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STRONGLY EXTREME POINTS IN
KOTHE-BOCHNER SPACES

H. HUDZIK AND M. MASTYLO

ABSTRACT. The Kadec-Klee property with respect to a
measure is discussed. A characterization of strongly extreme
points of the unit sphere in certain Kéthe-Bochner spaces is
given.

1. Introduction. Let (2,X%,u) denote a measure space with o-
finite and complete measure p and L° = L°(Q) denote the space of all
(equivalence classes of) X-measurable real-valued functions, equipped
with the topology of convergence in measure on pu-finite sets. In what
follows, if z,y € L°, then < y means z(¢) < y(t) p-almost everywhere
in Q.

For any Banach space X we denote by Sx the unit sphere of X.

A Banach subspace E of L is said to be a Kéthe function space (over
(2,5, ) if
(i) |z| <lyl, z € L°, y € E imply z € E and ||z < [[y]],
(ii) suppE := U{suppz : z € E} = Q, where suppz = {t € Q :
z(t) # 0}.
A Kothe function space E is said to be order continuous (respectively,

monotone complete) provided z,, | 0 implies ||x,|| — 0 (respectively
0<an T,z € Eimply ||z — [|2]]).

Let E be a Kothe function space on (Q2,%, 1), X a Banach space.
By E(X) we denote the Banach space of all (equivalence classes of)
strongly measurable functions f :  — X such that f = ||f(-)||x € E
equipped with the norm ||f|| = || f||&.

Let E be a Kothe function space over (2,%,p). E is said to have
the (positive) Kadec-Klee property with respect to the measure pu
(simply property (H:[), respectively, (H,)), whenever (z, Bz an,ze
Et) z, & z and ||z,|| — ||z|| imply z, — =z strongly. Here
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T, - r means that z,, — z in L® and if A is a subset of L° then
At ={zeA:z >0}

Note that E has the (H,,) (respectively, (H,)) property if and only
if norm and measure convergence coincide on the unit sphere Sg of E
(respectively on Sp).

In the above definitions measure convergence may be replaced by
p-almost everywhere convergence.

A Banach space X is said to be locally uniformly rotund if ||z,|| —
||z|| and ||z, + z|| = 2||z|| imply that z,, — z strongly.

We say that ¢ : R = Ry = [0, 00) is an Orlicz function if ¢ is convex
and even, ¢(0) = 0 and ¢(t) — oo as t — oco. We say that an Orlicz
function satisfies the As-condition for all ¢ € R (at infinity) [at zero]
if there are positive constants K and tp such that ¢(tp) > 0 and the
inequality ¢(2t) < Ko(t) is satisfied for all ¢ € R (for ¢ € R with
[t| > to) [for ¢t € R with [¢] < to].

For any Orlicz function ¢ the statement “p satisfies the suitable As-
condition” means that:

@ satisfies the Ag-condition for all t if p is atomless and infinite.
@ satisfies the Ag-condition at infinity if u is atomless and finite.
@ satisfies the Ag-condition at zero if p is counting measure.

Let E be a Kéthe function space, and let ¢ be an Orlicz function.
The functional

[ le@)le if olz) € B,
plw) = {oo if o(z) ¢ B

is a convex modular, i.e., p(0) = 0 and = 0 whenever p(az) = 0 for

any a > 0, p(z) = p(—=), plaz+Py) < ap(z)+Bp(y) for any z, y € L°
and a,f > 0 such that a + 8 = 1.

Let E, be the space generated by the modular p, i.e.,
E,={z € L°: p(Az) < oo for some A > 0}.
As a modular space E,, is equipped with the so-called Luremburg norm

lell, = inf A > 0 p(a/A) < 1}
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under which it is a Kothe function space.

For the theory of modular spaces, we refer to [12]. It is clear that for
E = L;, E, becomes an ordinary Orlicz space L (cf. [10 and 12]).

Note that F, is a special case of the Calderén-Lozanovskii space (see
11, 1]).

Suppose f belongs to L°. The nonincreasing rearrangement of f is
the function f* defined on [0, 00) by

FHE) =inf{A>0:pp() <t}

(by the convention inf@ = oo), where py is the distribution function
of f defined by

pp(t) = p{w e Q:|f(w)| >1}),  t=0.

By w: [0,7) = Ry, v < 00, denote a nonincreasing locally integrable
function with respect to the Lebesgue measure m, called a weight
function.

Recall that the Lorentz space A, is defined as follows:
o v
M= {f L Ifln. = [ £ @utdt<och = (@)
0

Now, if for a given Orlicz function ¢, we take F = A, then the space
E,, denoted by A, ., is called the Orlicz-Lorentz space (cf. [6]).

An easy proof of the following lemma, useful in the sequel, can be
found in [8, Lemma 2, p. 141].

Lemma 1. Let FE be a Kothe function space. If x,, — x in E, then
there exist y € ET, (xzn,) C (zn) and (en,) C Ry with e, | 0 such
that |z, — x| < en Y.

It is proved in [13] that, for any p in (1, 00) and any separable Banach
space X, a point f of the unit sphere of the Lebesgue-Bochner space
LP(u, X) is strongly extreme if and only if the values f(s)/||f(s)||x are
strongly extreme points of the unit ball of X for p-almost everywhere

s € supp f-
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Recall that an element z of the unit sphere of a Banach space
X is called strongly extreme if any sequence (z,) C X such that
||zn + z|| = 1 and ||z, — z|| = 1 converges to zero.

In the proof of this theorem the facts that for any p in (1,00), the
Lebesgue space LP(u) is locally uniformly rotund (in fact, it is uniformly
rotund) and that, for any Banach space X, L?(u, X) has the Kadec-
Klee property with respect to the measure p were applied.

In the present paper, it is proved that Smith’s characterization of
strongly extreme points of the unit sphere of LP(u, X) remains valid
if we replace the Lebesgue space LP(u), 1 < p < oo, by any Kdéthe
function space F which is locally uniformly rotund. In Proposition 1
the (H,) property is discussed. Moreover, it is proved (cf. Lemma 2)
that the spaces E,, where E is a monotone complete Kéthe function
space with the (H,‘f) property, have the (H,) property if the Orlicz
function ¢ satisfies the suitable As-condition. It is proved also (cf.
Theorem 1 and Remark 2) that in the case of an atomless finite measure
p the Orlicz-Lorentz space Ay ,, has the (H,) property if and only if
the Orlicz function ¢ satisfies the suitable As-condition.

2. Results. We start with the following

Proposition 1. Let E be an order continuous Kothe function space.
The following statements are equivalent:

(a) E has the (H,) property.
(b) E has the (H,") property.

(c) For any (f,) and f in E(X), if fn = f p-almost everywhere and
[|fnll = | f]|, then fn, — f strongly for any Banach space X.

Proof. The implications (a) = (b) and (c¢) = (a) are obvious. In order
to finish the proof, it suffices to show (b) = (c). Suppose (b) holds.
Let X be any Banach space, and let f,, f € E(X) satisfy f, — f
p-almost everywhere and ||f,,|| — ||f||. Clearly,

fo 55 foand |falle = [1£]]e-

Hence, f, — f strongly in E, by (b). Thus, passing to a subsequence
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(fn,) and applying Lemma 1, we have

for some x € ET. Let
I () = [ fn, () = FOIx

and

zg(:) = sup{gm(:) : m > k}.

The sequence (xj) is nonincreasing, zr — 0 p-almost everywhere
(because f, — f p-almost everywhere) and, by virtue of (x), we have

ngk§x+feE+.

Thus z; € E and, in view of the order continuity of E, x; — 0 strongly
in E. Since 0 < g < zg, we have g — 0 in E. This implies, of course,
that f,, — f strongly in E(X). The proof is finished. O

It is well known that the space L' has the (H,) property. This fact
will be used to show that some class of Kothe function spaces have the
(H,) property too.

Lemma 2. Let E be a monotone complete Kithe function space with
the (H,‘f) property such that L> C E in the case of an atomless finite
measure, and E C [ in the case of counting measure. Then E, has
the (H,) property whenever ¢ satisfies the suitable Ay-condition.

Proof. First observe that, if E' is monotone complete with the (H,!)
property, then E is order continuous. In fact, if x,, | 0, xz,, € E, then
x1 — ¢n, T 21 which yields ||z1 — z,|| — ||z1]|. Thus ||z,|| — 0 by the
(H,}) property.

Suppose that ¢ satisfies the suitable Aj-condition. Then z € E, if
and only if p(z) < co. This easily implies that E, is order continuous.
Therefore, in view of Proposition 1, in order to prove that E,, has the
(H,) property, it suffices to show that it has the (H ;IL ) property.
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We observe now that ||z||, = 1 implies p(x) = 1. Let ||z||, = 1.
Take any sequence (e,,), £, J 0. Then it follows that ||y, ||z < 1, where
Yn = p(z/(1+¢€,)) for n € N.

Since 0 <y, Ty = p(x) and y € E,, we have
p(z) = llyllp = lim |lya|lz < 1.
Assume that
(+) p(z) <1.
Since ¢ satisfies the suitable Az-condition, the function

ft) = pltz),  t>0,

is an Orlicz function. Condition (+) means that f(1) < 1. Thus,
by continuity of f, it follows that there exists A > 1 such that
f(X) = p(Az) < 1. This yields ||z||, < 1/X < 1, a contradiction.

In order to finish the proof, suppose that E, does not have the (H, If )
property. Thus, passing to a subsequence, if necessary, we can assume
that, for some z,, * > 0 in E,, we have

() lenlle = llzlly =1, @n S e and |[lon —xll, > ¢

for some £ > 0 and any n € N. As we have just proved, from (xx)
it follows that ||y,||r = ||y||lg = 1, where y, = ¢(x,) and y = ¢(z).
Since y, + y in E, by the (H;L) property and Lemma 1, we obtain
that

0< Yny, <w

for some subsequence (y,,) and w € Et. Notice that if an Orlicz
function ¢ satisfies the As-condition at zero, then it satisfies the As-
condition on the interval [0, to] for any positive constant tg.

By virtue of the assumption E C [*°, in the case of counting measure,
putting ¢y = max{sup, ¢~ (w(n)),sup,, ¢~ (z(n))}, where w(n) and
z(n) denote, respectively, the n-th coordinate of w and z, we get for
some constant K > 0 depending on t

p(xn,, — ) < Ko((2n, —2)/2) < K(p(n,) + 9())/2
<K(w+y)/2€ BT,
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This inequality holds also in the case of an atomless infinite measure.
In the case of an atomless finite measure, in view of L C E and the
As-condition at infinity, we have

o(Tn, —2) < K(w+y)/2+ ¢(to)Xa € ET.

In consequence, (&, — ) = 0 and 0 < ¢(x,, — ) < r for some
r € ET. Thus, by the order continuity of E, we have

p(xn, —x) = 0.

Since ¢ satisfies the suitable Ay-condition, we have z,, —= — 0in E,,
and that contradicts (*x). Thus, E, has the (H,) property, and the
proof is finished. o

It is obvious that L¥ = (L'), and L>™ C L¢ if p is atomless and
finite, ¥ C [ if u is counting measure and both L! and I! have the
(H,) property. Thus, by Lemma 2, we obtain the following result.

Corollary 1. An Orlicz space L¥(u) has the (H,) property if and
only if ¢ satisfies the suitable Ay-condition.

The necessity follows from the fact that if ¢ does not satisfy the
suitable Ag-condition then LY contains an isometric copy of {* (cf.
[2, 5, 14]). Indeed, any Orlicz space L¥ is monotone complete,
whence it follows that the (H,,) property of L¥ implies order continuity.
Therefore, assuming that ¢ does not satisfy the suitable As-condition,
we obtain a contradiction.

