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COMBINATORIAL PROPERTIES
OF INTERVALS IN
FINITE SOLVABLE GROUPS

VOLKMAR WELKER

1. Introduction. For a finite solvable group G and a subgroup
H < G we want to gather information about combinatorial properties
of the interval [H,G] := {U | H < U < G}. We do this by
means of algebraic and topological combinatorics. In particular, we
investigate the shellability and, hence the Cohen-Macaulay property
of [H,G]. As an introduction to this theory, we refer the reader to
the paper of Bjorner [1] or the book of Stanley [12]. An application
of these techniques yields insight in the group theoretic questions
about the number of maximal subgroups in [H, G] which lie in a given
conjugacy class. Moreover, this enables us to compute the orders of the
normalizers of the subgroups, for which [H, G| is a complemented lattice
(i.e., for all U € [H,G] there is a W in [H,G] such that UNW = H
and the subgroups U and W generate G).

We denote by [U] the conjugacy class {UY | g € G} of the subgroup
U of G. The combinatorial invariant used to gain knowledge about
|[H, G]N[M]| for a maximal subgroup M of G is the Mobius number [11]
w([H,G]) of [H,G]. It will turn out that in the case p([H,G]) = 0 the
Mobius number cannot provide enough information about the number
of maximal subgroups. Therefore, we will give the final results about
numbers of maximal subgroups only for intervals [H,G], for which
w([H, G]) # 0. Since in finite solvable groups the condition p([H,G]) =
0 is equivalent to the fact that the interval [H,G] is a complemented
lattice [5, 9], we call these groups C-subgroups of G [15]. We denote
by k(G) the partially ordered set (poset for short) of all C-subgroups
of the group G and by [H, G],; the poset (k(G)N[H,G]) U{H}. By the
definition of the Mdbius number [11] it is clear that [H, G] and [H, G|,
have the same Mo6bius number. In addition, we show that if H is a C-
subgroup, then the interval [H, G] is a lexicographically shellable poset
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and hence Cohen-Macaulay. By giving the shelling of [H, G], we are
able to compute the M6bius number in terms of numbers of maximal
subgroups. This gives some combinatorial insight into the well-known
result of Gaschiitz [2]. Up to now we have gotten a lot of information
about the structure of [H, G], but we need additional knowledge for the
computation of numbers of maximal subgroups.

To do this, we pass to orbit posets. We impose a partial order on the
set [H,G]/G of conjugacy classes [U] of the subgroups U in [H,G] as
follows

[Ul<[V]&3geG:UI<V.

The poset [H, G|,;/G is analogously defined. Our next step is the calcu-
lation of the Mdbius number p([H, G],./G). We show that the shelling
of [H, (], induces a shelling of [H,G]./G. This is a surprising fact
since, in general, shellability does not convey from a poset to its orbit
poset [17]. We shall give some more general criteria which force the or-
bit poset of a lexicographically shellable poset to be lexicographically
shellable. Again, we use the shelling to compute the Mdbius num-
ber of [H, G]./G in terms of numbers of conjugacy classes of maximal
subgroups. Since u([H,G]./G) = p([H,G]/G) [15, Theorem 5.11] we
now have control over the Mdbius number of [H,G]/G. Calculating
the MGbius number of a poset by a shelling means counting certain
maximal chains in that poset. Since the maximal chains counted in
w([H,G]/G) are the orbits of the chains counted in u([H,G]) we can
relate both numbers by the length of the orbits. Hence, we obtain the
following formula

G : Na(H)| - u((H, G]) = |HG' : H] - u([H, G)/G)

for an arbitrary subgroup H of G. Here Ng(H) denotes the normalizer
of H in G. This generalizes the result of Hawkes, Isaacs and Ozaydin
[6, Theorem 7.2] for the case H = 1.

Now we specialize again to C-subgroups H of a solvable group G.
For these groups the previous formula gives the desired relation for the
numbers of maximal subgroups in the intervals [H,G]. Additionally,
we can extract some information about particular conjugacy classes.
Furthermore, the formula allows the computation of the order of the
normalizer Ng(H) of a C-subgroup H by means of numbers of maximal
subgroups containing H. As an application we give the number of p-
Sylow groups @ if @ is a C-subgroup.
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For the rest of the paper all groups are finite and solvable.

2. Shellability of the poset of C-subgroups. In the following we
list some of the basic properties of the C-subgroups introduced before.
For the rest of this section we fix a chief series

R:1=Ng<N; <---<Ni_1<N<---<Np, =G

of G. By I we denote the set of indices 7 of chief factors N;/N;_;. Every
maximal subgroup M complements a unique chief factor N;/N;_; in the
chief series R (i.e., MNN; = N;_; and MN; = G). If M complements
the minimal normal subgroup Nj in the given chief series, then

Ru:1=Ky<Ki=NoNM<---< Kj_1
=NN"M<K =NyynM<--- <Ky 1=M

is a chief series of M. Similarly we know that

RN 1=Lo<Li=Ny/Ny <---< L4
:Nl/Nl <Ll:Nl+1/N1 < ---<Lk,1:G/N

is a chief series of G/Nj.

The next proposition gives a group theoretical characterization of
C-subgroups.

Proposition 2.1 [15, Proposition 3.2], [10, Hilfssatz 1.3]. A sub-
group H of G is a C-subgroup if and only if there is a subset J C I
and complements M; of the chief factors N;j/N;_y for j € J such that
H = NjesM;. The set J is uniquely determined by H and R. More-
over, |J| is independent of the choice of the chief series R.

