ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 24, Number 4, Fall 1994

REMAINDERS, SINGULAR SETS
AND THE CANTOR SET

JAMES P. HATZENBUHLER AND DON A. MATTSON

ABSTRACT. Let X be a completely regular Hausdorff
space which is not locally compact. Characterizations are
given for when X has a compactification aX for which
Clax(aX — X) is the Cantor set C. This occurs if and only
if C is the singular set of a continuous function.

For such spaces, there is also a compactification aX for
which Clyx(aX — X) is the closed unit interval in case X
has a residue which is countable.

1. Introduction. All topological spaces considered here are com-
pletely regular and Hausdorff. A remainder of a Hausdorff compactifi-
cation aX of a space X is the set aX — X. Substantial investigation
has been devoted to the question of which spaces Y can serve as re-
mainders for a space X. (See [3, 5, 7 and 8], for example.) Y. Unli
[12] and the present authors [6] have characterized when the Cantor
set C' is a remainder of a locally compact space X. Clearly, C' cannot
be a remainder of a nonlocally compact space.

In this paper we characterize when, for nonlocally compact X, there
is a compactification aX of X for which the closure of X — X in
aX is C. For any X we let R(X) denote the set of all points in X
which do not possess a compact neighborhood. Then Cl ,x(aX —X) =
(aX — X)UR(X). Thus, for spaces satisfying C' = Clyx (X — X), it
follows that R(X) is a subset of C. When X is almost locally compact,
that is, when X —R(X) is dense in X, (see [10]), and L(X) is the locally
compact part of X, we observe that then aX is also a compactification
of L(X) for which aX — L(X) = C so that all compact metric spaces
are remainders of L(X) (see [6]).

If Y is compact and f is a continuous mapping from X into Y, the
singular set of f is the set of all points p in Y for which Cl x f=1(V,)
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is noncompact, for all neighborhoods N, of p. The singular set of f
is denoted by S(f). A number of authors have shown that, for locally
compact X, certain remainders X — X arise as the singular sets of
such functions. However, not every compactification of X is such a
“singular” compactification. R. Chandler and F. Tzung have extended
the results to the nonlocally compact case. In particular, the following
is Theorem 3 of [4]:

Theorem 1.1 (Chandler-Tzung). Let f be a continuous function
from X into Y, where Y is compact. If f is one-to-one on R(X) and
perfect at each point of R(X), then S(f) — f(R(X)) is a remainder of
X.

Here we show that if Cl,x(aX — X) = C, then there is a continuous
function f from X into I, the (closed) unit interval, for which S(f) =
C. For such spaces we show that if, in addition, R(X) is finite or
countably infinite, then there is a compactification vX of X for which
Cl,x(yX —X)is I and I—-R(X) is a remainder of X. This supplements
the results of [11] and [4].

2. The main theorem. Let X denote the Stone-Céch compacti-
fication of X. A set U in X is m-open whenever U is an open set with
compact boundary (see [5]). If U is m-open and V = X — Cl xU, then
ClgxUN(BX — X) and ClgxV N (BX — X) is a partition of BX — X
into disjoint open sets, since 8X is a perfect compactification of X (see
[7]). We say that a collection {G,, | n € N} of families of X is dyadic if
Gn ={G} |i=1,2,...,2"} satisfies ClxG}' N Cl xG} = & whenever
i# j,and @ # Clx (G5, UGH™) CGP,i=1,...,2" foralln € N.
In [4], a continuous map f : X — Y is defined to be perfect at a point
x € X if fis closed at z and f~! (f(x)) is compact.

Theorem 2.1. Let X be nonlocally compact. Then the following are
equivalent:

(A) X has a compactification aX for which Cl,x(aX — X) = C,
the Cantor set, and aX — X = C — R(X) is a remainder of X.

(B) There is a continuous map f from X into I, where f is perfect
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at each point of R(X), one-to-one on R(X), and S(f) =C.

(C) X has a dyadic collection {G,, | n € N}, where each G, = {G |
=1,...,2"} is a family of m-open subsets of X satisfying

i
(i) K, =X -U{Gl|i=1,...,2"} is compact,

(ii) K, UG?P is noncompact fori=1,...,2"; and for each p € R(X)
and n € N, there exists i(p) such that

(iii) p e K(p) = m{G?(p) | n€ N}, K(p) is compact and {G?(p) |ne

N} is a base of neighborhoods of K (p), and
(v) K(p) # K(g) for p# q in R(X),

Proof. (A) implies (B). Let fo be a continuous extension to aX of
the inclusion mapping of C into I, and let f be the restriction of fy to
X. Obviously, f is one-to-one on R(X). We show that S(f) = C and
that f is perfect at each point of R(X).