Corollary 2. Let L¥(u) be an Orlicz space with ¢ satisfying the
suitable As-condition and X a Banach space. Then, for (f,) and f
in the Orlicz-Bochner space L¥ (u, X), if ||fall = IIf]] and fr — f u-
almost everywhere, then f, — f in L¥(u, X).

The proof follows by applying Corollary 1 and Proposition 1.

Remark 1. In the case of ¢(t) = |t|P, 1 < p < oo, the above result
was proved by Smith in [13] by a quite different method.
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Next we will give an example of K6the function spaces with the (H,)
property, namely Orlicz-Lorentz spaces (cf. [6]).

Theorem 1. Let A, ., be an Orlicz-Lorentz space over a finite
atomless measure space (Q, %, 1) with the weight function w. Then
Ay o has the (H,) property if ¢ satisfies the suitable As-condition.

Proof. Since A,, is monotone complete, in view of Lemma 2, it suffices
to show that A, has the (H,) property. In order to prove that it is
enough to establish that, if z,, z > 0, and

(++) zn = and [lzalla, = llzla,,

then (z,,) contains a subsequence convergent strongly to .

Since x,, © z, we have z* — z* m-almost everywhere (cf. [9, p. 93]).
Thus
zrw — z¥w m-a.e.

/w;wdt—> /x*wdt,

by the assumption that ||z, ||a,, — ||z||a,. This yields, by the (H,)
property of L' that

and

/|:L‘:; —z*|lwdt — 0.

Thus, in virtue of Lemma 1, this implies that

*
Nk

|z —z*|w <y

for some subsequence (z7, ) of (};) and y € (L*)*. In consequence, by
the assumption on the weight function w, we obtain

(0, — )" (Ow(t) < 2, (t/2)w(t) + 2* (¢/2)w ()
< x:‘lk (t/2)w(t/2) + z*(t/2)w(t/2)
< y(t/2) + 22" (¢/2)w(t/2) = =(0).

We have z € L! and (z,, — z)* — 0 m-almost everywhere. Thus, the
Lebesgue dominated convergence theorem yields
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2, — lla, = / (my — @) wdt — 0.

This finishes the proof. ]

Remark 2. In the case of an atomless measure, the assumption con-
cerning the As-condition for ¢ is necessary in Theorem 1, because, in
the opposite case, the Orlicz-Lorentz space A, ,, contains an isometric
copy of {* (cf. [6]).

Now we will consider the problem of a characterization of strongly
extreme points of the unit sphere of Kéthe-Bochner spaces.

Remark 3. Every locally uniformly rotund Banach space X has the
Kadec-Klee property, i.e., norm and weak convergence of sequences
coincide on the unit sphere of X. Therefore, locally uniformly convex
Kothe function spaces are order continuous (cf. [10, p. 28]).

Theorem 2. Let E be a locally uniformly rotund Kothe function
space over a measure space (Q, %, ), and let X be a Banach space. If
f € Sg(x) is such that f(s)/||f(s)||x is a strongly extreme point of Sx
for p-almost everywhere s € supp f, then f is a strongly extreme point

OfSE(X)

Proof (cf. [18]). The local uniform rotundity of E implies that E
has the (H,) property (cf. [4]). Suppose f is in Sg(x) and (gn) is a
sequence in E(X) such that ||f £ g,|| — 1 = ||f||. Hence, it follows
that ||2f + gn|| — 2. By the triangle inequality in X and E, we have

12 £ gnll < [TIIFOllx + 1) £9nOllx 1B

(1)
< A1 £ gnll-

Since the left side and the right side of (1) tend towards two, the
local uniform rotundity of E yields that ||f(:) £ g.()|lx — [|f()]lx
in E. Thus, passing to a subsequence, if necessary, and applying the
continuous embedding of E into L°, we can assume that

(2) 17 (s) £ gn(s)llx = llF(s)llx  p-ae.
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Hence, for u-almost every s € supp f, we have

I1£(s) £ gn(s)|Ix /1| £(s)]|x — 1.

