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A THEOREM ON REPRODUCING KERNEL
HILBERT SPACES OF PAIRS

DANIEL ALPAY

ABSTRACT. In this paper we study reproducing kernel
Hilbert and Banach spaces of pairs. These are a generalization
of reproducing kernel Hilbert spaces and, roughly speaking,
consist of pairs of Hilbert (or Banach) spaces of functions
in duality with respect to a sesquilinear form and admitting
a left and a right reproducing kernel. We first investigate
some properties of these spaces of pairs. It is then proved
that to every function K(z,w) analytic in z and w* there
is a neighborhood of the origin that can be associated with a
reproducing kernel Hilbert space of pairs with left reproducing
kernel K (z,w) and right reproducing kernel K (w, z)*.

1. Introduction. Hilbert spaces of functions with bounded point
evaluations (reproducing kernel Hilbert spaces, the definition is recalled
in the sequel) play an important role in a number of areas in analysis
(see, e.g., [T, 8, 10, 21]). The special case of reproducing kernels of
the form

X(2)J X (w)*

(1) K(zw) = =570

?
where
(a) Jis a C™*™ matrix subject to J = J* = J 1,

(b) X is a C**™ valued function meromorphic in A, where A
denotes either the open unit disk D or the open upper half plane CT,

and

(c) the function p is defined by

(2) = 1—zw* if Ay =D
Pul2) =\ —2mi(z —w*) if Ay = CH,
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is of particular interest. The associated reproducing kernel Hilbert
spaces provide a convenient unifying framework for a number of prob-
lems in interpolation theory and lossless inverse scattering (see [17, 4],
and for extensions to Pontryagin and Krein spaces [1] and [5]).

These spaces (called B (X) spaces in the above mentioned references)
were first defined, for various choices of X and J, by L. de Branges and
L. de Branges and J. Rovnyak (see [10, 11, 12, 13]), in their study of
operator models.

The notion of Hilbert space extends naturally to the case of pairs of
Hilbert spaces in duality with respect to a sesquilinear form and the
notion of reproducing kernel space was extended in [6] to cover the
case of spaces whose elements are pairs of functions endowed with a (in
general, non-Hermitian) sesquilinear form. The paper [6] considered
the finite dimensional case but an instance of an infinite dimensional
vector space of functions which has a reproducing kernel with respect
to a non-Hermitian inner product already appears in [18, section 7].

In the examples in [6] and [18], the reproducing kernel has non-
Hermitian form

X JX *
2 K (z,w) = 2T nl0)”
pw(z)
where J and p are as above and both X and Xp are Ckxm yalued

and meromorphic in A .

Another example of function of the form (2) appears in [9], where
transmission lines with left and right lattices are studied.

These examples suggest that the theory of B (X) spaces extends to
the non-Hermitian case of pair of spaces with reproducing kernel of the
form (2), such an extension giving a unifying framework for these (and
other) examples.

The main result of this paper (Theorem 1) associates to any function
K(z,w) analytic in a neighborhood of the origin (in z and w*) a
reproducing kernel Hilbert space of pairs (the precise definition follows).
These spaces of pairs should provide the tool to extend the theory
of B(X) spaces to the non-Hermitian case. This extension will be
presented elsewhere.
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With an eye on future applications we do not restrict ourselves to
functions of the form (2) but start, in Section 2, with arbitrary functions
K (z,w) and then study the analytic case.

We now define precisely some of the notions presented above.

Let B, and Bg be two vector spaces over the complex numbers. The
map (z,y) — [z,y] from By x Bg into C is called bilinear if it is
linear in both variables and is called sesquilinear if it is linear in x and
antilinear in y: for every choice of z in By, y1,y2 in B and ag,as in
C,

[z, 191 + aay] = o, yi] + a3z, o).

Definition 1. Let By and Bgr be two Banach spaces of C"
valued functions defined on some set 2, with norm || || and || ||R,
respectively, and let [ , ] be a sesquilinear form on By x Bg. Then
(Br x Br,[ ,]) is a reproducing kernel Banach space of pairs if there
exists a pair (K%, K®) of C"*" valued functions defined on  x  and
such that

(i) For every w in Q and c in C", the function z — K%®(z,w)c
belongs to By and, for every f in By,

(3) [f, K" (- w)e] = ¢ f(w).

