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BOUNDEDNESS AND ASYMPTOTICS
OF A MATRIX ITERATION

JEFFERY J. LEADER

ABSTRACT. The Generalized Theodorus Iteration, a ma-
trix iteration on R™, is studied. Sufficient conditions for
boundedness and asymptotic estimates of divergence are
given. The limit sets, which are generally strange attractors,
are also briefly discussed.

1. Introduction. In [1], Philip J. Davis studied a sequence of points
z; € C defined by

Znt+l = Zn t+ izn/|zn|

with zg = 1. These points form a spiral, called the Spiral of Theodorus.
Davis then suggested the generalization

Zntl = Q- Zp + B- Zn/|zn|

for complex «, §, and zy. This iteration, called the Complex General-
ized Theodorus Iteration, displays a number of strange attractors and
has been studied in [1, 7]. Davis then proposed the further generaliza-
tion

(1.1) Vg1 = Ax Vi + BV, /||V4]]

where A and B are real m x m matrices, Vj is a given nonzero m-
vector, and || - || is the Euclidean vector norm. This iteration, called
the Generalized Theodorus Iteration (GTI), displays a great variety of
strange attractors for appropriate choices of A and B and has been
studied in [2, 7, 9]. We wish to present some further results on the
iteration in this paper. We will make the assumption that Vj is such
that V,, is nonzero for all n > 0, so that the corresponding infinite
sequence {V,, }°2, will always be well-defined. The case where V;, =0
for some n is not of interest here, as we are concerned primarily with
questions of boundedness and asymptotics.
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2. The linear case. When B is the zero matrix, the iteration given
by (1.1) reduces to the linear system

(21) Vn+1 = Ax Vn

The properties of this iteration are well-known and depend primarily
on the spectral radius of A. We summarize them briefly. If p(A4) < 1,
then the iteration is bounded for any V; and, in fact, V,, — 0 asn — oo
for any V. If p(A) > 1, then there exists some Vj such that ||V, is
unbounded; there may also be choices of V;; which lead to bounded
orbits. If p(A) < 1 and any eigenvalues of A having unit modulus
are simple (in which case A is said to be of bounded type), then the
iteration is always bounded (though not, in general, independently of
Vo).

The case where A = 0 in (1.1), which is related to the power method
for numerically determining eigenvalues of a matrix, is also understood;
all orbits eventually lie on a hyperellipse in a space of dimension equal
to the number of nonzero eigenvalues of A (see [8]).

3. Green’s function representation. Given an iteration of the
form
=A%z +wi

with wy and zg given vectors and A a matrix, the solution can be written
in the form [10]

t+1

1 ~1
Zt+1:E Yig1 Yy cws + Y1 Yy 20
s=0

where {Y;} is a fundamental matrix set of solutions for
Zt = A x Zt—1-
For the iteration under consideration, this gives
n
(3.1) Vi = A"V + 3 A" s B Vi/ |V
=0

We will use this formula (the Green’s function representation) to
address the questions of boundedness and asymptotics.
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4. Boundedness. We now seek a sufficient condition for the
boundedness of the orbits of (1.1). Suppose that p(A) < 1. Then
there exists some natural matrix norm || - ||, such that [|A||l, < 1.
Using || - || to represent the vector norm which induces this matrix
norm as well, we have from (3.2)

> A« B Vi/||Vi]]
t=0

n
(4.1) < AN Volla + S AN - |IBlla - &
t=0

Vasalla < 14" Vol lo +

[e3

n

= [JAlIZH - (Volla + FIIBlla Y [1A]l4
t=0

where k is a positive constant such that
(Vlla/IIVI] < &

for all nonzero vectors V' (such a k exists since all vector norms are
equivalent on R™ [4]). Now, since ||A||, < 1, we have that

AN Volla < [IVolla

and, since the finite sum in (4.1) defines an increasing sequence, it is
less than

k- [[Blla/(1 = [|Alla)

and so
Vatilla < |[Volla + &l Bllo/(1 = [|Alla)

for all n > 1. This proves that the solution is bounded.

We have shown that p(A) < 1 suffices for boundedness. In an
analogous way we can show that if p(A) > 1 then there must exist
some Vp such that ||V,,|| is unbounded. For, considering (3.1) (and
using the spectral norm) we have

n

> A B Vi/||Vi]

Vsl } AV
t=0
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Let X be an eigenvalue of A such that |A\| = p(A), and take Vj to be an
eigenvector of A associated with the eigenvalue A\. Then

n

> AR BV |[Vi] H‘

t=0

Vol = [ V0] -

> |>\|n+1||V0|—Z||A|t'|B|‘
t=0
> [IVoll AP = 1311 - (1 = LAI+)/(1 = 4D

If we let
c=|[Bl[/(||All = 1),

then ¢ > 0 and

[Vasall = [ VOl IAP = ellAll™+ + -
Now [|A4]| = |A| + € for some &€ > 0, so

Vasall = [1IVoll A"+ = e(A] + )™ +

> | IVl = (L + /1A ] + o

If € is equal to zero we may now choose ||Vp]| to be greater than ¢ in
order to have ||V,|| — oo; otherwise, the term involving e will grow
without bound, again giving ||V,|| — oo.

