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SELECTIONS OF MAPS WITH NONCLOSED VALUES
AND TOPOLOGICALLY REGULAR MAPS

D. REPOVS, P.V. SEMENOV AND E.V. SCEPIN

ABSTRACT. We introduce the concept of a topologically
regular map as a map with homeomorphic fibers, whose mul-
tivalued inverse map is continuous with respect to the Fréchet
metric. Using E. Michael’s selection theorem, we prove that
every topologically regular map with the fibers homeomorphic
to [0, 1], of a locally o-compact metric space onto a perfectly
normal space, is a locally trivial bundle.

Let p : E — B be a continuous map. We are interested in finding
conditions which guarantee that p is a locally trivial fibration. Clearly, a
necessary condition is that the fibers p~1(b), b € B, are homeomorphic.

Denote by expM (E) the class of all closed subsets of the topological
space E which are homeomorphic to a fixed topological space M.
Usually the set exp™ (E) is equipped with the Vietoris topology, which
in the case when FE is metrizable and M is compact coincides with the
topology, induced by the Hausdorff metric. However, such a topology
doesn’t take into account the uniqueness (up to homeomorphism) of
the elements of exp™(E). We shall introduce a metric in exp™ (E)
which will not have this defect:

Definition 1. The Fréchet distance between two homeomorphic
closed subsets A and B of the metric space F is the infimum of alle > 0
for which there exists a homeomorphism h : A — B (or h : B — A)
which doesn’t move points for more than ¢, i.e., h is an e-move.

In [3] this distance was called the homeomorphic distance. In the
present paper we chose the new term having in mind the analogy
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with the Fréchet distance in the space C(I,X) of the continuous
maps of the unit interval I = [0,1] into a metric space X (cf. [6,
9, 10]). Note that the Fréchet distance in the sense of [6, 9, 10]
is only a pseudometric on the space C(I,X). It becomes a metric
only after a factorization with respect to the following equivalence
relation: fo ~ f1 < fo = fho, f1 = fhy, for some f € C(I,X),
hi € {h € C(I,I) | h(0) = 0,h(1) = 1,41 < ta = h(t1) < h(t2)}. The
proof of this fact uses the so-called Whitney-Morse p-parametrization
of continuous curves (cf. [6, 10]).

Definition 2. A map p: E — B is said to be topologically reqular if
its multivalued inverse p~! : B — exp™ (E) maps B into exp™ (FE) for

some M, and p~! is continuous with respect to the Fréchet metric in
expM (E).

The purpose of the present paper is to prove the following result:

Theorem 1. Let p: E — B be a topologically regular map between
compact metric spaces E and B such that for every b € B, p~1(b) is
homeomorphic to the unit interval I = [0,1]. Then p is a locally trivial
fibration.

We believe that not just Theorem 1 but also the methods of its proof
are of some interest because we use a selection theorem of E.A. Michael
[7, Theorem (3.1")] for convex-valued but nonclosed-valued maps:

Theorem 2 (E.A. Michael [7]). For a Hausdorff space X, the
following conditions are equivalent:

(1) X is perfectly normal; and

(2) Every lower semicontinuous map of X into convex D-type subsets
of a separable Banach space, has a continuous univalued selection.

Recall that a convex subset of a Banach space is said to be convex D-
type if it contains all interior (in the convex sense) points of its closure.
(A point of a closed convex subset of a Banach space is said to be
interior (in the convex sense) if it isn’t contained in any supporting
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hyperplane.) Standard examples of convex D-type sets are: (1) closed
convex sets; (2) convex subsets of Banach spaces which contain at least
one interior (in the usual metric sense) point; and (3) finite-dimensional
convex sets.

We shall need the following example of a convex D-type set in
the Banach space C(X) of all bounded continuous functions on a
completely regular space X. Auth((I) denotes the collection of all
homeomorphisms of the unit interval I = [0,1] onto itself which are
identity on the boundary 91.

Lemma 1. Let X be a completely reqular space, h : I — X an
embedding, and let

Ch(X) = {f € C(X) | fh € Autho(I)}.

Then Cr(X) is a convex D-type subset of the space C(X).

Proof. The convexity of the set Cp(X) follows immediately from the
convexity of the set Auth(I):

(L=XNf+Ag)oh=(1-=X)(foh)+Agoh),
0< X<, f,g9 €Ch(X).

The inequality ||fooh — fnohllc(ry < ||fo— ful| implies that the closure
of Cr(X) lies in the set

{f €C(X) | foheCl(Autho(I))}.

Consider an arbitrary element f € Cl(Cp(X))\Cp(X). Then there exist
numbers 0 < a < b < 1 such that f(h(a)) = f(h(b)) = foh|ay. In the
Banach space C(X), the set II = {g € C(X) | g(h(a)) = g(h(b))} can
easily be shown to be a codimension 1 hyperplane. This hypersurface I1
will be supporting the closed convex set Cl(Cp(X)) since: (i) it passes
through the point f € Cl(Cp(X)); and (ii) the whole set Cl (Cp, (X)) lies
in the closed halfspace {g € C(X) | g(h(a)) < g(h(b))}. Therefore, f
isn’t interior (in the convex sense) point of Cl(C,(X)). Consequently,
the convex set Cp,(X) contains all interior (in the convex sense) points
of its closure, i.e., Cp(X) is a convex D-type set. O
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Proof of Theorem 1. Let p: E — B be a topologically regular map
between compacta with fibers all homeomorphic to the unit interval
I =[0,1]. Let by € B be any point, and let d(p~'(by)) = {co,do}
be the endpoints of the arc p~'(by) ~ I. Choose g¢ > 0 such
that 0 < 2e¢ < dist g(co,dp). Since, by hypothesis, the map p is
topologically regular, there exists a neighborhood U(by) C B of by such
that, for every point b € U(by), one of the endpoints of the arc p~1(b)
lies in the gp-neighborhood of the point ¢y (denote this endpoint by ¢(b))
and the other endpoint (denoted by d(b)) lies in the eyp-neighborhood
of the point dy. For every b € U(by), define the set

F(b) ={f €C(E)| f(c(b)) =0, f(d(b)) =1, f|,-1() is one-to-one}.

