STRONGLY EXTREME POINTS IN KÖTHE-BOCHNER SPACES

H. HUDZIK AND M. MASTYŁO

ABSTRACT. The Kadec-Klee property with respect to a measure is discussed. A characterization of strongly extreme points of the unit sphere in certain Köthe-Bochner spaces is given.

1. Introduction. Let (Ω, Σ, μ) denote a measure space with σ -finite and complete measure μ and $L^0 = L^0(\Omega)$ denote the space of all (equivalence classes of) Σ -measurable real-valued functions, equipped with the topology of convergence in measure on μ -finite sets. In what follows, if $x, y \in L^0$, then $x \leq y$ means $x(t) \leq y(t)$ μ -almost everywhere in Ω .

For any Banach space X we denote by S_X the unit sphere of X.

A Banach subspace E of L^0 is said to be a Köthe function space (over (Ω, Σ, μ)) if

- (i) $|x| \le |y|, x \in L^0, y \in E \text{ imply } x \in E \text{ and } ||x|| \le ||y||,$
- (ii) supp $E:=\cup\{\operatorname{supp} x:x\in E\}=\Omega,$ where supp $x=\{t\in\Omega:x(t)\neq 0\}.$

A Köthe function space E is said to be *order continuous* (respectively, monotone complete) provided $x_n \downarrow 0$ implies $||x_n|| \to 0$ (respectively $0 \le x_n \uparrow x, x \in E$ imply $||x_n|| \to ||x||$).

Let E be a Köthe function space on (Ω, Σ, μ) , X a Banach space. By E(X) we denote the Banach space of all (equivalence classes of) strongly measurable functions $f: \Omega \to X$ such that $\bar{f} = ||f(\cdot)||_X \in E$ equipped with the norm $||f|| = ||\bar{f}||_E$.

Let E be a Köthe function space over (Ω, Σ, μ) . E is said to have the (positive) Kadec-Klee property with respect to the measure μ (simply property (H_{μ}^{+}) , respectively, (H_{μ})), whenever $(x_n \stackrel{\mu}{\to} x, x_n, x \in E^{+})$ $x_n \stackrel{\mu}{\to} x$ and $||x_n|| \to ||x||$ imply $x_n \to x$ strongly. Here

Received by the editors on July 15, 1991.

 $x_n \stackrel{\mu}{\to} x$ means that $x_n \to x$ in L^0 and if A is a subset of L^0 , then $A^+ = \{x \in A : x \ge 0\}.$

Note that E has the (H_{μ}) (respectively, (H_{μ}^{+})) property if and only if norm and measure convergence coincide on the unit sphere S_{E} of E (respectively on S_{E}^{+}).

In the above definitions measure convergence may be replaced by μ -almost everywhere convergence.

A Banach space X is said to be *locally uniformly rotund* if $||x_n|| \to ||x||$ and $||x_n + x|| \to 2||x||$ imply that $x_n \to x$ strongly.

We say that $\varphi : \mathbf{R} \to \mathbf{R}_+ = [0, \infty)$ is an Orlicz function if φ is convex and even, $\varphi(0) = 0$ and $\varphi(t) \to \infty$ as $t \to \infty$. We say that an Orlicz function satisfies the Δ_2 -condition for all $t \in \mathbf{R}$ (at infinity) [at zero] if there are positive constants K and t_0 such that $\varphi(t_0) > 0$ and the inequality $\varphi(2t) \leq K\varphi(t)$ is satisfied for all $t \in \mathbf{R}$ (for $t \in \mathbf{R}$ with $|t| \geq t_0$) [for $t \in \mathbf{R}$ with $|t| \leq t_0$].

For any Orlicz function φ the statement " φ satisfies the suitable Δ_2 -condition" means that:

 φ satisfies the Δ_2 -condition for all t if μ is atomless and infinite.

 φ satisfies the Δ_2 -condition at infinity if μ is atomless and finite.

 φ satisfies the Δ_2 -condition at zero if μ is counting measure.