Thus, by the assumption that f(s)/||f(s)|| are strongly extreme points
of Sx p-almost everywhere in supp f, it follows that g,,(-) — 0 p-almost
everywhere in supp f. By (2), it follows also that g,(-) — 0 p-almost
everywhere in Q\supp f. In consequence, we have

1 £ gnll = [I£1]

(by the assumption) and
f+gn— f p-a.e. in €.

By Remark 3, F is order continuous. Thus, in view of Proposition 1,
we get g, — 0 in E(X), and the proof is finished. O

Corollary 3. Let ¢ be a strictly convex Orlicz function satisfying
the suitable As-condition, X a Banach space. If f € Spe(x) is such
that f(s)/||f(s)||x is a strongly extreme point of Sx for p-almost
everywhere s in supp f, then f is a strongly extreme point of Spe(x)-

The proof follows immediately from Theorem 2 and the fact that the
strict convexity of ¢ and the suitable As-condition for ¢ imply the local
uniform rotundity of L¥ (cf. [7]). Note that, in the case of counting
measure, it is enough to assume strict convexity of ¢ on the interval
[0, (1)]) (cE. [6]).

In the case of a nonatomic measure p, strongly extreme points of the
unit sphere of Orlicz spaces LY = L¥(u, R) were characterized in [3] in
the case when ¢ satisfies the suitable As-condition.

Under the same assumption on ¢ as in Corollary 3, if X is a separable
Banach space, then the sufficient condition for f to be an extreme point
of Spe(x) is also necessary. This follows immediately from the following
theorem.

Theorem 3. Let E be as in Theorem 2 and X a separable Banach
space. If f € Sg(x) is a strongly extreme point, then f(s)/||f(s)||x are
strongly extreme points of Sx for p-almost every s € supp f.
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The proof for LP(u,X), 1 < p < oo, in [13] can be repeated in our
case.

REFERENCES

1. E.I. Berezhnoi and M. Mastyto, On Calderdn-Lozanovskii construction, Bull.
Polish Acad. Sci. Math. 37 (1989), 23-32.

2. H. Hudzik, On some equivalent conditions in Musielak-Orlicz spaces, Com-
ment. Math. Prace Mat. 24 (1984), 57-64.

3. H. Hudzik and M. Wista, Strongly extreme points in Orlicz function spaces,
to appear.

4. H. Hudzik and M. Mastylo, Local uniform rotundity in Banach via sublinear
operators, submitted.

5. A. Kaminska, Flat Orlicz-Musielak sequence spaces, Bull. Acad. Polon. Sci.
Math. 30 (1982), 347-352.

6. , Some remarks on Orlicz-Lorentz spaces, Math. Nachr. 147 (1990),
29-38.

7. , The criteria for local uniform rotundity of Orlicz spaces, Studia Math.
79 (1984), 201-215.

8. L.V. Kantorovi¢ and G.P. Akilov, Functional analysis, 2nd ed., Moscow (1978),
in Russian.

9. S.G. Krein, Yu. I. Petunin and E.M. Semenov, Interpolation of linear operators,
Moscow (1978), in Russian.

10. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces 11, Springer-Verlag,
1979.

11. G.Ya. Lozanovskii, On some Banach lattices II, Sibirsk. Mat. Z. 12 (1971),
562-576, in Russian.

12. J. Musielak, Orlicz spaces and modular spaces, Lect. Notes Math. 1034
(1983).

13. M.A. Smith, Strongly eztreme points in LP(u, X), Rocky Mountain J. Math.
16 (1986), 1-5.

14. B. Turett, Rotundity of Orlicz spaces, Indag. Math. 38 (1976), 462-469.
15. A.C. Zaanen, Riesz spaces II, North-Holland, 1983.

INSTITUTE OF MATHEMATICS, A. MICKIEWICZ UNIVERSITY, MATEJKI 48/49, 60-
769 POzNAN, POLAND



