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NEW PROOFS OF BING’S 1-ULC TAMING
THEOREM AND BING’S SIDE
APPROXIMATION THEOREM

DAVIS W. FINLEY

The main contents of this paper are new, shorter proofs of R.H.
Bing’s 1-ULC taming theorem [5] and Side Approximation theorem
[6]. Most of this paper is drawn from the author’s dissertation, which
he completed under the direction of Professors William T. Eaton and
Michael P. Starbird of The University of Texas at Austin. The author
thanks them for their patience in teaching and guiding him and thanks
Matthew V. Brahm and James W. Cannon for suggestions that have
proven helpful in writing this paper. Ideas and theorems of James W.
Cannon are used frequently in this paper, so the reader is urged to
consult [12].

Theorem (Bing). Suppose that ¥ is a 2-sphere topologically em-
bedded in E® and that Int ¥ is 1-ULC. Then X UInt ¥ s a 3-cell.

Since the new proof makes no use of Bing’s approximability-implies-
tameness theorem [4, 12, pp. 361-362], the latter theorem follows as a
corollary from his 1-ULC taming theorem.

Theorem (Bing). Suppose that ¥ is a 2-sphere topologically embed-
ded in E3 and that, for each € > 0, there is an e-homeomorphism from
Y into Int . Then X UInt X is a 3-cell.

The proof of Bing’s 1-ULC taming theorem follows from Lemma 1
and the tools of [12, pp. 373-376]. No proof of Lemma 1 will be given,
as its proof is easier than and uses the same methods as the proof of
Lemma 2.

Lemma 1. Suppose that ¥ is a 2-sphere topologically embedded in
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E3 and that Int Y is 1-ULC. Let D C X be a disk, and let W be a
neighborhood of Int D in E3. Then there exists a homeomorphism h of
Y into Cl(Int X) such that:

1. h is the identity on X\Int D.
2. h|(Int D) is PL.
3. h(IntD) C W NIntX.

The proof of Bing’s Side Approximation Theorem [6] follows from
Lemma 2, [11, Theorem 2C.7(2)] and the tools of [12, pp. 373-376].

Lemma 2. Suppose that X is a 2-sphere topologically embedded in
E3 and that F C ¥ is a 0-dimensional F,-set such that F UIntY is
1-ULC. Let D C X be a disk, and let W be a neighborhood of Int D in
E3. Let N be a neighborhood of F NInt D in Int D. Then there exist a
homeomorphism h of ¥ into E3 and a locally finite collection {D;} of
disjoint disks in Int D such that:

1. h is the identity on X\Int D.
2. h|(Int D) is PL.

3. h(IntD) C W.

4. U{D;} C N.

5. Int D\ U{Int D;} C Ext h(X%).

Theorem 2C.7(2) (J.W. Cannon). Let ¥ C E? be a 2-sphere.
Then there is a 0-dimensional F,-set F in X such that F U IntX is
0-ULC and 1-ULC.

The point of Lemma 2 is to create an embedded spanning disk with
PL interior. In the proof of Lemma 2, a singular spanning disk with
PL interior will be created, but [9, Theorem (2.2)] will not be applied
to the interior of the singular spanning disk since the result will be a
spanning plane whose union with Bd D may fail to be a disk.

In the statement of the following theorem, observe that if A is a
complementary domain of a compact subset C' of a 3-manifold M into
which R? is properly mapped by f, then there exists a disk D C R?
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such that f(R?\D) C A.

Theorem (2.2) (E.M. Brown and C.D. Feustel). Let M be a
3-manifold and let f : R> — M be a proper map. Suppose, for some
compact C C M, that if D C R? is the disk and A the complementary
domain of C with f(R*\D) C A, then [f|Bd D] ¢ G for G a normal
subgroup of w1 (A). Then, for any neighborhood U of f(R?), there is a
proper embedding g : R> — M and a disk E C R? so that g(R*) C U,
g(R*\E) C A, and [g|BdE] ¢ G.

Instead, the singular spanning disk is desingularized in three steps.
We only outline the three steps here. The proof of Lemma 2 follows
later.