Let E be a Köthe function space, and let φ be an Orlicz function. The functional

$$\rho(x) = \begin{cases} ||\varphi(x)||_E & \text{if } \varphi(x) \in E, \\ \infty & \text{if } \varphi(x) \notin E \end{cases}$$

is a convex modular, i.e., $\rho(0) = 0$ and x = 0 whenever $\rho(\alpha x) = 0$ for any $\alpha > 0$, $\rho(x) = \rho(-x)$, $\rho(\alpha x + \beta y) \le \alpha \rho(x) + \beta \rho(y)$ for any $x, y \in L^0$ and $\alpha, \beta \ge 0$ such that $\alpha + \beta = 1$.

Let E_{φ} be the space generated by the modular ρ , i.e.,

$$E_{\varphi} = \{ x \in L^0 : \rho(\lambda x) < \infty \text{ for some } \lambda > 0 \}.$$

As a modular space E_{φ} is equipped with the so-called Luxemburg norm

$$||x||_{\varphi} = \inf \{\lambda > 0 : \rho(x/\lambda) \le 1\}$$

under which it is a Köthe function space.

For the theory of modular spaces, we refer to [12]. It is clear that for $E = L_1$, E_{φ} becomes an ordinary Orlicz space L^{φ} (cf. [10 and 12]).

Note that E_{φ} is a special case of the Calderón-Lozanovskii space (see [11, 1]).

Suppose f belongs to L^0 . The nonincreasing rearrangement of f is the function f^* defined on $[0,\infty)$ by

$$f^*(t) = \inf\{\lambda > 0 : \mu_f(\lambda) \le t\}$$

(by the convention $\inf \emptyset = \infty$), where μ_f is the distribution function of f defined by

$$\mu_f(t) = \mu(\{\omega \in \Omega : |f(\omega)| > t\}), \qquad t \ge 0.$$

By $w:[0,\gamma)\to \mathbf{R}_+$, $\gamma\leq\infty$, denote a nonincreasing locally integrable function with respect to the Lebesgue measure m, called a weight function.

Recall that the *Lorentz space* Λ_w is defined as follows:

$$\Lambda_w = \{ f \in L^0 : ||f||_{\Lambda_w} = \int_0^\gamma f^*(t) w(t) \, dt < \infty \}, \qquad \gamma = \mu(\Omega).$$

Now, if for a given Orlicz function φ , we take $E = \Lambda_w$, then the space E_{φ} , denoted by $\Lambda_{\varphi,w}$, is called the *Orlicz-Lorentz space* (cf. [6]).

An easy proof of the following lemma, useful in the sequel, can be found in [8, Lemma 2, p. 141].

Lemma 1. Let E be a Köthe function space. If $x_n \to x$ in E, then there exist $y \in E^+$, $(x_{n_k}) \subset (x_n)$ and $(\varepsilon_{n_k}) \subset \mathbf{R}_+$ with $\varepsilon_{n_k} \downarrow 0$ such that $|x_{n_k} - x| \leq \varepsilon_{n_k} y$.

It is proved in [13] that, for any p in $(1, \infty)$ and any separable Banach space X, a point f of the unit sphere of the Lebesgue-Bochner space $L^p(\mu, X)$ is strongly extreme if and only if the values $f(s)/||f(s)||_X$ are strongly extreme points of the unit ball of X for μ -almost everywhere $s \in \text{supp } f$.

Recall that an element x of the unit sphere of a Banach space X is called *strongly extreme* if any sequence $(x_n) \subset X$ such that $||x_n + x|| \to 1$ and $||x_n - x|| \to 1$ converges to zero.

In the proof of this theorem the facts that for any p in $(1, \infty)$, the Lebesgue space $L^p(\mu)$ is locally uniformly rotund (in fact, it is uniformly rotund) and that, for any Banach space X, $L^p(\mu, X)$ has the Kadec-Klee property with respect to the measure μ were applied.

In the present paper, it is proved that Smith's characterization of strongly extreme points of the unit sphere of $L^p(\mu,X)$ remains valid if we replace the Lebesgue space $L^p(\mu)$, 1 , by any Köthe function space <math>E which is locally uniformly rotund. In Proposition 1 the (H_{μ}) property is discussed. Moreover, it is proved (cf. Lemma 2) that the spaces E_{φ} , where E is a monotone complete Köthe function space with the (H_{μ}^+) property, have the (H_{μ}) property if the Orlicz function φ satisfies the suitable Δ_2 -condition. It is proved also (cf. Theorem 1 and Remark 2) that in the case of an atomless finite measure μ the Orlicz-Lorentz space $\Lambda_{\varphi,w}$ has the (H_{μ}) property if and only if the Orlicz function φ satisfies the suitable Δ_2 -condition.