Then it follows by Lemma 1 that F(b) is a convex D-type subset of the
separable Banach space C(E). Let us verify the lower semicontinuity
of the multivalued map F : U(by) — C(E), given by b — F(b). Fix
the point b € U(by), a map f € F(b), and an € > 0. We must find a
neighborhood U(b) of b such that for all z € U(b) there exists g € F(z)
such that ||f —g|| <e.

Since f is uniformly continuous, there exists § = §(g) > 0 such that
for every x,y € E such that p(z,y) < ¢ it follows that | f(z)— f(y)| < e.
Since p : E — B is topologically regular, there exists a neighborhood
U(b) C U(by) of the point b such that the Fréchet distance between the
fibers p~'(b) and p~!(2) is less than ¢ for all z € U(b). In other words,
for any z € U(b) there exists a homeomorphism h, : p~1(b) — p~1(2)
which is a §-move such that h,(c(b)) = ¢(z) and h,(d(b)) = d(z). In
these circumstances, the inequality |f(z) — f(h; *(z))| < ¢ holds for all
x € p~1(z). By the Tietze extension theorem, there exists an extension
¢ € C(E) of the function f — f o k! from the fiber p~!(z) over the
whole compactum E, and we may assume that ||¢|| < .

Consider the function g = f—y. By construction, it is e-close to f and
its restriction onto the fiber p~1(2) agrees with foh ! and therefore it
is injective on this fiber. Consequently, g € F(z), which demonstrates
the lower semicontinuity of the multivalued map b — F(b), defined on
the neighborhood U (by) of by € B.

We can now invoke Theorem 2 to obtain a continuous univalued map
wo : U(bp) — C(E) such that ¢o(b) € F(b) for all b € U(by), ie.,
[©0(b)](c(b)) = 0, [po(b)](d(b)) = 1, and ¢o(b) is injective on the fiber

-1
P (b).
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The trivialization of the map p : £ — B over the neighborhood
U(by) of the point by € B is then given in the standard way. For
z € p~H(U(by)) we set

U(z) = (p(z), [po(p(2))](2)) € U(bo) x [0,1].

Then ¥ maps the preimage p~1(U(by)) of the neighborhood U (bo)
homeomorphically onto the Cartesian product U(bg) x [0, 1], and the
diagram

p '(U(bo)) ks U(bo) x [0,1]

U(bo)

is commutative. O

Remarks. 1) Theorem 1 remains true for locally compact spaces E.
In this case our proof must be modified only in the following point: in
the definition of the sets F(b) one must not consider the whole space
C(E) of continuous functions on E, but rather its separable subspace,
consisting of those functions, whose supports are contained in the fixed
neighborhood of the fiber p=1(by), the closure of which is compact.

2) Theorem 1 is valid also for locally o-compact spaces E. In that
case one must consider the neighborhood U of the fiber p~!(by) which
is the union U,>1K, of a sequence of compacta {K,},>1 and then (in
the standard way) introduce the Fréchet space of continuous functions,
with supports, contained in U. Then the sets F'(b) must be constructed
as subsets of this separable Fréchet space.

3) We never used the compactness of B in our proof; Theorem 1 is
valid for all spaces B for which one can apply Theorem 2, i.e., for all
perfectly normal spaces B.

4) There is an alternative proof of Theorem 1 based on the concept
of the map, universal for all maps with a fixed (up to homeomorphism)
preimage. More generally, for a compact manifold M consider the
space exp™(Q) with the Fréchet metric, where @ is the Hilbert cube.
In the Cartesian product Q x exp™ (Q) consider the subset UM (Q) =
{(z,F) € Q x expM(Q) | € F}. The canonical projection ups :
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UM(Q) — expM(Q) is a generalization of the Grassman fibration.
Thus, up is a topologically regular map (all of whose preimages
are homeomorphic to M) in which one can embed, in the canonical
way, every topologically regular map p : £ — B whose fibers are
homeomorphic to M. Indeed, the embedding ¢ : £ C @ induces an
embedding j : B — expM(Q), given by j(b) = i(p~1(b)), for every
b € B. Then the map

e (ie),j(ple)), ecE
defines an embedding of the space E into UM (E):

E (1,5) UM(Q)

J JW

B—— expM(Q)

In this way, the map p maps homeomorphically onto the restriction of
the map wups onto the preimage of some subset (Im j in our case) of the
space exp™ (Q). Consequently, the local triviality of the map p can be
deduced from the local triviality of the universal map wuy;.

5) In the case where M = I = [0, 1], the local triviality of the universal
map can be deduced by means of the Morse-Whitney u-parametrization
of continuous curves [9, 10], invoking an argument analogous to the
one in [6, Section 1]. Although Geoghegan’s proofs [6] formally result
in the construction of selections of certain multivalued maps, he could
not get them (as he points out in [6]) by an application of Theorem 2.
The problems arose in connection with finding a “convex structure” in
the space C(I,X). We believe that our method of proof of Theorem
1 presents an interesting application of Michael’s selection theorem for
convex-valued but nonclosed-valued maps (Theorem 2).

6) We should point out that for finite-dimensional spaces B, results
analogous to Theorem 1 are well known: the first one belongs to E.
Dyer and M.E. Hamstrom [4] (see also [1, 2, 5]). We hope that
our techniques will be useful also in other situations with the infinite-
dimensional basis B.
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