(ii) For every w and c as in (i), the function z — K*(z,w)c belongs
to By, and, for every g in Bp,

(4) [K*(-, w)e, 9] = g(w)*e.

(iii) The continuous linear functionals from By, (respectively, Br)
into C are exactly the maps of the form

(vesp. ¢(9) =9, f,]")

where g, (respectively, f,) spans Bg (respectively, Br,).

(C™*P denotes the space of n rows p columns matrices with complex
entries and C™ is short for C"*!. The adjoint of a matrix A is denoted
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by A*; thus, w* is the complex conjugate of the complex number w;
the identity matrix of C™*™ will be denoted by I,).

The reproducing kernel property implies that g, and f, are uniquely
determined, and from the uniform boundedness principle we see that
(iii) implies:

(iv) There exists a constant K < oo such that, for every (f,g) in
BL X BR,

(5) £ 9l < Kl fllc - llgllr

(for bilinear forms, see, e.g., [16, p. 70]).

Condition (iii) is of a topological nature and permits identifying via
the map ¢ — g, (respectively, ¢ — f,) Bgr (respectively, Br) with
the topological dual of By, (respectively, Br). For more information
on pair of spaces in duality with respect to a sesquilinear or a bilinear
form we refer to [15, 20]. When By, = Br = B with norm || || =
[l Ilr =1 |land [ , ] is an Hermitian form, the norm || || is
called a Banach majorant when (iii) is in force while it is called an
admissible majorant if (iv) is met (see [14]).

When the space Br, and Bp are Hilbert spaces, (B X Br[ , )
will then be called a reproducing kernel Hilbert space of pairs.

When the spaces By, and Bpr are not necessarily Banach spaces and
(iii) is not required, (Br x Bg,[ , ) will be called a reproducing
kernel space of pairs.

Lemma 1. Let (B X Bg,[ , ]) be a reproducing kernel space of
pairs; then the pair of functions (K%, K) is unique and satisfies the
relationship

(6) K (z,w)* = KB (w, 2).

The proof of this lemma is simple and will be omitted. The pair
(KT, KB) will be called the reproducing kernel of (Br, x Br,[ , ).

The following question is of interest: given a pair of C™*" valued
function (KL, K%) satisfying (6), construct (if any) a reproducing
kernel Banach space of pairs with reproducing kernel (KL, K). The
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case of kernels defined for z, w in some open real interval and of class
C3 was considered in [3]. The methods there relied on properties of
compact operators. Here using different methods (close to those of [2]),
we focus on the particular case where K% (2, w) is analytic in z and w*
in a neighborhood of the origin, and we will prove:

Theorem 1. Let K(z,w) be a C**™ wvalued function analytic in
z and w* in a neighborhood of the origin V. Then there exists a re-
producing kernel Hilbert space of pairs (Hp, X Hg,[ , |) with repro-
ducing kernel (KL, K®), where KX(z,w) = K(z,w) and Kf(z,w) =
K(w,z)*. The elements of Hy, and Hg are analytic in a neighborhood
V' CV of the origin.

The outline of the paper is as follows: In Section 2 we give some
examples of reproducing kernel Banach spaces of pairs and discuss a
number of properties of these pairs. In Section 3 we present results
on operator ranges which are needed in Section 4, where Theorem 1 is
proved.

2. Examples and first properties. In the first two examples we
relate the notions of reproducing kernel Banach space of pairs to more
classical definitions.

Example 1. Reproducing kernel Hilbert spaces [7]. These corre-
spond to the case where B, = B = B is a Hilbert space and [ , ]
coincides with the inner product in B. Then (iii) follows from the Riesz
representation theorem and K% = K%,

Example 2. Reproducing kernel Krein spaces. These correspond to
the case where By, = Br = B is a Hilbert space with inner product
( , )andlinked to| , ]by:

[x,y] - <$7 Uy>

where ¢ is both unitary and self-adjoint.

In these examples, the sesquilinear form is Hermitian, K* = K% = K
and the space B (rather than the product B x B) is called a reproducing
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kernel Hilbert (or Krein) space. Then (6) becomes
(7) K(z,w) = K(w,z)*.