The singular spanning disk will be thought of as the image of a map
U : D — E3, where for every € Bd D, ¥(z) = z. Let A be a collection
of arcs properly embedded in D as shown in Figure 1. The first step will
be to alter ¥ so that, for every a € A, there will be a neighborhood
of Inta in Int D such that, for every point x in the neighborhood,
U~1({¥(z)}) = {z}. For each a € A, we will construct a singular open
annulus whose two ends map to the two ends of E3\Bd a. The singular
open annulus will be constructed so that applying [ 7, Corollary IV]
to it will produce an embedded open annulus whose closure will be a
2-sphere ¥, such that:

i) Bda C X,.

i) X,\Bdais PL.

i) (X,\Bda)NX C N.

iv) ¥(Inta) C IntX,.

v) If J C X, is a simple closed curve that separates Bda, then

J ¢ ¥(D).

i

111

Corollary IV (Brin and Thickstun). Let f: (S! x E') — M be
proper carrying the ends of S* x E' to different ends of M, and let H be
a normal subgroup of 1 M. If [f|Stx{0}] lies in w(m1 M)\ H, then there
is a proper embedding g : (S* x E') — M such that [g|S* x {0}] ¢ H.
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FIGURE 1.

After cutting the singular disk ¥ (D) off near Uge 4{X,} in the manner
of [12, p. 374], ¥(D) will remain singular, but it will have the property
that, for every a € A, there will be a neighborhood of Int @ in Int D such
that, for every point x in the neighborhood, =1 = ({¥(z)}) = {z}.
The first step will then be complete.

Let T be the set of closed triangular regions into which the arcs of A
divide D. The second step will be to desingularize the restriction of ¥
to every closed triangular region by using Corollary 1, a consequence
of Brin and Thickstun’s Near Disk Theorem [7, Theorem 2].
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Corollary 1. Let X C BdD? be a closed 0-dimensional set. Let
N be a neighborhood of Bd D*\X in D*\X. Let f : D* — E® be a
map such that f|(D*\X) is PL and such that f~1({f(x)}) = {z} for
every x € BAD? U N. Let V be an open neighborhood of f(Int D?) in
E3\f(Bd D?). Then there exist an open neighborhood N’ of Bd D?\ X
in D*\X and an embedding g : D* — C1(V) such that g|(D*\X) is
PL and such that, for every x € BAD? U N, g(z) = f(z).

Theorem 2 (Brin and Thickstun). Let M be a noncompact 3-
manifold, let Z C M be compact, let V be a component of M\Z, and
let H be a normal subgroup of m V. If there is a proper allowable map
f:G— M of a near disk that is (Z, H)-essential, and if U is an open
set in M containing f(G), then there is a proper embedding g : E — M
that is an allowable replacement for f, that is (Z, H)-essential, and that
has g(E) C U.

A near disk is a disk from whose boundary a closed, nonempty subset
has been removed. From the near disk G it is possible that boundary
components are eliminated to obtain the near disk F; however, if f
embeds a boundary component of G that is not dropped in passing
from f to g, then g embeds that boundary component, too. The proof
of Corollary 1 from [7, Theorem 2] is left for the reader.

If we define ¥ carefully enough, then the images under ¥ of the in-
teriors of two nonadjacent closed triangular regions will be disjoint.
Therefore, in the third step, we will cut the image of each “odd” tri-
angular region off near the images of its neighboring “even” triangular
regions to finish the desingularization of ¥(D).

Proof of Lemma 2. In this paragraph, identify D with a flat round
disk so that sense can be made of the following constructions. Let A4 be
a collection of arcs properly embedded in D as shown in Figure 1, and
let T be the set of closed triangular regions into which the elements
of A divide D. For every a € A, let ay and a_ be two arcs near a
properly embedded in D as shown in Figure 1. Let A, be the disk in
D bounded by a4 Ua_. By [11, Theorem 2C.7(2).1], we may assume
that no arc in A intersects F'.
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Now we describe a collection of open sets that will give us control of
the map ¥ : D — E3 to be defined. Let {N,},cau7 be a collection of
open sets in E3 such that:

i) For every r € AUT, N, C W.
ii) For every a € A, A,\BdD C N, C Int DU (E3\X).
iii) For every 7€ T, T\BdD C Ny C Int DU (E3\X).
iv) For every r,s € AUT, if rNs C BdD, then N, N N; = &.

v) For every § > 0, there exists a finite subset Q of AUT such that
if r € AUT and diam (N,) > §, then r € Q.

We later define the map ¥ : D — E?3 and build the collection {2, }ac4
of 2-spheres so that ¥,\Bd D C N, for every a € A and so that initially
¥ (T\Bd D) C Ny for every T € T.

For every a € A, let ' C X be an arc such that a'ND = Bda' = Bda.

Step 1A. Building S, and S!,, two “singular surfaces bounded by
a' Ua”. For every a € A, we build in Int ¥ a singular surface which
we use, after we have built the 2-sphere ¥, and defined the map
U : D — E* to ensure (1) that ¥(Inta) C Int¥,, (2) that no
simple closed curve in X, separating Bda is a subset of ¥(D), and
(3) that the images under ¥ of two as-yet-to-be specified components of
Int DNY~1(X,) are disjoint. If we triangulate a disk D? modulo Bd D?,
then by [ 11, Theorem 2A], there is an embedding of the union of Bd D?
and the set underlying the 1-skeleton of the triangulation such that the
restriction of the embedding to the set underlying the 1-skeleton is PL
into Int ¥ and such that the image of BdD? is a’ U a. Then, since
Int ¥ is 1-ulc [11, Theorem 2A] and has trivial first homology group
[11, Theorem 2B.2], the image of the boundary of every 2-simplex in
the triangulation bounds a singular surface in Int ¥ that is small if the
image of the boundary of the 2-simplex is near ¥. Since a’ Ua may fail
to be homologically trivial in ¢’ UaUInt X, a’ Ua does not really bound
the union of the singular surfaces in the homological sense, but we will
abuse language by calling the union of a’ U a and the singular surfaces
“the singular surface bounded by a’ U a,” which we will denote by S,,.

Also, for every a € A, we build in o’ Ua UExtX a singular surface
S! bounded by a’ Ua. After we build the map ¥ : D — E® and
the singular open annuli, neither (D) nor any singular open annulus
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intersects Ext X; however, when we PL approximate ¥ and the singular
open annuli, we use S! to maintain control of ¥ and the singular open
annuli by insisting that ¥(Int D) and the singular open annuli remain
disjoint from S’.

Step 1B. Building the “top” of the singular open annulus near a.
Now, for every a € A, we begin building the 2-sphere ¥, in N,. As
mentioned previously, we do this by building a singular open annulus
running between the endpoints of a, desingularizing the singular open
annulus, and then taking the union of the resulting embedded open
annulus and the endpoints of a to get the 2-sphere 3.

We begin building the singular open annulus near a.

First, we build over A, a singular cap in which the “top” of the
singular open annulus will lie. We let A, be the domain of the singular
cap. We may assume that the map from A, to the singular cap is the
identity map on Bd A,, that the map PL embeds into Int X the set
underlying the 1-skeleton of some triangulation of A, modulo Bd A,,
and that the singular cap lies in (Int X UBd A, U F) N N,.

Step 1C. Building the singular spanning disk ¥ (D). Since the singular
cap over A, does not intersect Int a, there is an arc o, C S,, with
Int a, lying in the image of the set underlying the 1-skeleton of the
triangulation of D? modulo Bd D? and with Bda, = Bda, lying so
close to a that the piece of S, bounded by a U, intersects the singular
cap over A, only in Bda.

For every a € A, there is an arc 8, C S,, with Int 8, lying in the
image of the set underlying the 1-skeleton of the triangulation of D?
modulo Bd D? and with Bd3, = Bda lying so close to a that S,
intersects the piece of S, bounded by a’ U a, only in Bda. If 3,
is chosen close enough to a for every a € A, we may triangulate D
modulo Bd D in such a way that UA is a subset of the set underlying
the 1-skeleton of the triangulation and then build the map ¥ : D — E3
so that:

i) For every z € Bd D, ¥(z) = x.

ii) The restriction of ¥ to the set underlying the 1-skeleton of the
triangulation of D modulo Bd D is a PL embedding into Int X.
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iii) For every a € A, ¥(a) = f,.
iv) ¥(Int D)  (IntT) U (F N Int D).

v) For every a € A, the piece of S, bounded by a’ U «, intersects
¥(D) only in Bda.

vi) For every T € T, ¥(T\Bd D) C Nr.

Step 1D. Building the “bottom” of the singular open annulus near a.
Now we finish building the singular open annulus that will be used to
give us the 2-sphere ¥, near a. We have already build the singular cap
over A, in which the “top” of the singular open annulus will lie, so it
remains for us to build the “bottom” of the singular open annulus.

For every a € A, there is an arc v, in S,, with Int 7, lying in the
image of the set underlying the 1-skeleton of the triangulation of D?
modulo Bd D? and with Bd v, = Bd a, lying so close to a that the piece
of S, bounded by a U, intersects ¥(D) only in Bda.

In the union of Bda and the set underlying the 1-skeleton of the
triangulation of A, modulo Bd A, that was PL embedded into the
singular cap over A,, there are an arc a_g 5 so close to a_ and an arc
a49.5 so close to ay, with Bda_g5 = Bdayos = Bda, that the images
in the singular cap over A, of the disks bounded by a_ Ua_¢5 and
a4 Uaggs intersect S, only in Bda. If a_g 5 is close enough to a_ and
G405 is close enough to a4, then we may find a new map from A, into
E3 such that:

i) The restriction of the new map to the piece of A, not in the
interior of the disk bounded by a_¢5Uao 5 agrees with the restriction
of the original map from A, into the singular cap over A, to that same
piece of A,.

ii) The image of A, under the new map intersects the piece of S,
bounded by a’ U+, only in Bda.

iii) The image of A, under the new map lies in (Int ZUBd A,UF)N
N,.

The original map from the subdisk bounded by a_y 5 Ua4¢.5 into the

singular cap over A, and the new map from the subdisk into E? form
a singular open annulus whose ends map to the endpoints of a.
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Step 1E. Finding the locally finite collection {D;} of disjoint disks.
Now that we have the map ¥ : D — E® and, for every a € A,
the singular open annulus near a, we take for the collection {D;} of
disjoint disks in N any locally finite (in Int D) collection of disjoint
disks in NV such that the union of the disks’ interiors contains the 0-
dimensional, closed (in Int D) intersection of ¥ and the union of the
singular open annuli and ¥(Int D). We may assume that, for every
a € A, anU{D;} = @. in the rest of the proof, we take care
never to introduce intersections between ¥(Int D) and ¥ outside the
set U{Int D;}. In other words, the intersection of ¥(Int D) and ¥ will
no longer be a source of worry. Since ¥(Int D) and the singular open
annuli will all miss S/, we will know at the end of the proof that
Int D\ U {Int D;} C Ext h(X).

Step 1F. Desingularizing the singular open annulus near a to get X, .
Next, for each a € A, we want to use [7, Corollary IV] to desingularize
the singular open annulus that we have just finished building near a,
for the 2-sphere I, is to be the closure in E? of the resulting embedded
open annulus. For the normal subgroup H found in the hypotheses of
[7, Corollary IV], we use the preimage of Hq(E®\(a' Uf,)) under the
homomorphism between fundamental groups induced by an inclusion
of a neighborhood of the singular open annulus into E3\(a’ U 3,).

To apply [7, Corollary IV] to the singular open annulus near a, we
must first PL approximate it. If the approximation is close enough,
then:

i) The singular PL open annulus is homologically nontrivial in
E*\(a’ U Ba).

ii) The singular PL open annulus misses S/, and the piece of S,
bounded by ag U 7,-

iii) The singular PL open annulus lies in N,.

iv) The singular PL open annulus intersects ¥ in a subset of

Then we apply [7, Corollary IV] to the singular PL open annulus near
a to get an embedded PL open annulus near a such that:

i) The embedded PL open annulus is homologically nontrivial in
E3\(a' UB,).
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ii) The embedded PL open annulus misses S, and the piece of S,
bounded by o U 7,-

iii) The embedded PL open annulus lies in N,.

iv) The embedded PL open annulus intersects ¥ in a subset of
For the 2-sphere X, we take the closure of the embedded PL open
annulus. Then ¥, has the following properties:

a) ¥,\Bdais PL.

b) ¥(Inta) =Int B, C Int3,, and ¥(Int D) N S, C Int X,,.

c) If a simple closed curve in ¥, separates Bda, then the simple
closed curve is not a subset of ¥(D).

d) ¥,\Bda C N,.

e) (¥,\Bda)NX c U{Int D;}.

Now we PL approximate ¥|(Int D) without changing ¥|Bd D. If the
PL approximation is close enough, the following are true:

i) For every a € A, ¥(Inta) C Int X, and ¥(Int D) NS, C Int 3,,
and ¥(Int D) N S!, = @.

ii) If a simple closed curve in ¥, separates Bda, then the simple
closed curve is not a subset of ¥(D).

iii) For every T € T, ¥(T\Bd D) C Nr.

iv) ¥(Int D) N'YE C U{Int D;}.

Assume that ¥(Int D) and ¥,\Bda are in general position.

Step 1G. Cutting ¥ (D) off near Uge 4{2.}. Methods like those of
[12, p. 374] are used both in Step 1G and in Step 3.