2. Results. We start with the following

Proposition 1. Let E be an order continuous Köthe function space. The following statements are equivalent:

- (a) E has the (H_{μ}) property.
- (b) E has the (H_{μ}^{+}) property.
- (c) For any (f_n) and f in E(X), if $f_n \to f$ μ -almost everywhere and $||f_n|| \to ||f||$, then $f_n \to f$ strongly for any Banach space X.

Proof. The implications (a) \Rightarrow (b) and (c) \Rightarrow (a) are obvious. In order to finish the proof, it suffices to show (b) \Rightarrow (c). Suppose (b) holds. Let X be any Banach space, and let f_n , $f \in E(X)$ satisfy $f_n \to f$ μ -almost everywhere and $||f_n|| \to ||f||$. Clearly,

$$\bar{f}_n \stackrel{\mu}{\to} \bar{f}$$
 and $||\bar{f}_n||_E \to ||\bar{f}||_E$.

Hence, $\bar{f}_n \to \bar{f}$ strongly in E, by (b). Thus, passing to a subsequence

 (f_{n_k}) and applying Lemma 1, we have

$$|\bar{f}_{n_k}| = \bar{f}_{n_k} \le x$$

for some $x \in E^+$. Let

$$g_m(\cdot) = ||f_{n_m}(\cdot) - f(\cdot)||_X$$

and

$$x_k(\cdot) = \sup\{g_m(\cdot) : m \ge k\}.$$

The sequence (x_k) is nonincreasing, $x_k \to 0$ μ -almost everywhere (because $f_n \to f$ μ -almost everywhere) and, by virtue of (*), we have

$$0 \le x_k \le x + \bar{f} \in E^+$$
.

Thus $x_k \in E$ and, in view of the order continuity of E, $x_k \to 0$ strongly in E. Since $0 \le g_k \le x_k$, we have $g_k \to 0$ in E. This implies, of course, that $f_n \to f$ strongly in E(X). The proof is finished. \square

It is well known that the space L^1 has the (H_{μ}) property. This fact will be used to show that some class of Köthe function spaces have the (H_{μ}) property too.

Lemma 2. Let E be a monotone complete Köthe function space with the (H_{μ}^+) property such that $L^{\infty} \subset E$ in the case of an atomless finite measure, and $E \subset l^{\infty}$ in the case of counting measure. Then E_{φ} has the (H_{μ}) property whenever φ satisfies the suitable Δ_2 -condition.

Proof. First observe that, if E is monotone complete with the (H_{μ}^{+}) property, then E is order continuous. In fact, if $x_n \downarrow 0$, $x_n \in E$, then $x_1 - x_n \uparrow x_1$ which yields $||x_1 - x_n|| \to ||x_1||$. Thus $||x_n|| \to 0$ by the (H_{μ}^{+}) property.

Suppose that φ satisfies the suitable Δ_2 -condition. Then $x \in E_{\varphi}$ if and only if $\rho(x) < \infty$. This easily implies that E_{φ} is order continuous. Therefore, in view of Proposition 1, in order to prove that E_{φ} has the (H_{μ}) property, it suffices to show that it has the (H_{μ}^+) property.

We observe now that $||x||_{\varphi} = 1$ implies $\rho(x) = 1$. Let $||x||_{\varphi} = 1$. Take any sequence (ε_n) , $\varepsilon_n \downarrow 0$. Then it follows that $||y_n||_E \leq 1$, where $y_n = \varphi(x/(1+\varepsilon_n))$ for $n \in \mathbb{N}$.

Since $0 \le y_n \uparrow y = \varphi(x)$ and $y \in E_{\varphi}$, we have

$$\rho(x) = ||y||_E = \lim_{n \to \infty} ||y_n||_E \le 1.$$

Assume that

Since φ satisfies the suitable Δ_2 -condition, the function

$$f(t) = \rho(tx), \qquad t > 0,$$

is an Orlicz function. Condition (+) means that f(1) < 1. Thus, by continuity of f, it follows that there exists $\lambda > 1$ such that $f(\lambda) = \rho(\lambda x) \le 1$. This yields $||x||_{\varphi} \le 1/\lambda < 1$, a contradiction.