If pe I —-C,let N, be a compact I-neighborhood of p for which
CNN, = @. Then f~(N,) = f;*(N,) is a compact subset of
X so that p ¢ S(f). For p € C, let M, be any I-neighborhood
of p. Then Clyx(aX — X) N f;'(M,) is a neighborhood of p in
Clox(aX — X) = C. If p e aX — X, then Clx f 1(M,) cannot be
compact or else f; ' (M,)N[aX —Cl x f~1(M,)] is an aX-neighborhood
of p which does not meet X, a contradiction. For p € X, then
Cl x f~'(M,) cannot be compact by the definition of R(X). Thus,
in both cases, p € S(f) and hence S(f) = C.

Next consider f~!(f(p)), for p € R(X). Since f; is one-to-one
on Clyx(aX — X), f~X(f(®) = f; " (fo(p)) is compact. Now let
U be any open neighborhood of f~1(f(p)). There exists aX-open
U, such that U = U, N X. Then aX — U, is compact and misses
F7Hf®) = 5 (folp)). Thus T = fo(aX — U,) is a compact set
disjoint from f(p) = fo(p). Choose an I-open neighborhood V of f(p)
for which VN7 = @. Then z € f~'(V) implies z € U so that
f~1(f(p)) C f~1(V) C U. Hence f is perfect at each point of R(X) so
that (B) holds.

(B) implies (A). The proof of Theorem 3 of [4] shows that Theorem
1.1 of [9] can be applied. Then (A) is immediate from these results and
their proofs.
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(A) implies (C). Assume that Clyx(aX — X) =C. For each n € N
choose a family T;, = {F},...,Fi.} of pairwise disjoint nonempty
compact C-open subsets of C' which cover C and satisfy Fj.t]UFt =
Er, for i =1,...,2" and sup{|z — y||z,y € F'} < 37", for all i,n.
Let i(p) denote the index for which a point p € Fjt ). It is immediate
that N{F},) [ n € N} = {p}, for each p € C.

Now for each n € N inductively choose families H, = {H} | i =
1,...,2"} of aX-open sets which satisfy F* C HP, Cl,x(Hy, U
HEY) € HP and {CloxHP | i = 1,...,2"} is a pairwise disjoint
family. Then K,, = aX — U{H" | i = 1,...,2"} is compact. For
alnm € N, set G, = {GF! | i = 1,...,2"}, where G} = H'N X,
t = 1,...,2" Since X is dense in aX it follows from the choice
of H"’s that CloxG} = CloxH = ClxG} U Fj*, for all ¢ and
n. Also, CIXG?(;)I - G?(p)’ for all n € N, so that ﬂ{ClXGi"(p) |
n € N} = n{G}, | n € N}. Hence for p € R(X), we have
(x) : K(p) = N{G},) | n € N} = n{ClxG}, | n € N} =
ﬂ{ClXG?(p) UFg, |ne N} = ﬂ{ClaXG?(p) |ne N}

Thus K (p) is compact, as desired.

Next, note that the choice of H;"’s insures that Cl xG'NClx G = &,
for i # 7, and Clx (G, UG C G, Also, ClxG? C G UK,
so each G7 is m-open. Thus the families G,, form a dyadic collection
of m-open sets. Note that R(X)NCl xG? C G?. Since each Cl,xG?
contains a point z € C, if z ¢ X clearly Cl xG? is not compact, and
if z € X, then z € R(X) hence Cl xG? cannot be compact. Hence
G U K, is not compact and C(i%) holds.

Now let U be any X-open set containing K (p). Then Cl,x (X —U)N
K(p) = @. Using (x), it follows that ClaxGj,) N Clax(X —U) = @
for some n. Hence, G} ) € U, so that (iii) holds.

Finally, since for p # ¢ in R(X) we have [p — q| > n~!, for some
n € N, evidently Fi’(’p) N Fi’(Lq) = @. Thus, G?(p) N G;’(q) = @ so that
K(p) # K(q). Now C(iv) holds and (C) is verified.

(C) implies (A). For each n € N and ¢ = 1,...,2", let H =
BX — (Clgx(X — GI)) and set A, = H} UHY U---UH%,_, and
B, = HYUH}U---UHZ%,. Observe that A, UB,, covers Clgx (8X —X)
and, since H]' N X = G7, we have A, N B, = .
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For each n € N, we define a continuous map f, from Clgx (X — X)
into the two-point discrete space {0,1} by f,(4,) =0 and f,(B,) = L.
Now define a function f from Cl gx (8X —X) into {0, 1}" by f =[], fn-
We will show that (1) f is onto; (2) f(BX — X) = C — f(R(X));
and (3) the restriction of f to R(X) is one-to-one. These conditions
allow the application of Theorem 1.1 of [9]. For (1), let y = (y,) €
{0,1}" = C. For any positive integer m and n < m, choose C,, = A,
when y, = 0 and C,, = B,, when y,, = 1. From C(ii) it follows that
N{C, | n=1,...,m} contains a point x € Clgx(8X — X) N H!™, for
some i. Clearly, f(z) agrees with y in the first m-coordinates. Thus,
the image of Clgx(8X — X) is compact and dense in C so that (1)
holds.