Thus, the GTI (1.1), like the linear system (2.1), has the property
that if p(A) < 1 then all orbits are bounded, and if p(A) > 1 then there
exist unbounded orbits. In the case p(A) = 1 the GTI may have all
orbits bounded for one choice of the B matrix and all orbits unbounded
for another choice of the B matrix (with the same A matrix). In the
next section we will derive asymptotics for this indeterminate case.
Before doing so, we collect the information above in a theorem.

Theorem 1. Consider the iteration (1.1). If p(A) < 1, then the
iteration is bounded for any Vy. If p(A) > 1, then there exists a Vp
such that the iteration is unbounded.
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5. Asymptotics. From (4.2) it is apparent that when p(A4) > 1
the divergence will, in general, be exponential. This leaves the case
p(A) = 1. Let us first look at the case where A is of bounded type.
Using the spectral matrix norm, (3.1) gives

n

> A« B Vi/||Vi]

t=0

<K+ [|AY-11B]]
t=0

Vol < [JA" Vo] +

(5.1)

where K7 > 0 is a bound on [|[A"T!V;||. Now since A is of bounded
type, |]A™|| is also bounded, and so

Vagall < Ky + 1B YK
t=0
< K1+ Kan

showing that the divergence is no worse than linear.

If p(A) = 1 but A is not of bounded type, then ||A"|| = O(nP~1),
where p is the highest order of a nonlinear elementary divisor of A
associated with an eigenvalue of unit modulus. Thus, from (5.1), we
have

Vel < LA™ (VoI + D 11AY |- (1B,
t=0

and clearly ||V,|| diverges at most as O(n?). Hence, when p(A4) = 1, if
the iteration diverges then it does so at most polynomially. We write
this as a theorem.

Theorem 2. Consider (1.1) and suppose that p(A) = 1 and
the iteration is unbounded. Then the divergence is no worse than

polynomial of order p, where p is the order of the largest elementary
divisor of A.

6. Limit sets. We now have a sufficient condition for boundedness
of the GTI and some estimates of the asymptotics for divergent cases.
When the iteration is bounded, it is of interest to consider its limit set
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which we denote I'(A, B, Vj) (also called the w-limit set). A point Y is
in I'(A, B, Vp) if there exists an increasing subsequence n(i) such that
Vo) — Y as i — oo when the initial condition is V5. A modification
of results in [5] (where the mappings are assumed to be everywhere
continuous, a condition not met here) gives:

Theorem 3. Suppose that, for some Vy, the sequence {V,} is
bounded. Then T'(A,B,Vy) is a nonempty compact set and V,, —
I'A,B,Vy) as n — oo. If 0 ¢ T(A,B, V), then T'(A4,B,Vy) is

positively invariant.

Proof. Clearly the complement of I' = I'(A, B, Vj) is open and so I' is
closed. The boundedness of {V;,} implies that I" is also bounded and,
hence, it is compact. By the Bolzano-Weierstrass theorem, I' contains
at least one point. Now V,, — I" means that inf (||V,,-Y||: Y €T) — 0
as n — oo. Suppose the contrary. Then there is some increasing
subsequence m(i) such that V,,,(; does not tend to I'. Suppose further
that no subsequence of V,,(;) tends to I'. By the Bolzano-Weierstrass
theorem, this sequence has a limit point; but then this limit point must
be in I'. By contradiction, then, V,, — T'.

Define
T(V)=AxV+BxV/||V]|

so that V,, 11 = T(V,,) is the iteration under consideration. Since 0 ¢ T,
T is continuous in some neighborhood of any point Y € I'. Fix Y and
choose a subsequence n(i) such that V,; — Y. By the continuity of
T, we have that T'(V,;)) — T(Y) as i — oo. But

T(Vn(z)) = Vn(i)+1

so that V,,;y — T(Y) with m(i) = n(i) + 1. Hence, T(Y) € T, and T
is positively invariant. ]

In fact, it is clear from the above that T(Y) € T’ whenever Y € T’
and T'(Y) is defined, and we could simply say that I'\{0} is positively
invariant. Further topological results on discrete dynamical systems
that can be extended to this iteration (with some care taken near the
origin) are to be found in [6].
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FIGURE 5. A = (1/V2) (—11 1), B= (1 | ); p(A) =1 (divergent)

Suppose that Y € I'(4, B, V}), so that V,,;) — Y for some increasing
subsequence n(4). Since the transformation T : R™ — R™ of Theorem
3 has the property that

it follows that the sequence generated by —Vjy is —V/,(;), which converges
to =Y so that =Y € I'(A, B, —Vp). Thus, any global attractor (where
I'(A, B,Vp) is independent of Vp for the particular A and B under
consideration) must be centrally symmetric. Experimenting with this
iteration for varying choices of A and B produces a surprisingly wide
variety of attractors, which are as yet not understood; see Figures 1-5
(produced using MATLAB®). We conjecture that the attractors are
strange but not chaotic (in the sense of [3]) and hope to investigate
them in detail in future work.

7. Discussion. The Generalized Theodorus Iteration is in some
ways very similar to the simple linear system (Theorem 1) and yet it
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contains some very complicated structures (Figures 1-5). Iserles has
found an analytical expression for the attractors for a certain set of
cases of the form A = aB, a > 0 [2]. For the case A = 0, the behavior
of the iteration is also known [8]. However, the iteration contains a
vast number of interesting attractors which are as yet unanalyzed.
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