In order to finish the proof, suppose that E_{φ} does not have the (H_{μ}^{+}) property. Thus, passing to a subsequence, if necessary, we can assume that, for some $x_{n}, x \geq 0$ in E_{φ} , we have

$$(**) \hspace{1cm} ||x_n||_{\varphi} = ||x||_{\varphi} = 1, \hspace{1cm} x_n \overset{\mu}{\to} x \hspace{1cm} \text{and} \hspace{1cm} ||x_n - x||_{\varphi} > \varepsilon$$

for some $\varepsilon > 0$ and any $n \in \mathbb{N}$. As we have just proved, from (**) it follows that $||y_n||_E = ||y||_E = 1$, where $y_n = \varphi(x_n)$ and $y = \varphi(x)$. Since $y_n \stackrel{\mu}{\to} y$ in E, by the (H_{μ}^+) property and Lemma 1, we obtain that

$$0 \leq y_{n_k} \leq w$$

for some subsequence (y_{n_k}) and $w \in E^+$. Notice that if an Orlicz function φ satisfies the Δ_2 -condition at zero, then it satisfies the Δ_2 -condition on the interval $[0, t_0]$ for any positive constant t_0 .

By virtue of the assumption $E \subset l^{\infty}$, in the case of counting measure, putting $t_0 = \max\{\sup_n \varphi^{-1}(w(n)), \sup_n \varphi^{-1}(x(n))\}$, where w(n) and x(n) denote, respectively, the *n*-th coordinate of w and x, we get for some constant K > 0 depending on t_0

$$\varphi(x_{n_k} - x) \le K\varphi((x_{n_k} - x)/2) \le K(\varphi(x_{n_k}) + \varphi(x))/2$$

$$\le K(w + y)/2 \in E^+.$$

This inequality holds also in the case of an atomless infinite measure. In the case of an atomless finite measure, in view of $L^{\infty} \subset E$ and the Δ_2 -condition at infinity, we have

$$\varphi(x_{n_k}-x) \le K(w+y)/2 + \varphi(t_0)\chi_{\Omega} \in E^+.$$

In consequence, $\varphi(x_{n_k} - x) \xrightarrow{\mu} 0$ and $0 \le \varphi(x_{n_k} - x) \le r$ for some $r \in E^+$. Thus, by the order continuity of E, we have

$$\rho(x_{n_k}-x)\to 0.$$

Since φ satisfies the suitable Δ_2 -condition, we have $x_{n_k} - x \to 0$ in E_{φ} , and that contradicts (**). Thus, E_{φ} has the (H_{μ}) property, and the proof is finished.

It is obvious that $L^{\varphi} = (L^1)_{\varphi}$ and $L^{\infty} \subset L^{\varphi}$ if μ is atomless and finite, $l^{\varphi} \subset l^{\infty}$ if μ is counting measure and both L^1 and l^1 have the (H_{μ}) property. Thus, by Lemma 2, we obtain the following result.

Corollary 1. An Orlicz space $L^{\varphi}(\mu)$ has the (H_{μ}) property if and only if φ satisfies the suitable Δ_2 -condition.

The necessity follows from the fact that if φ does not satisfy the suitable Δ_2 -condition then L^{φ} contains an isometric copy of l^{∞} (cf. [2, 5, 14]). Indeed, any Orlicz space L^{φ} is monotone complete, whence it follows that the (H_{μ}) property of L^{φ} implies order continuity. Therefore, assuming that φ does not satisfy the suitable Δ_2 -condition, we obtain a contradiction.

Corollary 2. Let $L^{\varphi}(\mu)$ be an Orlicz space with φ satisfying the suitable Δ_2 -condition and X a Banach space. Then, for (f_n) and f in the Orlicz-Bochner space $L^{\varphi}(\mu, X)$, if $||f_n|| \to ||f||$ and $f_n \to f$ μ -almost everywhere, then $f_n \to f$ in $L^{\varphi}(\mu, X)$.

The proof follows by applying Corollary 1 and Proposition 1.

Remark 1. In the case of $\varphi(t) = |t|^p$, $1 \le p < \infty$, the above result was proved by Smith in [13] by a quite different method.

Next we will give an example of Köthe function spaces with the (H_{μ}) property, namely Orlicz-Lorentz spaces (cf. [6]).