We call a representation of a C-subgroup H as in the preceding
proposition a complement representation of H. Since the index set
J only depends on R and H, we write J = Z(R, H). The set J assigns
a type (depending on R) to each C-subgroup H.

Now we will introduce two “cover”-relations which will play an
important role in our context. The first one can be defined for general
posets. For a poset P we say that an element y of P covers an element
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z of P if x < y and the interval [z,y] = {z | # < z < y} contains only
x and y. The second “cover”-relation relates subgroups of a solvable
group and chief factors. We say that a subgroup H of a solvable group
covers (respectively, avoids) the chief factor N;/N; 1 if HN; 1 > N;
(respectively) H N N; < N;_1). In particular, it is well known that if
H =NjesM;, J =I(R,H) is a complement representation of the C-
subgroup H, then H avoids all chief factor N;/N;_; for i € J and covers
all others. We speak in this context of the cover-avoidance property of
C-subgroups. Both “cover”-relations are standard notations but they
are completely unrelated. In the sequel it will be clear from the context
which “cover”-relation we mean.

As a consequence of Proposition 2.1, we are able to prove some facts
about maximal chains in the poset [H, G].

Corollary 2.2. The length (i.e., cardinality-A) of a mazimal chain
in [H,G). equals the number of chief factors which have a complement
in [H,G]; +A if H is not a C-subgroup. Hence all mazimal chains in
[H, G|, have the same length.

Proof. Let H = Hy < --- < H; < G be a maximal chain in [H, G],.
It is obvious that if H; avoids a chief factor then H;_; avoids the chief
factor too. Hence, the remarks about the cover-avoidance property
of C-subgroups preceding this corollary show that the assignment
H — I(R, H) is monotone. Now the assertion follows from Proposition
2.1. o

For an arbitrary poset P we will denote the set of maximal chains in
P by C(P). Assume we have labeled the edges of the Hasse diagram of
a poset P by a labeling \y with natural numbers. Then this induces
a mapping A from the set of maximal chains into the set of tuples of
natural numbers by taking the maximal chain C': z¢p < z; < --- < ¢
to the tuple A(C) = (Ao(zo < 21),..., 0(xt—1 < @)). Now the
lexicographic order on the tuples induces a partial order on the maximal
chains. We say that for C,C’ € C(P) the chain C precedes C’ if
and only if A(C') precedes A(C’) in the lexicographic order. We are
interested in special properties of such labelings .

A poset P with least element 0 and greatest element 1 is called
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lexicographically shellable (edge-lexicographically shellable) if
(i) Every maximal chain in P has the same length.

(ii) There is a labeling Ag of the edges of the Hasse diagram of P
by natural numbers such that for each interval [z, y] of P:

(E1) There is a unique maximal chain z = zg < -+ < #; = y such
that

)\0(370 < LL‘1) < )\0(%1 < 1‘2) < < )\o(mt,1 < :vt).

We call such a chain an ascending chain.

(E2) The unique ascending chain is the least element in any order
on C([z,y]) induced by the lexicographic order on the labeled maximal
chains.

A labeling of the edges of the Hasse diagram of a poset P is called
L-labeling [1, Definition 2.1] if it satisfies the conditions (E1) and (E2)
of the previous definition.

Theorem 2.3. If H is a C-subgroup H of G, then the poset [H, G|,
1s lexicographically shellable.

Proof. From Corollary 2.2 we know that all maximal chains in [H, G|,
have the same length. Hence it remains to establish an L-labeling for
[H, G-

At first we define a labeling \§ of the two-element chains U < V,
where V covers U. We set \§ (U < V) = j for the unique index j in
I(R,U) — Z(R,V). As usual, we extend \§ to a mapping A® from
C([H,G],) to I° where c is the number of chief factors which have a
complement in [H,G]. We set \¢(H; < Hy < --- < H,.) := (\§(H1 <
Hy),\§(Hy < Hj),...,A§(H._1 < H.)). Now we have to verify
that this mapping is an L-labeling and hence induces a lexicographic
shelling. We choose an arbitrary interval [U,V]® = [H,G], N [U, V]
in [H,G,. Let J = Z(R,U) — I(R,V) be the set of indices of the
chief factors covered by V but not by U. For j € J we choose maximal
subgroups M, which complement N;/N;_; and contain U. If j; < jo <
-+ < jg is the ordering of the set J, then we set H; := V N ﬁi;ﬁMjr
for i = 0,...,t. The chain U = Hy < Hy < --- < H, = V is a
chain in C([U, V]*) by Proposition 2.1. From the choice of the maximal
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subgroups M; we infer
NS (Ho< Hy) = j1 < AS(Hy < Hy) = jo < --- < A§(H; 1 < Hy) = j;.

Hence, Hy < H; < --- < H; is a maximal ascending chain. By the fact
that all maximal chains in [U, V]* have a label set in J* we see that for
all maximal ascending A\®-chains U = 49 < 4; < - < A4, =V
in [U,V]*, we have A§(A, < A,11) = jr41- In order to verify
condition (E1) we will prove by induction on the group order |G| that
Hy < --- < Hy is the unique ascending chain. Before we can complete
the proof we remark:

(A) If A; and A; 4, are contained in a complement M of the minimal
normal subgroup Ny, then A; and A;; are C-subgroups of M [5, 1.3].
Furthermore, A;y; covers A; as a C-subgroup of M and for the chief
series R and Ry the equation \§ (4; < Aiv1) = M (A < Aipq) +1
holds.

(B) If the minimal normal subgroup N; is contained in A; and
Aii1, then A;/Ny and A;y1/Ny are C-subgroups of G/N; [5, 1.3].
Furthermore, A;y; covers A; as a C-subgroup of G/N; and for the
chief series R and R the equation \§(A4; < Ai11) = )\OG/NI (A;/N1 <
Ai+1/N1) +1 holds.

Now by (A) and (B) we deduce that ascending A?-chains in G which
consist of subgroups of M correspond to the ascending AM-chains in
M. Analogously, we see that ascending A“-chains in G which consist of
subgroups containing N; correspond to the ascending A%/N-chains in
G/N;. These two conclusions provide the induction bases for the proof
of the claim that the chain H; < --- < H; is the unique ascending
AC-chain in [U, V]".

(a) If V is contained in a complement M of the minimal normal
subgroup N = Nj, then the assertion follows from the fact that
k(M) =2 k(G)N[1, M] [5, 1.5].

(b) If U contains the minimal normal subgroup N, then the assertion
follows from k(G/N) = [N, G].(—{N}).

(c) If V is not contained in a complement of the minimal normal
subgroup N, then V' covers the minimal subgroup N (see remarks after

Proposition 2.1). This implies N < V. If N is not contained in U,
then NU is a C-subgroup containing U [5, 1.4]. In these cases we have
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Xo(U < NU) =1 and NU is the only C-subgroup covering U with this
label. Hence, H; = NU and the assertion follows by induction from
the case (b).

As mentioned before, all maximal chains in [U, V]* have the same
label set. Hence, we deduce that the unique ascending chain in the
interval is the least in the lexicographic ordering. This proves condition
(E2) for L-labelings and completes the proof. O

As mentioned before, given an (L)-labeling of a poset P the lexico-
graphic order on the labels of the maximal chains induces a partial
order on the maximal chain in C(P). By the theorem of Bjorner [1,
Theorem 2.3] we know that any linear extension of this order will in-
duce a so-called shelling order (see [1]). We call the L-labeling A% of
the maximal chains in [H, G],, introduced in the preceding theorem,
the standard L-labeling for [H, G] with respect to R (note that H has
to be a C-subgroup). We will call any shelling order (i.e., order on the
maximal chains, satisfying certain conditions [1]), which is constructed
by extending the lexicographic order on the labels to a linear order on
the maximal chains, a standard shelling of [H, G],, with respect to R.

We should mention that, for an arbitrary subgroup H of G, the poset
[H, G is shellable, too, but the proof is much more involved. See also
[14] for results on particular cases of this fact.

As an immediate corollary we obtain the shellability of the subgroup
lattice A(G) of a supersolvable group G in the case when A(G) is
complemented. This is a result of Bjorner [1, Theorem 3.2] who proves
it more generally for all supersolvable groups G. Before we can give
the corollary we have to state an easy group theoretical lemma.

Lemma 2.4. If G is a supersolvable group and if A(G) is a
complemented lattice, then A(G) = k(G).

Proof. Let G be a minimal counterexample and let H be a subgroup of
G such that [H, G] is not complemented. Furthermore, we may assume
that for all subgroups V' > H of G the interval [V, G] is complemented.
If H contains a normal subgroup N, then the contradiction follows
by induction applied to H/N and G/N [5, 1.3]. If H is contained
in a complement M of the minimal normal subgroup N, then the
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contradiction follows again by induction applied to H as a subgroup of
M [5, 1.3]. Let M be the set of maximal subgroups of G containing
H. In the case H = ®(G, H) := NpyremM either H is contained in a
complement of the minimal normal subgroup N; or N is contained in
every maximal subgroup in M (i.e., H contains N7). Both alternatives
contradict the assumptions. Therefore, H # ®(G, H) := Nprem M and
N is contained in every M € M. By the maximality of H it follows
that HN; = ®(G, H) and ®(G, H) is the only subgroup covering H.
Let U be any subgroup of G covering ®(G, H); then the interval [H, U]
is a chain of three subgroups and hence not complemented. Now we use
the classification of supersolvable groups with complemented subgroup
lattice [13, Theorem 24]. From this we easily infer that the property
of having a complemented subgroup lattice is inherited by subgroups
in supersolvable groups. Now by the minimality of G we deduce that
G = U. Let N # N; be another minimal normal subgroup. Since
H is core free (i.e., NgegHY = 1) we know that NH # N1H is a
subgroup covering H which contradicts the assumption that [H, G] is a
chain. Therefore, Ny is the only minimal normal subgroup of G. Hence,
p = |Ny| is the largest prime dividing |G| and the maximal normal p-
subgroup O,(G) is a p-Sylow subgroup of G. Since the subgroup lattice
of G is complemented, O,(G) is an elementary abelian p-subgroup (use
[13, Theorem 24] again). The group G acts as a supersolvable matrix
group on O,(G). Hence, G acts not faithful, of course, as a group of
upper triangular matrices. If there is an entry above the diagonal in
any of the matrices, then the p-Sylow subgroup of G is not abelian,
which contradicts the structures of O,(G). Hence, G acts as a group
of diagonal matrices on O,(G). Therefore, all subgroups of O,(G) are
normal. Since Nj is the only minimal normal subgroup of G we have
Op(G) = N;. Now N; is also a p-Sylow subgroup of G which shows
that ged (|G/Nyl,|N1|) = 1. Hence, the Schur-Zassenhaus theorem
applies and shows that all complements of N; in G (respectively in
M = HN;) are conjugate. Taking such a complement M; in G
we obtain a complement M N M; of Ny in M. Since H is another
complement of Ny in M we have shown that H and M N M, are
conjugate. But this implies that H is contained in a complement of
N; in G. Again, this contradicts the assumption that [H, G] is a chain
and completes the proof. o
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Corollary 2.5 [1]. If G is a supersolvable group and if A(G) is a
complemented lattice, then A(G) is lexicographically shellable.

Proof. This follows from Theorem 2.3 and Lemma 2.4. o

Another application of Theorem 2.3 will be the computation of the
Méobius number of an interval [U,G] in A(G). Here we use tools
developed by Stanley [12]. Let P be a shellable poset, and let Cy <

- < C¢ be a shelling of P. For all | < t, we write C; for the
simplicial complex generated by C4,...,C;. By R(C;) we denote the
set {x € C; | C; — {z} € C)_1} and by h we denote the cardinality of
the maximal chains in P. The principal result [12] we need says that
for a shellable poset P and for a shelling Cy < --- < C; we have

u(P) = (=" [{Cr | R(C1) = C1}-

Before we can apply this fact to our situation we need the following
proposition. We call a maximal chain in a poset P with an L-labeling
A descending, if the labels are (weakly) decreasing from the bottom to
the top edges.

Proposition 2.6 [12, Theorem 3.13.2]. Let P be a lexicographically
shellable poset of rank t. Let A\ : C(P) — N be an L-labeling. If
Ci1 < --+ < Cp is a shelling order of the mazimal chains, which is
constructed by extending the lexicographic order on the labels \(C(P))
to a linear order of the mazimal chains. Then

R(C;) = C; & C; is a descending \-chain.

As an immediate consequence we retrieve an old result of Gaschiitz
[2, Chapter 5].

Theorem 2.7 [2, Chapter 5]. Let H be a subgroup of G.
(i) If H is not a C-subgroup of G, then u([H,G]) = 0.
(ii) If H is a C-subgroup of G, then

w(H,G) = (1) [ my

JEL(RH)
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By t we denote the cardinality of Z(R,H) and by m; the number of
complements of N;j/N;_1 containing H.

Proof. 1If the interval [H,G] is not complemented, then it is well
known that u([H,G]) = 0. Hence, we can restrict our attention to
complemented intervals [H, G|. By the definition of the Mébius number
it is obvious that u([H, G]) = u([H, G]x). Now by Theorem 2.3 we know
that [H, G|, is lexicographically shellable. Let A® be the standard L-
labeling of [H, G],; given in Theorem 2.3. By Theorem 2.3 the labeling
A€ satisfies the assumptions of Proposition 2.6. Hence, u([H, G]) equals
(—1)! times the number of descending maximal A\“-chains in [H, G],.
Let J denote the set Z(R, H) and let j; < - -+ < j; be the usual ordering
of J. Then we claim that the descending A“-chains are of the form

ﬂMj< m Mj<"'<Mj1ﬂMj2<Mjl
jeJ jeJ—{}

where M; is a complement of N;/N;_;. The fact that each of
these chains is descending and the fact that all descending chains
are of this form follows again from the construction of the label-
ing and the cover-avoidance property of the C-subgroups (see remark
after Proposition 2.1). Hence, there is a surjective map from se-
quences M;,,M;, ,,...,M;,, M; of complements M; of the chief fac-
tors N;j/N;_q for j € J to the descending chains. We will prove
that this map is actually injective. We will now proceed by induc-
tion on |G|. We may assume that H is core free. Therefore, there
exists a maximal subgroup containing H which complements the min-

imal normal subgroup N = Nj. In particular, j; = 1. Assume
Mj,,Mj,_,,...,Mj,, Mj, and M; M ... ,M'2, M'n are two se-

quences which map to the same maximal chain. Obviously, M;, = M ]'-1.
Since j; = 1 we have [5, 1.3]

K(Mj,) = k(M) ={H € r(G) | H < Mj,}.

Now by induction we conclude that Mj;, NM;, = M; NM;, for2 <i <t.
But N(M,, " Mj,) = Mj, and N(M]’ NM;,) = MJ’ implies M;, = MJ’
also for 2 < 4 < t. Since the number of these sequences of maximal

subgroups is [| jeg M the assertion follows from Proposition 2.6. a
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The reader may easily deduce from the general version of Proposition
2.6, as stated in Stanley’s book, a formula for the Mébius numbers of
the rank selected subposets of [H, G].

3. Shelling orbit posets. In this section we shall work in a more
general setting. If a group G acts on the poset P, then we say that P
is a G-poset. The orbit poset P/G is the partially ordered set on the
set of orbits [z] := {29 | g € G} ordered by

[z] <[y]:=TgeG:a9 <y.

It is well known that for a shellable poset P the orbit poset P/G is
not necessarily shellable. A crucial example is the lattice ], of set
partitions of an n-element set with the symmetric group G = S,, as
a group of automorphisms. The orbit poset [], /S, is the poset of
integer partitions P,. For small n it is known that P, is shellable.
But Ziegler [17, (3)] shows that for n > 19 the lattice P, is no longer
shellable. Here we give a criterion for a shellable G-poset P which
forces that P/G is shellable too. Let P be a G-poset. For a maximal
chain C = (z; < -+ < z¢) € C(P) we denote by C/G the chain
([#1] < --- < [z¢]) € C(P/G).

Proposition 3.1. Let P be a lexicographically shellable G-poset. Let
A :C(P) — Jt be an L-labeling. Assume further that P and \ satisfy
the following conditions:

(i) For all chains C € C(P) and g € G we have A\(C?) = A\(C).

(ii) For all chains C = (xp < -+ < ) and all elements go,... ,gt €
G, for which the elements zf° < --- < xi* form another chain there is
a g € G such that ' =z fori=0,... ,t.

Then C(PIG i
VG { (P/G) —
C/G— \C)

is an L-labeling. In particular, P/G is lezicographically shellable.
Proof. Let [[], [y]] be an arbitrary interval in P. We may assume

that < y. Let [z] = [zo] < [#1] < --- < [#¢] = [y] be a maximal chain
in [[z],[y]]- From the definition of the ordering on P/G we infer that
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there are elements go, ... ,g; such that z = zJ° < z{* < -.- < af* =y
is a maximal chain in [z,y]. By assumption (ii) there is an element
g € G with the property z7* = ¢ for all i = 0,... ,¢. Hence, we infer

from (i) and the definition of A\/G that

MGl =[x <[aa] < -+ <[zm]=[y) =Ma=a7" <2 <--- <af").

Let * = vg < v1 < --- < vy = y be the unique maximal ascending
A-chain in [z,y]. Then, by the definition of A\/G, it is trivial that
[z] = [vo] < [v1] < -+ < [v¢] = [y] is an ascending A/G-chain in

P/G. If [z] = [wy] < [wi1] < --+ < [wg] = [y] is any other maximal
ascending A/G-chain in [[z], [y]], then, by assumption (ii) we conclude
that there is an element g € G such that z = wj < wf <--- <wf =y.
Furthermore, condition (i) implies that z = w) < w{ < --- < w{ =y
is a maximal ascending A-chain in [z,y]. Now A is an L-labeling.
Therefore, condition (E1) proves that v; = w; for all ¢ =0,... ,¢t. This
shows that [z] = [vg] < [v1] < -+- < [ve] = [y] is the unique ascending
A/G-chain in [[z], [y]].

Analogously to the first part of the proof, one concludes that the
unique maximal ascending A-chain in [z,y] is the least in the order
induced on C([[z], [y]]) by the lexicographic order of the labels. This
implies (E2), and we conclude that the poset P/G is lexicographically
shellable. O

We would like to mention that there is an analog of Proposition 3.1 for
general shellable posets. It replaces the first condition by the existence
of a shelling order of the maximal chains such that:

The mazimal chains are ordered orbit by orbit. The ordering of the
chains in any orbit is arbitrary.

The proof under that assumption is an easy modification of the proof
given for Proposition 3.1.

We will call an L-labeling which fulfills the conditions of Proposition
3.1 an admissible L-labeling. Here we shall briefly return to the
theorem given by Ziegler [17] which shows that P9 = [[;9/S10
is not shellable. Since all [],, are supersolvable lattices they are
lexicographically shellable. On the other hand, no chain in [], is
invariant under S,. Therefore, no L-labeling can be G-equivariant
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(note that in this case the unique ascending chain has to be fixed by
the G-operation). For n > 5 condition (ii) of Proposition 3.1 fails too.
But at least for n < 11 the poset P, is still shellable. This shows that
there should be a chance of weakening the conditions of Proposition
3.1.

The next theorem deals with intervals in solvable groups.

Theorem 3.2. Let G be a group and H a C-subgroup of G. Then
the poset [H,G|./Ng(H) is lexicographically shellable. Furthermore,
the interval

[H,G)/G ={[U] € x(G)/G | [H] < [U] < [G]}

s also lexicographically shellable.

Proof. Let A be the standard L-labeling of [H,G]. with re-
spect to a fixed chief series R. Since the labeling depends only on
the cover-avoidance property with respect to the chief series R it
is Ng(H)-equivariant. The action of Ng(H) on [H, G|, also fulfills
the second condition of Theorem 3.1 [16, Proposition 4.7]. Hence,
[H,G|x/Ng(H) is lexicographically shellable and \¢/G gives the cor-
responding L-labeling. Also, by [16, Proposition 4.7] we conclude that
[H,G]:/Na(H) 2 {|U] € k(G)/G | [H] < [U] < [G]}. Thus, the second
assertion follows immediately. o

As a corollary, we obtain a result on subgroup lattices of supersolvable
groups.

Corollary 3.3. Let G be a supersolvable group such that A(G) is
complemented. Then A(G)/G is lexicographically shellable.

Proof. The assertion follows from Theorem 3.2 and Lemma 2.4. i

We would like to mention that we do not know any supersolvable
group G such that A(G)/G is not shellable. Here again, all A(G) are
supersolvable lattices. One uses a chief series as an M-chain for the
definition of the lexicographic shelling. Since a chief series is obviously
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fixed under the action of G, the L-labeling becomes G-equivariant. But
the second condition on Proposition 3.1 fails even for some p-groups.
However, the poset A(G)/G proved to be shellable for all examples we
have tested.

Now we return to the analysis of Mébius numbers of posets.