In the case of a reproducing kernel Hilbert space, the function
K (z,w) is moreover positive (for every integer r, every ci,...,c, in
C" and wy,...,w, in Q, 377, ¢; K(wi,wj)e; > 0) and there is a
one-to-one correspondence between positive functions and reproducing
kernel Hilbert spaces [7, 21]. In the case of reproducing kernel
Krein spaces there is an onto (but not one-to-one) correspondence
between difference of positive functions on 2 and reproducing kernel
Krein spaces of C™ valued functions defined on 2. For details and
a nonuniqueness counterexample we refer to [21] which exposes the
theory of reproducing kernel Hilbert spaces from a very general point
of view. That paper and another nonuniqueness example are discussed
in [2].

The nonuniqueness feature is even more present in the case of re-
producing kernel Banach spaces of pairs, as illustrated by the next
example.

Example 3. Let p and g be greater than 1 such that 1/p+1/gq =1,
and let By, = HP and Bg = HY, the classical Hardy spaces of functions
analytic in the unit disk. Then (H?, H?) endowed with the form

27
= / gle) F(e™) dt

is a reproducing kernel Banach space of pairs with reproducing kernel
(KL, KB) with KL (z,w) = 1/(1 — zw*).

Indeed, properties (i) and (ii) follow from Cauchy’s formula (which
still holds in HP), and (iii) follows from the duality between H? and
H? for the given choice of p and gq.

[f, 9]

Thus, there is a unique reproducing kernel Hilbert space with re-
producing kernel 1/(1 — zw*) (namely, H?) but a whole family of
reproducing kernel Banach spaces of pairs with reproducing kernel
KL (z,w) = KB(z,w) = 1/(1 — zw*), as illustrated in Example 3.

The next example is taken from [6]. The spaces are finite dimensional,
and thus the situation is much simpler: the topological requirements
of (iii) are automatically met.
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Example 4. Let By, (respectively, Bg) be a finite dimensional space
of C" valued functions defined on a set 2, of dimension N, and let
fi,---,fn, (respectively gi,...,gn) be a basis of By, (respectively,
Bg). Let [ , | be a sesquilinear form defined on By, x Bg and let G,
the Gram matrix, be defined by

(8) 9ij = [fj,gi]-

Then (BL x Bg,[ , |)is a reproducing kernel Banach pair of spaces
if and only if G is invertible. The reproducing kernel is given by

(9a) E"(zw) = Y fi(2)vi95(w
i,j=1

and

(9b) Z g;(2 %]fz
5,j=1

where v;; denotes the ij entry of the inverse G .

The next result deals with reproducing kernel spaces of pairs (without
the requirements (iii)).

Theorem 2. Let (KLY, K®) be a pair of C™*" wvalued functions
satisfying (6), and let Vi, Vg be defined by:

(10a) Vi = linear span { K% (-, w)c,w € Q,c € C"}
(10Db) Vg = linear span {K*(-,v)d,v € Q,d € C"}

and let on Vi, x Vi a sesquilinear form [ , o be defined by
(11) [KL('aw)chR('ay)d]O :d*KL(l/,’LU)C.

Then (VL x Vr,[ , Jo) is a reproducing kernel space of pairs with re-
producing kernel (KL, K®). Moreover, any reproducing kernel Banach
space of pairs (Bp x Br,| , ) with reproducing kernel (K*, K) will
contain isometrically (Vi X Vr,[ , o), that is,

(12) Vy, C By, Vr C Bgr
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and

[fag]() = [fag]
for f,ge VL x Vi.

We omit the proof of this result and just mention that the main step
is to verify that [ , Jo is well-defined.

In general the spaces Vi, and Vi have no nice topological structure.

Theorem 3. Let (Br, X Bg,[ , ) be a reproducing kernel Banach
space of pairs and let V1, Vg be as in (10). Then Vi, (respectively, Vi)
is dense in By, (respectively, Bg).

Proof. Let || ||r denote the norm of By, and let V1 be the closure
of V in By, in the || || norm. If V # Bp, by the Hahn-Banach
theorem we can find a continuous linear functional ¢ which is nonzero
and vanishes on V. By (iii), ¢(f) = [f, g, for some nonzero g, in
Bpg. Setting f = KL (-,w)c we obtain g, = 0, a contradiction. Hence,
V5. =B and, similarly, Vr = Bg. m]

The case where By, and B are Hilbert spaces is of special interest.
Then, under certain hypotheses (which will be satisfied in the applica-
tions in Sections 3 and 4), conditions (iii) and (iv) are in fact equivalent.
Let us suppose (iv) is in force. By the Riesz representation theorem,
there exist two linear operators G, (from By, into Bg) and Gg (from
Bpg into Byr) such that, for every (f,g) in By x Bg,

(13) [fa g] = <f7 GRg>L = <GLfag>R

(where ( , ); denotes the inner product of B;, i = L, R).
We claim that Gr and G are bounded operators. Indeed,

 WGrael  lihl
1Gnalle = 300 = gz =

and hence, using (5), we obtain ||Grg||r < K||g||r, g € Br; thus,

IGR[| < K.
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Similarly, ||G|| < K.