Theorem 1. Let $\Lambda_{\varphi,w}$ be an Orlicz-Lorentz space over a finite atomless measure space (Ω, Σ, μ) with the weight function w. Then $\Lambda_{\varphi,w}$ has the (H_{μ}) property if φ satisfies the suitable Δ_2 -condition.

Proof. Since Λ_w is monotone complete, in view of Lemma 2, it suffices to show that Λ_w has the (H_{μ}^+) property. In order to prove that it is enough to establish that, if x_n , $x \geq 0$, and

$$(++)$$
 $x_n \stackrel{\mu}{\to} x$ and $||x_n||_{\Lambda_m} \to ||x||_{\Lambda_m}$

then (x_n) contains a subsequence convergent strongly to x.

Since $x_n \stackrel{\mu}{\to} x$, we have $x_n^* \to x^*$ m-almost everywhere (cf. [9, p. 93]). Thus

$$x_n^* w \to x^* w$$
 m-a.e.

and

$$\int x_n^* w \, dt \to \int x^* w \, dt,$$

by the assumption that $||x_n||_{\Lambda_w} \to ||x||_{\Lambda_w}$. This yields, by the (H_μ) property of L^1 that

$$\int |x_n^* - x^*| w \, dt \to 0.$$

Thus, in virtue of Lemma 1, this implies that

$$|x_{n_k}^* - x^*| w \le y$$

for some subsequence $(x_{n_k}^*)$ of (x_n^*) and $y \in (L^1)^+$. In consequence, by the assumption on the weight function w, we obtain

$$(x_{n_k} - x)^*(t)w(t) \le x_{n_k}^*(t/2)w(t) + x^*(t/2)w(t)$$

$$\le x_{n_k}^*(t/2)w(t/2) + x^*(t/2)w(t/2)$$

$$\le y(t/2) + 2x^*(t/2)w(t/2) = z(t).$$

We have $z \in L^1$ and $(x_{n_k} - x)^* \to 0$ m-almost everywhere. Thus, the Lebesgue dominated convergence theorem yields

$$||x_{n_k}-x||_{\Lambda_w} = \int (x_{n_k}-x)^* w \, dt o 0.$$

This finishes the proof.

Remark 2. In the case of an atomless measure, the assumption concerning the Δ_2 -condition for φ is necessary in Theorem 1, because, in the opposite case, the Orlicz-Lorentz space $\Lambda_{\varphi,w}$ contains an isometric copy of l^{∞} (cf. [6]).

Now we will consider the problem of a characterization of strongly extreme points of the unit sphere of Köthe-Bochner spaces.

Remark 3. Every locally uniformly rotund Banach space X has the $Kadec\text{-}Klee\ property$, i.e., norm and weak convergence of sequences coincide on the unit sphere of X. Therefore, locally uniformly convex Köthe function spaces are order continuous (cf. [10, p. 28]).

Theorem 2. Let E be a locally uniformly rotund Köthe function space over a measure space (Ω, Σ, μ) , and let X be a Banach space. If $f \in S_{E(X)}$ is such that $f(s)/||f(s)||_X$ is a strongly extreme point of S_X for μ -almost everywhere $s \in \operatorname{supp} f$, then f is a strongly extreme point of $S_{E(X)}$.

Proof (cf. [13]). The local uniform rotundity of E implies that E has the (H_{μ}) property (cf. [4]). Suppose f is in $S_{E(X)}$ and (g_n) is a sequence in E(X) such that $||f \pm g_n|| \to 1 = ||f||$. Hence, it follows that $||2f + g_n|| \to 2$. By the triangle inequality in X and E, we have

(1)
$$||2f \pm g_n|| \le ||||f(\cdot)||_X + ||f(\cdot) \pm g_n(\cdot)||_X||_E \le ||f|| + ||f \pm g_n||.$$

Since the left side and the right side of (1) tend towards two, the local uniform rotundity of E yields that $||f(\cdot) \pm g_n(\cdot)||_X \to ||f(\cdot)||_X$ in E. Thus, passing to a subsequence, if necessary, and applying the continuous embedding of E into L^0 , we can assume that

(2)
$$||f(s) \pm g_n(s)||_X \to ||f(s)||_X \quad \mu\text{-a.e.}$$

Hence, for μ -almost every $s \in \text{supp } f$, we have

$$||f(s) \pm g_n(s)||_X/||f(s)||_X \to 1.$$

Thus, by the assumption that f(s)/||f(s)|| are strongly extreme points of S_X μ -almost everywhere in supp f, it follows that $g_n(\cdot) \to 0$ μ -almost everywhere in supp f. By (2), it follows also that $g_n(\cdot) \to 0$ μ -almost everywhere in $\Omega \setminus \sup f$. In consequence, we have

$$||f \pm g_n|| \rightarrow ||f||$$

(by the assumption) and

$$f + q_n \to f$$
 μ -a.e. in Ω .