For every a € A, there are closed triangular regions 77 and 7% in T
whose intersection is a. Then Int DNWY~1(X,) C Int T3 UInt Tp. There
are three types of components of Int D N W ~1(X,). The first type is a
PL simple closed curve. There are infinitely many components of the
first type. The second type is a simple closed curve that contains one
of the endpoint of a and is PL modulo that endpoint of a, but from
which that endpoint of a has been removed. There are infinitely many
components of the second type. The third type is the interior of an arc
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joining the endpoints of a. There are an odd number of components of
the third type in each of Int 7} and Int T5.

Here is the plan that we will execute next. We will cut ¥(D) off near
Uaea{Z.} so that, for every a € A, there will remain in Int DNY~1(X,)
no components of the first or second types and only the two components
of the third type that were originally farthest from a, one in each of
Int 77 and Int75. The images under ¥ of the two components of
the third type that will remain after the cutting off will be disjoint;
otherwise, since ¥(Int D) NS, C Int X, and ¥(Int D) N S!, = & before
any cutting off has occurred, we will be able to join points in different
components of ¥\(a' U a) by an arc in E® missing S, U S,. We will
cut the singularities of the restriction of ¥ to neighborhoods of these
two remaining components off near X, so that, for every x in each of
the neighborhoods, ¥~!({¥(z)}) = {z}. Then, we will identify one of
these two remaining components with a.

Now we complete the first step of the proof by carrying out the plan.
For each T € T, there are arcs ay, as, and az in A whose union is Bd T'.
Then Int TN~ (Upen{S.}) = It TNY-H(E,, UX,, U,,). Fori=
1,2, 3, there are in Int TN¥~!(X,,) an odd number of components of the
third type. The component closest to a; and the component next-to-
farthest from a; bound a disk from which the endpoints of a; have been
removed. We cut off near ¥, to remove from Int 7N ¥~ 1(X,,) every
component of the third type except the component that began farthest
from a; and to desingularize the restriction of ¥ to a neighborhood
of the component that began farthest from a;. (This component has a
one-half chance of being the component that we will have identified with
a; when we have finished.) Using outermost remaining components of
IntTN¥ (S, US,, US,,), which are of types one and two, we cut
off near ¥,, U3X,, UX,,. Then, after carrying out the foregoing plan
for each T' € T, for each a € A, we identify a with one of the two
third-type components whose closures are arcs joining the endpoints of
a.

The first step of the proof is complete. For every a € A, there is
a neighborhood of Int a such that, for every x in that neighborhood,
U-1({¥(z)}) = {z}. Also, if T1,T» € T and Ty N Ty C Bd D, then
¥ (T3\BdD)N¥(T>\Bd D) = 2.
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Step 2. Desingularizing the restriction of U to each closed triangular
region T. Now, for each T' € T, apply Corollary 1 to ¥|T". Then the
second step of the proof is complete, and

a) for every T € T, ¥|T is an embedding,

b) if 70,75 € T and Ty N T, C BdD, then ¥(T;\BdD) N
¥ (T,\Bd D) = &, and

c) for every a € A, the singular set of ¥ (a union of disjoint double
curves) does not intersect Int a.

Step 3. Desingularizing ¥. The third step of the proof resembles
the end of the proof of [9, Theorem (2.2)], and again we employ the
method of [12, p. 374].

The closed triangular regions of 7 we label “even” and “odd,” where
each “odd” region is surrounded by three “even” regions, and vice versa.
The goal of the third step is to cut off the image of each “odd” triangular
region near the images of its neighboring “even” triangular regions.

Now we begin cutting off. By removing “rolls,” we may assume that,
for every a € A, there are no double curves joining the endpoints of a.
It remains for us to eliminate the other double curves.

We assign to each remaining double curve in each “even” triangular
region a nonnegative integer. One is assigned to each outermost double
curve. Two is assigned to each double curve that is outermost when
we ignore outermost double curves. The number n is assigned to each
double curve that is outermost when we ignore double curves to which
integers less than n have been assigned.

For each double curve in each “odd” triangular region, we change ¥ in
a neighborhood of the disk or disk-with-one-point-removed bounded by
the double curve by cutting off near the image of the “even” triangular
region T, that contains the double curve’s partner double curve. The
nearness to the “even” triangular region of the replacement disk or
disk-with-one-point-removed is determined by the number that has
been assigned to the partner double curve. Identify T.\Bd D with
(Te\Bd D) x {0} in a product neighborhood (T.\Bd D) x [-1, 1], and if
n has been assigned to the partner double curve, put the replacement
disk or disk-with-one-point-removed in (7.\Bd D) x {£(1 —27")}.
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Let h be the identity on X\Int D, and let h = ¥ on Int D. The proof
is complete. ]
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