Lemma 3.4. Let P be a lexicographically shellable G-poset. Let
A be an admissible L-labeling. Then for the lexicographic ordering
C1/G < --- < C/G of C(P/G) according to A\/G, we have

Proof. By construction of A\/G this follows from Proposition 2.6.
O

Now we can prove an analog of Theorem 2.7.

Theorem 3.5 [15, Theorem 6.5]. Let H be a subgroup of G.
(i) If H is not a C-subgroup of G, then u([H,G]/G) = 0.
(ii) If H is a C-subgroup of G, then

wlH, GG =0 [ e

JEL(R,H)

By t we denote the cardinality of Z(R, H) and by c; the number of con-
Jjugacy classes of complements of Nj/N;_1 which have a representative
containing H.

Proof. If the interval [H, G| is not complemented, then it is known
[15, Theorem 6.5] that u([H,G]/G) is 0. We fix a set J of indices
of complemented chief factors N;/N;_i. For every j € J let M;
be a complement of the chief factor N;/N;_;. Then the conjugacy
class of the intersection N;c yM; determines the conjugacy classes [M;].
Hence, from Theorem 3.2 and Lemma 3.4 we infer that the number
of descending maximal A-chains in [H, G]./Ng(H) equals the product
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HjeI(R H) G The rest of the assertion follows from Proposition 2.6
and [15, Theorem 5.11]. O

Finally we give an easy lemma which will be applied to [H,G], in
Section 5.

Lemma 3.6. Let P be a lexicographically shellable G-poset with an
admissible L-labeling X. If all descending chains C € C(P/G) have
stabilizers of the same order s, then u(P) = u(P/G) - |G|/s.

Proof. This follows immediately from Proposition 3.1 and Lemma
3.4. O

4. Complements of chief factors. Here we want to sum up the
most obvious relations between the numbers of complements of different
chief factors. Thereby, we obtain some simplifications of the formulas
in Theorems 2.7 and 3.5. The tool for this simplification is given in
Proposition 4.4. We leave an explicit reformulation of both theorems
to the reader.

By the type of a chief factor we denote the isomorphy class of the
chief factor regarded as a G-module. For a G-module w we write
Cq(w) for the centralizer of w in G. We will later also use the notation
Ca(H) to denote the centralizer in G of a group H on which G acts by
conjugation.

Lemma 4.1. Let My, My be mazimal subgroups of the same type w
which are not conjugate. Let {My, My, M3, ... ,M,} be a mazimal set
of pairwise non-conjugate mazximal subgroups of type w which contain
Mi N Ms. Then, for all 1 < ¢ < n, there is a chief series R; through
Ca(w) and Cg(w) N My N My such that:

(i) For j # i, the series
Cg(w) =N} > Cg(w) N M; = N/_; > Cq(w)NM; N M; = N/_,
is a section of R; and the number [ is independent of i.

(ii) The conjugacy class [M;] is the set of all complements of
N [Ni_;-



1582 V. WELKER

(iii) The conjugacy classes [Mj] for j # i are the complements of
Ni_1/N|_5-

Proof. By the symmetry of the assumptions we may assume that
1 = 1. Hence, we drop the superscript 1 in the notation of the normal
subgroups in a chief series R;. It is well known that the subgroup chain

Cg(w) > Cg(w) nM; > Cg(w) N M; N M,

is a chain of normal subgroups which cannot be refined. This shows
that there is a chief series Rq which satisfies (i). Obviously, N;/N;_;
is complemented by M;. Since we have Cg(N;/N;—1) = Cg(w) = N,
all complements of N;/N;_; are conjugate. Therefore, (ii) is satisfied.
Since the complements of N;_;/N;_» contain M; N M, the third
condition follows. ]

Now we need the following trivial remark.

Remark 4.2. Let z1,... ,z,, n > 3 be strictly positive real numbers
which satisfy the following system of equations:

T1T2 + 123+ - + T1Tp—2 + T1Tp—1 + T1Tn =

ToX1 + T2x3 + -+ T2Tp_2 + T2Tp—1 + T2Tp

Tp—12T1 + Tp—122 + Tp—1T3 + *** + Tp_1Tp—2 + Tp—_1Ty =

TnTy + Tp®2 + TunX3 + -+ TpTn—2 + TnTp_1-

Then we have z; =25 = -+ = zy,.

Lemma 4.3. Let H be a C-subgroup of G. Let Ny/Ns_1 and
N¢/Ni_1 be two isomorphic (as G-modules) chief factors of G which
have complements containing H. Then the number of complements of
Ng/Ns_1 containing H equals the number of complements of Ni¢/Ny_1
containing H.
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Proof. We fix a complements M; of Ns/Ns_; and a complement M;
of N;/N;_1. Let [My],[Ms],[Ms],. .., [M,] be the different conjugacy
classes of maximal subgroups which contain M; N Ms,. For 1 <i<n
we choose chief series R; satisfying the conditions of Lemma 4.1. We
denote by x; the number of elements of the conjugacy class [M;] which
contain H. Now we take a complement representation H = Njc;Z;
relative to the chief series R1. By construction, the index set J is the
same for complement representations of H with respect to the different
chief series R;. Hence, if mj- denotes the number of complements of
the j-th chief factor in the chief series R;, then we have

(1) m; =m; for j#£1,1—1
(2) mj = x;
(3) mi_, = Zazt.

t#i

From Theorem 2.7 we deduce the following system of equations. Here
k denotes the length of a chief series of G

(1) G | R |
jed jeJ
Canceling the factors in (4) by using equation (1), we obtain equation
(5)-
(5) mp-mj_y =mj -mj_y.
Applying equations (2) and (3) we derive the equation (6).
(6) xi-th:xi/-th.
t£i t£i!

But this gives rise to the system of equations in Remark 4.2. Moreover,
it is well known that n > 3 holds in this case. Hence, we obtain the
asserted identity z1 = x5 = --- = z,,. ]

Proposition 4.4. Let H be a C-subgroup of G. Let J, be the set
of indices j of the chief factors N;/N;_1 which are of type w and have
complements containing H. For j € J, we denote by m; the number of
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complements of Nj/N;_1 in one conjugacy class. By c; we denote the
number of conjugacy classes of complements of N;j/N;_1 which have a
representative containing H. Then the following equations hold

H mj = m‘jJ“| for any j € J,
Jj€Jw

H Cj :pe“’.

Jj€Jw

Here p is the prime dividing |N;j/N;_1| for j € J,,. The number e,
depends on |J,| and the G-module type w.

Proof. The first equation follows immediately from Proposition 4.3.
The second equation follows from [4, Theorem 5.5] and [3, Chapter
3.2]. O

5. The Mobius number of intervals in solvable groups. In
this section we want to relate the Mébius number of the interval [H, G]
to the Mobius number of the poset [H,G|/G. We denote by G’ the
commutator subgroup of G. We recall that a chief factor V;/N;_; is
called central if Cg(N;/N;_1) = G. Otherwise, the chief factor is called
eccentric. If J is a set of indices of chief factors, we denote by J. C J
the set of indices of eccentric chief factors and by J. C J the set of
indices of central chief factors in J.

Lemma 5.1. Let G be a group and let H be a C-subgroup of G. Let
H=H,<Hyy<---<Hy,=@G

be a mazimal descending A-chain in [H, G|,; for the standard L-labeling.

Then the stabilizer of a mazimal descending A-chain in G has order
|G : G'H|.

Proof. We proceed by induction on k. If & = 1, then H = G
and the assertion is trivial. Now let k£ be greater than 1. We may
assume that H is core free. Since the chain under consideration is
descending, the maximal subgroup Hjy_; complements the minimal
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normal subgroup N;. Every element in G which normalizes the chain
obviously normalizes Hy ;. Hence, we have to consider two cases:

(i) If Ny is a central chief factor, then G =2 Ny x Hy_;. By
induction [5, 1.3], the order of the normalizer in Hy_; of the chain
H=H, < - < Hy_qequals |Hy_1 : H|, ;H|. Since N; centralizes the
chain, the normalizer of the chain in G has order |N1|-|Hy—1 : H, H]|.
Now the assertion follows from H;_, = G'.

(if) If Ny is an eccentric chief factor, then Ng(Hy 1) = Hy_1. Now
we apply the induction hypothesis to the chain H = H; < --- < Hp_4
of C-subgroups [5, 1.3] of Hy_;. We obtain |Hyx_; : Hj, ,H| as the
order of its normalizer. Now the assertion follows from |H; ,| =

[G'l/IN,]. o

The last lemma enables us to generalize Theorem 7.2 of [6] to
arbitrary intervals [H, G| of G.

Theorem 5.2. Let H be an arbitrary subgroup of G; then
|G : Na(H)| - u([H,G]) = |G'H : H| - p([H, G]/G).

Proof. From Theorem 2.7 and Theorem 3.5 we deduce immediately
that the equation holds if H is not a C-subgroup. Let s be the order
of the stabilizer of a maximal descending A-chain in [H, G] within the
group Ng(H)/H. We use the standard L-labeling with respect to a
fixed chief series. From Lemma 3.6, we infer the equation

[N (H)/H]| _

(1) #([H, G]K/NG(H)) s

u([H, Glr)-

The length of the orbit of a maximal chain in [H, G] under the action
of G is |G : Ng(H)| times the length of the orbit under the action of
Ng(H)/H. From this observation and Lemma 5.1 the equation

@) G+ No(H) - INa(H) s | & = AT

e A H s T e G'H|

follows. Using the facts that pu([H, G]) = u([H, Gx) and u([H, G]/G) =
w([H,G]x/G) [15, Theorem 5.11] some trivial manipulations of (1) and
(2) prove the result. o
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Corollary 5.3. Let H be a C-subgroup of the group G, and let
J =ZI(R,H). Let M; be the set of complements of the chief factor
N;/N;_1. If m; denotes the number of elements of M; which con-
tain H and c; denotes the number of conjugacy classes of subgroups
contained in Mj, then

G : Na(H)|- [[m;=1G'H : H|- ] ;.

jEJ Jj€J

Proof. This follows trivially from Theorem 2.7, Theorem 3.5 and
Theorem 5.2. u]

Lemma 5.4. Let H be a C-subgroup of G, and let J be the index set
Z(R,H). Then the following identity holds:

[ed
[Lcsns INi/Nja|

|G'NH| =

Proof. Since complements of central chief factors contain G’ we have
GNH=G ﬁﬂjeJe M;. Hence, we may assume J = J,. Furthermore,
we assume that H contains no normal subgroup. This implies that H
itself is contained in a complement of the minimal normal subgroup.
This shows that 1 is an index in J. Now G’ N M; = M| and H is a
C-subgroup of M;. Therefore, by induction on |J| we have

i |
[ies—qay I(V; 0 My)/(Nj—1 N M)

As in the proof of Theorem 3.1, one shows |M; N H| = |G' N H|/|Ny|
and |M{| = |G'|/|N1|. Now the desired equation follows. O

\M'NH|=

Lemma 5.5. Let H be a C-subgroup of the group G, and let J be the
indezx set Z(R, H). We choose an index i which is strictly less than all
indices in J and a complement M; of the chief factor N;/N;_y. Then
Ng(H N M;) < Ng(H). If l; denotes the number of complements of
N;/N;_1 which contain H N M; and lie in one conjugacy class, then

|Ng(H) . Ng(Hﬂ Mz)| - lz == |Ni/Ni71|-
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Proof. By the choice of i we have (H N M;)N; = H. Hence, if an
element g € G normalizes the group H N M;, then it also normalizes
H. This gives the desired inclusion Ng(H N M;) < Ng(H).

For j € J we denote by m/; the number of complements of the chief
factor N;/N;_; which contain H. Analogously, for j € JU{i} we write
m; for the number of complements of the chief factor INV;/N;_; which
contain H N M;. Since every complement of a chief factor N;/N;_;

with index in J contains N;, we have m}; = m; for j € J. If we apply

Theorem 2.7, Theorem 3.5 and Theorem 5.2 to H and H N M;, we get
the following two equations:

(1) G : No(H)|- [[mi=1G'H: H|-]] ¢

jeJ jeJ

(2) |G:NoHNM)|- J[ m;
jeJn{i}
jeJn{i}

From Lemma 4.3 we derive the identity I; = m;/c;. From Lemma 5.4
we deduce that

|G'H : H|

1 if N;/N;_; is an eccentric chief factor
|N;/N;_1| if N;/N;_; is a central chief factor.

Now the result follows by taking the quotients of the corresponding
sides of the equations (1) and (2). o

Proposition 5.6. Let H be a C-subgroup of the group G and let
J =I(R,H). If, for j € J, we count by l; the complements of the
chief factor N;/N;_1 which contain H and lie in one conjugacy class,

then
|Ne(H =TI 6 I IVi/N 4

jeJ, jeJ,
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Proof. If J = J., then H is normal in G and therefore we have
|Ng(H) : H| = |G : H|. Since the order of an arbitrary C-subgroup H
with complement representation H = NjesM; is [G|/([[;c 5 [N;j/Nj-1l)
[5], the result follows in this case.

Now we proceed by induction on |J.|. For |J.| = 0 the result is already
proved. Now for the case |J.| > 1 we choose a chief series R which
passes through the commutator subgroup G’ of G. We may assume
that H contains no normal subgroup. Hence, H itself is contained in a
complement M; of the minimal normal subgroup /V;. By the choice of
the chief series and since |J.| > 1, the chief factor Ny/Ny is eccentric.
Now we apply the induction hypothesis to HN; which is a C-subgroup
of G [5, 1.3]. This shows

INa(HNy) : HNy =[] 1+ [ 1N/ Nzl
jeJe—{1}  JjeJe

Since H = HN; N M we can use Proposition 5.5 to complete the proof.
O

As a corollary, we obtain a result about the number of p-Sylow sub-
groups of a solvable group, in which all p’-chief factors are comple-
mented. It is an easy observation that a p-Sylow subgroup @ is a
C-subgroup if and only if all p’-chief factors are complemented.

Corollary 5.7. Let G be a group, let p be prime dividing |G| such
that all p'-chief factors of G are complemented, and let Q be a p-Sylow
subgroup of G. If we denote by J(p') the set of indices of p’-chief factors
and by l; the number of complements of the chief factor N;/N;_1 which
contain Q, then there are

G: Q|
Hje.](p’)e lj - HjeJ(p’)c |Nj/Njfl|

p-Sylow subgroups.

Proof. 1t is an elementary fact that the number of p-Sylow subgroups
Q@ is equal to the index of the normalizer Ng(Q). Hence we set
H = @ in the equation of Proposition 5.7 and multiply both sides
with |G : Ng(Q)|- Now the result follows immediately. o
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This section has pointed out the importance of Ng(H) for the
combinatorial invariants of the intervals [H,G]. Therefore, we devote
the rest of the paper to a short remark on this subject.

We show that the factor group Ng(H)/H is a semidirect product even
if H is not a C-subgroup. We are grateful to the referee for providing
a generalization of our original formulation of the following remark.

Remark 5.8. Let H be a subgroup and let N be a minimal normal
subgroup of G. If H is contained in a complement M of N, then

(1) Ng(H) =Cn(H)-Nu(H) = HCn(H) - Nu(H)
and
(2) Ny (H)NHCy(H) =H.

In particular, Ng(H)/H is the semidirect product of HCy(H) and
Ny (H).

Proof. Since equation (2) is trivial, we only care about equation
(1). Clearly the inclusion Cn(H)Np(H) < Ng(H) holds. Conversely,
assume that we are given g € Ng(H); then g = nm for some n € N
and m € M. For all h € H we have m™'n"'hnm € H. This implies
n *hnh™' € M NN =1. Son € Cy(H) which implies m € Ny (H).
Now we infer the desired inclusion Ng(H) < Cn(H)Npy(H). Clearly,
Ny (H) normalizes Cy(H). ]

Hence the operation of Nj(G) on Cn(H) appears to be of interest.
But, in general, one cannot expect that Cn(G) will be a completely
reducible Ng(H)-module [7].
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