By Remark 3, E is order continuous. Thus, in view of Proposition 1, we get $g_n \to 0$ in E(X), and the proof is finished. \Box

Corollary 3. Let φ be a strictly convex Orlicz function satisfying the suitable Δ_2 -condition, X a Banach space. If $f \in S_{L^{\varphi}(X)}$ is such that $f(s)/||f(s)||_X$ is a strongly extreme point of S_X for μ -almost everywhere s in supp f, then f is a strongly extreme point of $S_{L^{\varphi}(X)}$.

The proof follows immediately from Theorem 2 and the fact that the strict convexity of φ and the suitable Δ_2 -condition for φ imply the local uniform rotundity of L^{φ} (cf. [7]). Note that, in the case of counting measure, it is enough to assume strict convexity of φ on the interval $[0, \varphi^{-1}(1)]$) (cf. [6]).

In the case of a nonatomic measure μ , strongly extreme points of the unit sphere of Orlicz spaces $L^{\varphi} = L^{\varphi}(\mu, \mathbf{R})$ were characterized in [3] in the case when φ satisfies the suitable Δ_2 -condition.

Under the same assumption on φ as in Corollary 3, if X is a separable Banach space, then the sufficient condition for f to be an extreme point of $S_{L^{\varphi}(X)}$ is also necessary. This follows immediately from the following theorem.

Theorem 3. Let E be as in Theorem 2 and X a separable Banach space. If $f \in S_{E(X)}$ is a strongly extreme point, then $f(s)/||f(s)||_X$ are strongly extreme points of S_X for μ -almost every $s \in \text{supp } f$.

The proof for $L^p(\mu, X)$, 1 , in [13] can be repeated in our case

REFERENCES

- 1. E.I. Berezhnoi and M. Mastyło, On Calderón-Lozanovskii construction, Bull. Polish Acad. Sci. Math. 37 (1989), 23–32.
- 2. H. Hudzik, On some equivalent conditions in Musielak-Orlicz spaces, Comment. Math. Prace Mat. 24 (1984), 57-64.
- 3. H. Hudzik and M. Wista, Strongly extreme points in Orlicz function spaces, to appear.
- ${\bf 4.}$ H. Hudzik and M. Mastyło, Local uniform rotundity in Banach via sublinear operators, submitted.
- $\bf 5.~A.~Kamińska,~Flat~Orlicz-Musielak~sequence~spaces,$ Bull. Acad. Polon. Sci. Math. $\bf 30~(1982),~347–352.$
- 6. ——, Some remarks on Orlicz-Lorentz spaces, Math. Nachr. 147 (1990), 29-38.
- 7. ——, The criteria for local uniform rotundity of Orlicz spaces, Studia Math. 79 (1984), 201–215.
- $\bf 8.~L.V.~Kantorovič$ and G.P. Akilov, Functional analysis, 2nd ed., Moscow (1978), in Russian.
- 9. S.G. Krein, Yu. I. Petunin and E.M. Semenov, Interpolation of linear operators, Moscow (1978), in Russian.
- 10. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces II, Springer-Verlag, 1979.
- 11. G.Ya. Lozanovskii, On some Banach lattices II, Sibirsk. Mat. Z. 12 (1971), 562–576, in Russian.
- 12. J. Musielak, Orlicz spaces and modular spaces, Lect. Notes Math. 1034 (1983).
- 13. M.A. Smith, Strongly extreme points in $L^p(\mu, X)$, Rocky Mountain J. Math. 16 (1986), 1–5.
 - 14. B. Turett, Rotundity of Orlicz spaces, Indag. Math. 38 (1976), 462-469.
 - 15. A.C. Zaanen, Riesz spaces II, North-Holland, 1983.

Institute of Mathematics, A. Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland