1 L +11t ! 1IT—-l-
Teaz T M T g T2 T T

while condition (3) is not satisfied.

Example 3. Consider the ordinary differential equation
(E3) (t*z*(t)2' () + 3tz(t)/4 = 0.

Since the function z(t) = ¢~/2 is a solution of (E3) for ¢ > 1, we have
M~ # @. For this equation the assumption (4) does not hold since
(T>1)

b1 s 3 T2 1 1
li — drds= lim ——+ —+ — = —
P /T 2(5) /T a(r)drds = lm -9+ g5 ¥ a0 ~ ar

while condition (3) is satisfied.

When h = 1, assumption (3) implies that the function f is sublinear
for w sufficiently small. In [9, 19] the equation (I3) with h =1 and f
strongly superlinear at infinity is considered and sufficient conditions
are given in order that (Iy) is oscillatory. Thus, in this special case,
M*T = M~ = WO = @. From Lemma 1 and Theorem 1 we get the
following result which completes the ones quoted in [9, 19].

Such a result also extends to equations with deviating argument, an
earlier oscillation criterion given in [17].

Corollary 1. Assume that g(t) < t. If the assumptions (1), (3)
and (4) are satisfied, then every solution of (1) is either oscillatory or
weakly oscillatory. In addition, if g(t) = t, then every solution of (I) is
oscillatory.

Proof. The first assertion follows immediately from Lemma 1 and
Theorem 1; the last one was proved in [17]. o
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Lemma 1, Theorem 1 and Corollary 1 are also related to recent results
in [4, 21] which involve different integral averages of the function gq.

Section 3. In this section we examine the existence of weakly
oscillatory solutions of (I). Under the assumptions of Corollary 1, (Io)
does not have weakly oscillatory solutions. In general this assertion
cannot be made for the corresponding functional differential equation
(I;) since the deviating argument may generate weakly oscillatory
solutions. The following example shows that, under assumptions (1),
(3), (4), there exist equations of type (I) (with g(t) # t) with weakly
oscillatory solutions.

Example 4. Consider the differential equation with delay

int
- " sin _
(Ex) 20+ 5 f(a(o(1) =0
where ¢g(t) = ¢ — 7 and f is a continuously differentiable function

such that f(u) = w for v > 1 and f(u) = |u|*sgnu, 0 < o < 1,
for —1/2 <u < 1/2.

The function z(t) = 2 + sint is a weakly oscillatory solution of (Eq4).
Furthermore, all the hypotheses of Corollary 1 are satisfied, as can be
seen by standard calculations. Clearly, assumption (3) holds. Now, by

noting that
2T :
sint
/ MY g —k >0,
o 2—sint
we obtain
t

(7) lim g(r)dr = +0

t—+oo 0

and so assumption (1) is satisfied. Finally, let us show that assumption
(4) is also satisfied. By (7), for any 7 > to there exists T, > 7 such
that for all ¢t > T,

¢
/ q(s)ds > kg > 0.
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Hence,

[ ([ao)o [ (few)ons [ o)
> /TTT (/qu(T) dr) ds + ki (t — T»)

and so assumption (4) is verified.

The above example demonstrates that equations with deviating ar-
gument create some new problems concerning the existence of weakly
oscillatory solutions. We shall establish various sets of conditions under
which equation (I) has no weakly oscillatory solutions. The following
holds:

Theorem 2. a) If the assumption
t
(8) lim q(s)ds = 400

t——+o0 to
is satisfied, then for equation (Iz) we have WO = @.
b) If q(t) > 0 for all large t, then for equation (1) we have WO = &.

c) If the following assumptions

(c1) p'(t)q(t) does not change sign,
(c2) P2t +a*(t) > 0

hold for all t sufficiently large, then for equation (I) with h =1 we have
WO =g2.

Proof. Claim a). Suppose that equation (I2) has a solution z € WO.
There is no loss of generality in assuming that there exists t; > t( such
that z(t) > 0 for all ¢ > ¢; since the proof is similar if () < 0 for all
large t. From (2) we have (t > 1)

p@)h(x(t)z'(t) _ p(ty)h(x(ty))a’(t1)

f(=(8)) fz(ty))
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and so, for all large ¢, 2'(t) < 0, which gives a contradiction since x is
weakly oscillatory.

Claim b). Let z be a weakly oscillatory solution of (I). There is
no loss of generality in assuming that there exists t; > to such that
z(t) > 0, z(g(t)) > 0 for all ¢t > t; since the proof is similar if
z(t) <0, z(g(¢)) < 0 for all large t. Consider the function F' given by
F(t) = p(t)h(z(t))z'(t); we have for t > t1, F'(t) = —q(t)f(z(g9(t))) <0
and so F' is nonincreasing, which gives a contradiction since F' is an
oscillatory function.

Claim c). Let z be a weakly oscillatory solution of (I). Choose a
large t; > tp such that assumptions (c;) and (c2) are satisfied for any
t > t;. Assume that z(t) > 0, z(g(¢)) > 0 for all ¢ > t;. Let {t,} be
a sequence of points of positive maximum for z’, ¢, > t;, and let {7}
be a sequence of points of negative minimum for z’, 7, > t;.

Hence,
(9) ' (t,) >0, 2 (t,) =0, z'(m,) <0, 2" (1) = 0.

Taking into account that h = 1, from (I) we obtain

Since the functions p’ and ¢ do not simultaneously vanish, we get

P'(tn) #0; q(tn) #0, p'(mn) #0, q(ma) #0

and so (9) yields

which contradicts assumption (cq1). O

We point out that if ¢(t) < 0 for all large ¢, then for equation (I)
we have WO = @ too. Such an assertion follows easily by the same
argument as given in the above proof.
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We make now some additional remarks related to Theorem 2: the
claim a) fails for equations with deviating argument, as example (E4)
shows; in claims b), ¢) hypotheses on the deviating argument g and
monotonicity assumptions on the function f are not required; in claim
c), if (c1) and (c2) are eventually satisfied and p is strongly monotone,
then ¢ cannot eventually change sign.

Finally, we note that if the function p is constant and ¢ changes sign,
then assumption (cz) is not fulfilled and Theorem 2-c) fails, as example
(E4) shows.

When no integrability requirement is assumed on the function

h(u)/f(u) for w sufficiently small, sufficient conditions in order that
every solution of equation (I) is either oscillatory or weakly oscillatory
are given in the following result. Such a criterion extends to the
functional differential equation (I), a well-known oscillation result of
Leighton and Wintner (see, e.g., [7] for the linear case and Bhatia [1]
for the equation (Iy) with h = 1.)

Theorem 3. If the assumptions

t

(8) tE‘FmOO to q(S) ds - +Oo
and

b1
(10) lim ——ds = +00

t=+oo Ji . p(s)

are satisfied, then every solution of (I2) is oscillatory and every solution
of (I) is either oscillatory or weakly oscillatory.

Proof. From Lemma 1 and Theorem 2 it follows that for equation
(Iy), Mt = WO = @ and for equation (I) M = &. Then in order to
complete the proof it suffices to show that for equation (I) M~ = &.
Let z be a solution of class M~ of equation (I). There is no loss of
generality in assuming that there exists ¢; such that z(t) > 0, 2’(t) <0,
z(g(t)) > 0, 2'(g(t)) < 0 for all t > t; since the proof is similar if
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z(t) < 0, 2'(t) > 0 for all large ¢. Proceeding as in the proof of Lemma
1 from (2), we obtain (¢t > t1):

-t st - EEDE [
'  F(x(g(5))2"(9(5))g'(5)
<t + [ uto - FEEESTE )
where w(t) = p(t)h(z(¢))z'(t)/f(z(g(t))) and w(t;) < 0. By using
Gronwall’s inequality, we get w(t) < w(t1)f(z(g(t1)))/f(z(g(t))) or
p()h(z(t)x'(t) < w(t1)f(z(g(t1))) = k (k < 0). Thus, for all large

t, we have

I(t) t 1
/ h(u) du < k/ ——ds
z(t1) t p(s)

which, because of (10), implies

z(t1)
lim h(u) du = 400,
t—+4o00 z(t)
and so a contradiction since lim;_, o, z(t) exists and is finite and h is
continuous. The proof is now complete. ]

Assumptions (8) and (10) guarantee that (I) does not have weakly
oscillatory solutions. In general, this does not occur for the correspond-
ing functional differential equation (I;) since the deviating argument
may generate weakly oscillatory solutions as Example 4 shows.

Making use of the same argument given in the proof of Theorem 3,
we can obtain the following

Corollary 2. Assume that
t

1
(10) lim ——ds = +00.
t=+o0 J; ()

If either (8) or

lim 00 ‘ q(s)ds ezists and is finite
(11) { e Jig 409) #

jjoo q(s)ds > 0 for all large t
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is satisfied, then for (I) we have M~ = &.

Proof. The assertion follows by noting that condition (11) implies
that

t
. N

(12) lgin-ﬁ&f/T g(s)ds >0 for all large T

and reasoning as in the proof of Theorem 3. O

We remark that the role of (8) and (11) in the study of oscillation
criteria is considered in [13]; in that paper it is also shown that (12) is
equivalent to either (8) or (11).

Notice further that Theorem 3 and Corollary 2 do not assume con-
ditions concerning the type of the deviating argument g and so such
results cover the ordinary case as well as the delay, advanced, and mixed
cases.

Section 4. We consider now the asymptotic behavior of the even-
tually monotone solutions of (I). As we have just stated, for (I;) both
oscillatory and monotone solutions may exist simultaneously as the
following example shows.

Example 5. Consider the functional differential equation
(Es) 2" + 8sintf(z(t/2+ 7/4)) =0, t >0,

where f is a continuously differentiable function such that f(u) = 1 for
u > 2 and f(u) =u for —1 < uw < 1. The functions z;(t) = 10 + 8sint
and z5(t) = sin2t are obviously solutions of (E5) and z; € WO and
9 € O. Furthermore, by the same argument as that given in Example
1, it is easy to show that z3(t) = 8sint + 16¢ + 2 is a solution of (Es)
in the class M.

In a recent paper [5], assuming the function g to be negative, the
authors gave sufficient conditions for the existence of solutions in the
class M~ which approach zero as t — +o00. If the function ¢ changes
sign or is positive, then an interesting result on the asymptotic behavior
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of the solution in the class M ™, is suggested by Theorem 1. The
following holds:

Theorem 4. Assume that g(t) < t. If assumption (4) is satisfied,
then for every solution x € M~ we have

lim z(t) =0.

t—+oo

Proof. The assertion follows by the same argument as given in the
proof of Theorem 1, taking into account that (6) implies lim;_, o, (t) =
0. o

Such a result completes recent ones obtained in [10]. Notice also
that if we suppose, in addition to the assumptions of Theorem 4,
that condition (1) is verified, then every solution x of (I) is either
weakly oscillatory or such that liminf, , . |#(¢)] = 0. This result
is closely related to those recently obtained in [9] for an equation of
the type [p(t)2'(¢)]" + q(t) f(z(¢)) = e(t), under additional assumptions
concerning the nonlinearity and the external force acting on the system.

Finally, we examine the asymptotic behavior of the solutions in the
class M. The following holds:

Theorem 5. If the assumption

t S 1
(13) lim sup/ q(s) / ——drds=+o00 for dllT >t
t—+oo JT r p(r)

is satisfied, then every solution in the class M™T is unbounded.

Proof. Let x be a solution of (I), z € M*. There is no loss of
generality in assuming that there exists ¢; such that z(t) > 0, 2’(t) > 0,
z(g(t)) > 0, 2'(g(t)) > 0 for all t > t; since the proof is similar if
z(t) < 0, 2'(t) < 0 for all large t. Consider the function
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We have, for t > i1,

(o) - POREOTW) [ L He) (0
1)) Sy 2@ ™ Fae®)
PO 02 (9())g' OF o) [* 1
P2 ((e0))) o 2(8)

~pOREOWO) [1 b))

= T lelg(0) ﬂ;Mﬁd F((g(®))
Lo [T B
=40 J @ * T Fam)

Hence,

CPL L [fhl)e)
a9 )= [Lato [ rpara [ SRR

As the function h(z(t))z'(t)/f(xz(g(t))) is positive for ¢ > ¢, then the
limit . )
[ R (s)
totoo Jy,  fla(g(s)))
exists. We claim that it is infinity. Assume that

o [ M) () ~
: [ flg(s) =<

t—+oo L

Taking into account (13), from (14) we get limsup, ,, , w(t) = +oo
which gives a contradiction since w is negative for all values of ¢ > t;.

Thus

(15) i [ RS i o

= J,, F(9(s)

Now for all values of ¢t > t;, we have f(z(g(t))) > f(x(g(t1))) = ¢ and,
consequently,

tws 1 t z(s8))z' (s s—1 . u) du
09 [ gty ¢, Moo= [ hwran
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From (15), by taking into account the continuity of the function h we
get lim;_, o 2(t) = +00; the proof is now complete. O

A simple example of an equation with unbounded solutions of class
M is provided by (E;1). We point out that the condition imposed in
Theorem 5 does not involve conditions on the deviating argument g and
so such results cover the ordinary case as well as the delay, advanced,
and mixed cases. Furthermore, the proof just completed suggests the
following stronger result:

Corollary 3. If the assumptions

t S 1
(13) lim sup/ q(s) / ——drds=+o00 for dllT >t
t—+oo JT 7 p(r)

(17) /+°° h(u) du < +oo

— 00
are satisfied, then for equation (I) we have

Mt =g2.

Proof. Let = be a solution of (I), z € M. The same argument given
in the proof of Theorem 5 shows that (16) holds and so (15) yields a
contradiction. O

Theorems 1 and 5 also suggest the following result which is closely
related to those recently obtained in [14, Chapter 4.3, 18]:

Corollary 4. Assume that g(t) < t. If the assumptions (3), (4) and
(13) are satisfied, then every bounded solution of (1) is either oscillatory
or weakly oscillatory.

Proof. The assertion follows easily from Theorems 1 and 5. O

Acknowledgment. The authors thank the referee for helpful com-
ments.



SECOND ORDER FUNCTIONAL DIFFERENTIAL EQUATION 1275

REFERENCES

1. N.P. Bhatia, Some oscillation theorems for second order differential equations,

J. Math. Anal. Appl. 15 (1966), 442-446.

2. G.J. Butler, On the oscillatory behavior of a second order nonlinear differential
equation, Ann. Mat. Pura Appl. 105 (1975), 73-92.

3. , The existence of continuable solutions of a second order differential

equation, Canad. J. Math. 29 (1977), 472-479.

4 , Integral averages and oscillation of second order ordinary differential

equations, STAM J. Math. Anal. 11 (1980), 190-200.

5. M. Cecchi and M. Marini, Asymptotic decay of solutions of a nonlinear second-
order differential equation with deviating argument, J. Math. Anal. Appl. 138
(1989), 371-384.

6. M. Cecchi, M. Marini and Gab. Villari, On the monotonicity property for a
certain class of second order differential equations, J. Differential Equations 82
(1989), 15-27.

7. W.J. Coles, A simple proof of a well-known oscillation theorem, Proc. Amer.
Math. Soc. 19 (1968), 507.

8. , Oscillation criteria for nonlinear second order equations, Ann. Mat.
Pura Appl. 83 (1969), 123-134.

9. S.R. Grace and B.S. Lalli, Integral averaging and the oscillation of second
order nonlinear differential equations, Ann. Mat. Pura Appl. 151 (1988), 149-159.

10. J.R. Graef, P.W. Spikes and B.G. Zhang, On the asymptotic decay of
oscillatory solutions of a nonlinear delay equation, Appl. Anal. 23 (1986), 11-21.

11. V. Komkov, Continuability and estimates of solutions of (a(t)y(z)z')’ +
c(t)f(z) = 0, Ann. Polon. Math. 30 (1974), 125-137.

12. T. Kusano and W.F. Trench, Existence of global solutions with prescribed
asymptotic behavior for nonlinear ordinary differential equations, Ann. Mat. Pura
Appl. 142 (1985), 381-392.

13. M.K. Kwong and J.S.W. Wong, An application of integral inequality to second
order nonlinear oscillation, J. Differential Equations 46 (1982), 63-77.

14. G.S. Ladde, V. Lakshmikantham and B.G. Zhang, Qualitative theory of
differential equations with deviating arguments, Pure Appl. Math., Marcel Dekker,
Inc., New York 110 (1987).

15. V. Liberto Jannelli, Proprieta di parziale e completa oscillatorieta per le
soluzioni di equazioni differenziali lineari ordinarie del secondo e del terzo ordine,

Boll. Un. Mat. Ital. (3-C) VI (1984), 171-187.

16. M. Marini, Monotone solutions of a class of second order nonlinear differ-
ential equation, Nonlinear Anal., TMA 8 (1984), 261-271.

17. M. Marini and P. Zezza, Sul carattere oscillatorio delle soluzioni di equazioni
differenziali non lineari del secondo ordine, Boll. Un. Mat. Ital. (17-B) 5 (1980),
1110-1123.

18. J. Mikunda and J. Rovder, On nonoscillatory solutions of a class of nonlinear
differential equations, Math. Slovaca 36 (1986), 29-38.




1276 M. CECCHI AND M. MARINI

19. C.P. Philos, Oscillation criteria for second order superlinear differential
equations, Canad. J. Math. XLI (1989), 321-340.

20. J.S.W. Wong, On the generalized Emden-Fowler equation, SIAM Rev. 17
(1975), 339-360.

21. , An oscillation criterion for second order sublinear differential equa-
tion, Oscillation, Bifurcation and Chaos, Canad. Math. Soc. Conference Proceed-
ings, 8 (1987), 299-302.

22. J. Yan, On some properties of solution of second order nonlinear differential
equations, J. Math. Anal. Appl. 138 (1989), 75-83.

Dip. INGEGNERIA ELETTRONICA, UNIV. DI FIRENZE, VIA DE S. MARTA, 3-50139
FIRENZE, ITALY