Equation (13) expresses the fact that Gg and G, are adjoint opera-
tors. Moreover, they have a kernel reduced to {0}. Indeed, let g be in
Bpg such that Grg = 0. The choice of f = KL (-, w)c in (13) leads to

g(’U))*C = [KL(-,’U})C’ g] = <KL(',’U})C, GR9>L = 07
and hence g = 0, so that Ker Gg = {0} and, similarly, Ker G, = {0}.

Proposition 1. If By and Bg are Hilbert spaces and Gpg is
invertible, then (iii) and (iv) are equivalent.

Proof. Let ¢ be a bounded, linear functional on By. Then, by the
Riesz representation theorem,

p(f) = (fiho)L

for a unique h,, in By, which can be rewritten as

with g, = G;—ilh(p, hence the result. i

3. Operator ranges in Hilbert spaces. In this section we gather
a number of results on operator ranges which will be needed in the
proof of Theorem 1. In the whole section, H denotes a Hilbert space
with norm || || and inner product (,). We first review the polar
decomposition of an operator T' in L(H).

Lemma 1. Let T be a bounded linear operator in L(H). Then T
can be written as T = UP where P is a positive operator and U s a
partial isometry. More precisely, P = /T*T, the positive square root
of T*T and U s uniquely determined by the condition Ker U = Ker P.
For this U, we have P =U"*T.

For a proof of this result, see [19]. The decomposition 7' = U P where
KerU = Ker P is called the polar decomposition of 7. We note that
P = U*T implies that PU* = U*TU* and, hence,

(14) T* = U*TU*.
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Moreover, if u € KerT, Tu = 0, then Pu € Ker U, hence Pu € Ker P
and so, P?u = 0 which implies Pu = 0 since P is a positive operator.

Let T now be in L(H) with polar decomposition T = UP. We
introduce two spaces Hy, and Hpg as follows:

Hy ={F =UVPu,uc H; ||F||L = ||(I —)ul|}

and

Hp = {G = vVPu,u € H; ||G||r = ||(I — m)ull}

where 7 denotes the orthogonal projection with range the kernel of P.

Lemma 2. The spaces Hr and Hp respectively endowed with
[| |lz and || ||r are Hilbert spaces. Moreover, RanT (respectively,
RanT*) is dense in Hp (respectively, Hg), and ||Tull, = |[vPul|,
||T*u||r = ||V PU*u|| forue H.

Proof. We begin with the case of Hy, and first check that || ||z is well
defined. If F = Uv/Puy = Uv/Pus for two different elements u; and us
in H, then v/P(u; —us) € Ker U = Ker P*/2 and so P(u;—us) = 0, i.e.,
m(up — uz) = (u1 — u2) and hence uy — Tuy = uy — Tug. In particular,
these two elements have the same norm and ||F||f, is well defined.

To prove that || ||z is a norm, the only difficulty is to show that
F =0 if and only if ||F||L = 0.

Indeed, if F = Uv/Pu € Hy, is such that ||F||, = 0, then 7u = u and
so u € Ker P1/2, hence F = 0. Conversely, if F = Uv/Pu = 0, then
VPu € KerU = Ker P so that P?/2u = 0; hence, PY/?u =0, u = mu
and ||F||L = 0. It is then easy to check that || ||z is a quadratic norm
with associated inner product

<F1,F2>L = <(I—7T)U1,U,2>

(with F; = Uv/Pu;, i = 1,2). Thus, (Hz,{,)z) is a pre-Hilbert space.
To prove that it is complete, let (F,,) = (U+v/Pu,) be a Cauchy sequence
in H,. Then (I — m)u, is a Cauchy sequence in H and converges to
an element A in H such that 7h = 0. Thus, F,, converges in the || ||
norm to Uv/Ph.
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We now prove that Ran 7 is dense in Hy. From the polar decompo-
sition it is plain that RanT C Hy. Let now F = U+/Pu be orthogonal
to RanT'. Then, for every v in H,

= (F,Tv)y,
= (UVPu,UVPVPv),,
= ((I = m)u, VPv)
= (u, VPv)
where we have used the identity

(15) (I-m)VP=VP

and so, v/Pu =0 and F = 0.

Finally, if u € H, ||Tu||lr = ||V/Pul| follows also from (15). The
claims on Hp are proved similarly. ]

On RanT x RanT™* we define a sesquilinear form by

(16) [Tu, T*v]r = (T'u, v).

If Tuy = Tuy and T*vy = T™vg, we have
<TU1, ’U1> = <TU,2, ’l)2>
and, hence, [ , ] is well-defined. Moreover,

|[Tu, T*v|r = [{Tu,v)]
= |(VPu, VPU*0)|
< |VPul| - |[VPUv|],

i.e., using Lemma 1,

(17) |[Tw, T*olr| < [|Tullz - [IT*][R-

The form [ , ] thus admits a unique continuous extension to the
product Hy x Hg. We claim that the associated operators G and
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Gr (defined in Section 2) are invertible. Indeed, from the sequence of
equalities,

we obtain Gr(1T*v) = TU*v which implies that U*GgT™*v = U*TU*v.
Using (14), we get U*GrT* = T™*, that is,

(18) U*Gr =1

on RanT™.

Similarly, we have GyTu = Pu, u € H, which implies that UGLT =
T and, hence,

(19) UG =1

on RanT'.

Since Ran T (respectively, RanT™*) is dense in Hp, (respectively, Hg)
we deduce that (18) and (19) hold on H and so G and G are

invertible.

We conclude this section with the following lemma:

Lemma 3. Let T be in L(H) and Hr,,Hg, | , |r associated to T
as above. We suppose that H is a reproducing kernel Hilbert space of
C" valued functions defined on a set Q with reproducing kernel k(z,w).
Then (Hp, x Hr,[ , ]r) is a reproducing kernel Hilbert space of pairs
with reproducing kernel (K, K*t) defined by

where w € Q and c € C".
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Proof. The claims follow only from the equalities
[Tu, K*(-,w)e|r = (Tu, k(- w)e) = ¢*(Tu)(w)
and

(KL (-, w)e, T*v)r = (k(-,w)e, T*v) = (T*v)(w)*e. O

4. Proof of Theorem 1. In this section H2 denotes the Hilbert
space of n x 1 column vectors with entries in H?, the classical Hardy
space of the circle, with norm

2
1 n
: = Z||fi\|§{2-
o)l

The space H? is a reproducing kernel Hilbert space with reproducing

kernel
I,

ko) = T

To prove Theorem 1, we first suppose that the function K(z,w) is
analytic in z and w* for z and w* of modulus less than r with » > 1.
The map f — Tf,

l 2T

:% .

(T)(2) K" (z,e") f(e") dt

is then a bounded operator from H? into itself, with adjoint operator

1 2T

(T"F)(2) KT (z,e") f(e") dt

:%0

(with KL(z,w) = K(z,w) and K®(z,w) = K(w, 2)*).

Using Lemma 2 we construct a pair (Hy,, Hg) of Hilbert spaces and
define on Hj x Hp the sesquilinear form [ , ]z defined in (16).
It satisfies inequality (17). By the analysis of Section 3 the Gram
operator G, is invertible and, thus, by Proposition 1, (iii) of Definition
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1 is in force. Finally, Lemma 3 implies that (Hy x Hg,[ , |r)isa
reproducing kernel Hilbert space of pairs with reproducing kernel

(Tk(-, w)e)(2), (T7k(-, w)c) (2)),
that is, using Cauchy’s formula,

(KL (z,w)e, KT (z,w)c).

We now suppose that the function K (z,w) is analytic in z and w* for
z and w* in some neighborhood V of the origin. Then V' contains a ball
B of radius 7, r < 1, and for p < r the function K,(z,w) = K(pz, pw)
is analytic in z and w* for z and w* of modulus less than r/p. Since
r/p > 1 we are in the case of the first part of the proof and there
exists a reproducing kernel Hilbert space of pairs (Hz , xHg p,[ , 1p)
with reproducing kernel pair (K (z, w), K}(z,w)) where KX (z,w) =
K,(z,w) and Kf(z,w) = K} (w,z)*.

Now let (Hr X Hg,[ , ]) be defined by
H,:{ff(z):F(z/p),FeHl,p} 1€ L,R
and
[f,9] = [F,G],

(where G(2/p) = g(2), G € Hg,).
The function z — K (z, pw)c belongs to Hy, and, for every f in Hy,

[va('apw)] = [FvK(p'va)c]P = C*F(pw) = C*f(w)v

and, similarly, the function z — K(pw,z)*c belongs to Hy and for
every g in Hp

[K (pw,)"c, g] = [K(pw, p-)"c, G], = G(pw)"c = g(w)"c.

So, the pair (Hy, x Hg,[ , ])is a reproducing kernel Hilbert space
of pairs with reproducing kernel (KL, KF).

Finally, we note that the elements of Hy, and Hg are by construction
analytic in V' = {z,|2| < p} and V' C V which concludes the proof of
Theorem 1. O



REPRODUCING KERNEL HILBERT SPACES OF PAIRS 1257

REFERENCES

1. D. Alpay, Some Krein spaces of analytic functions and an inverse scattering

problem, Michigan Math. J. 34 (1987), 349-359.

2 , Some remarks on reproducing kernel Krein spaces, in the Rocky

Mountain J. Math. 21 (1991), 1189-1205.

3. ———, Some reproducing kernel spaces of continuous functions, J. Math.

Anal. Appl. 160 (1991), 424-433.

4. D. Alpay, P. Bruinsma, A. Dijksma and H. de Snoo, Interpolation problems, ez-
tension of symmetric operators and reproducing kernel spaces 11, Integral Equation
and Operator Theory 14 (1991), 465-500.

5. D. Alpay and H. Dym, On applications of reproducing kernel spaces to the
Schur algorithm and rational J-unitary factorization. Oper. Theory: Adv. Appl.
18 (1986), 89-159.

6. , Structured invariant spaces of vector valued functions, sesquilinear
forms and a generalization of Iohvidov laws, Linear Algebra Appl. 137 (1990),
413-451.

7. N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68
(1950), 337—-404.

8. S. Bergman and M. Schiffer, Kernel functions and elliptic differential equations
in Mathematical physics, Academic Press, New York, 1953.

9. Y. Bistritz, H. Lev Ari and T. Kailath, Immittance versus Scattering-Domain
Fast Algorithms for non-Hermitian Toeplitz and quasi-Toeplitz matrices, Linear
Algebra Appl. 122/123 /124 (1989), 847-888.

10. L. de Branges, Hilbert spaces of entire functions, Prentice Hall, Englewood
Cliffs, N.J., 1968.

11. , Some Hilbert spaces of entire functions, Trans. Amer. Math. Soc. 96
(1960), 259-295.

12. L. de Branges and J. Rovnyak, Square summable power series, Holt, Rinehart
and Winston, New York, 1966.

13. , Canonical models in quantum scattering theory, in Perturbation
theory and its applications in quantum mechanics, Wiley, New York, 1966.

14. J. Bognar, Indefinite inner product spaces, Springer Verlag, New York, 1974.
15. N. Bourbaki, Fspaces vectoriels topologiques, Masson, Paris, 1981.
16. N. Dunford and J. Schwartz, Linear operators, Part I, Wiley editor, 1976.

17. H. Dym, J-contractive matriz functions, reproducing kernel Hilbert spaces
and interpolation, CBMS Regional Conf. Ser. in Math. 71 (1989).

18. H. Dym and I. Gohberg, On an extension problem, generalized Fourier
analysis and an entropy formula, Integral Equations and Operator Theory 3 (1980),
143-215.

19. P. Halmos, A Hilbert space problem book, Van Nostrand, Princeton, New
Jersey, 1967.

20. H.H. Schaefer, Topological vector spaces, Graduate Texts in Mathematics
GTM3, Springer Verlag, New York, 1986.



1258 D. ALPAY

21. L. Schwartz, Sous espaces Hilbertiens d’espaces vectoriels topologiques et noy-
auz associés (noyauz reproduisants), Journal d’analyse mathématique 13 (1964),
115-256.

DEPARTMENT OF MATHEMATICS, BEN GURION UNIV. OF THE NEGEV, POB 653,
84105 BEER SHEVA, ISRAEL