Next, take z € X — X and p € R(X). Then there are neighborhoods
N; and N; of z and K(p), respectively, in X for which Clgx Ny N
Clgx Ny = @. But N, N X is an X-neighborhood of K (p) so by C(iii)
there is a G?(p) for which p € G?(p) C NoN X. Then z € HY, for
some j # i(p), and it follows from the assumption that the collection
of G,’s is dyadic that fip(p) # fx(z), for some & < n. Hence
f(p) # f(x) so that f(z) € C — f(R(X)). Thus it is immediate that
f(BX — X)=C — f(R(X)) which is (2).

For (3) let p and ¢ be distinct points of R(X). By C(iii) and C(iv)
it follows that G?(p) #* G?(q) for some n, and as in the proof of (2),
fr(p) # fr(q) for some k < n. Hence f(p) # f(¢) and (3) holds.

Now (1), (2) and (3) insure that we can apply Theorem 2.1 of [9] and
its proof from which (A) follows.

This completes the proof. a

The proof that (A) implies (B) of (2.1) may be applied whenever
Clyx(aX — X) is a subset of R, the real numbers. Thus we can state

Corollary 2.2. Let aX be any compactification of X for which
Clax(aX — X) is a subset of R. Then there is a mapping f of X onto
a compact set D of real numbers for which S(f) = Clax(aX —X), and
f 1is one-to-one on R(X), and perfect at each point of R(X).

Thus, Corollary 2.2 shows that any aX for which Cl,x(aX — X)



1444 J.P. HATZENBUHLER AND D.A. MATTSON

is a subset of R can be obtained as in Theorem 1.1. Suppose that X
satisfies (A) of Theorem 2.1. If Y is a continuous image of C' under a
mapping f which is one-to-one on R(X) and satisfies f(C — R(X)) N
f(R(X)) = ¢, then it follows from 1.1 of [9] (and its proof) that there
is a compactification yX of X for which Cl,x(yX — X) =Y and
Y — f(R(X)) is a remainder of X. However, all continuous images Y of
C need not satisfy Cl,x(yX — X) =Y for some compactification vX,
even when Y contains a copy of R(X). For example, let Y = {a, b} be
the discrete two point space. Then Y is a continuous image of C'. If X
is a space satisfying (A) of 2.1 and if R(X) is a singleton, then R(X) is
trivially homeomorphic with {a}, but ¥ — {a} cannot be a remainder
of X.

3. I as Clyx(aX — X). Rogers [11], Magill [8] and others (see [3],
for example) have studied the question of when continua are remainders
of locally compact spaces. Clearly, no continuum can be a remainder of
a nonlocally compact space, but in what follows we provide conditions
insuring that some X satisfies Cl,x(yX — X) = I. Under these
conditions, I is then a remainder of L(X) whenever X is almost locally
compact.

Theorem 3.1. Suppose X satisfies condition (A) of Theorem 2.1.
If R(X) is finite or countably infinite, then there is a compactification
vX for which Clyx(yX — X) =1 and I — R(X) is a remainder of X.

Proof. Assume that aX exists such that Clox(aX — X) = C as
in 2.1 (A). First we show that there is a homeomorphism of C' such
that when the canonical mapping g of C' onto I is applied, g satisfies
g(z) # g(y) for all z € R(X) and all y € C, where = # y.

For each y = (yn) in C, where (y,,) is the ternary representation of y,
we associate a homeomorphism f, of C onto C as follows: For (z,) € C,
set fy(zn) = (2n), where 2z, = z,, when y, = 0 and when y,, = 2, set
zn =0ifz, =2 and 2z, = 2if z,, = 0. Now for a = (a,) € R(X) we say
that f, is “constant on a tail” of a if, for f,(a,) = (by), thereisn, € N
such that b, = 0 for all n > n, or b,, = 2 for all n > n,. For each such
“tail” of a there are only finitely many f,’s which are constant on that
tail. Since the collection of f,’s is uncountable but R(X) is finite or
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countably infinite, there is some f, which is not constant on any tail
of a, for all a € R(X). Let f,, be such a map.

Next, set g(z) = > " ,/2""!, for ¢ = (z,) € C. Then g is a
continuous surjection of C onto I. Thus, the composition g o fy,
maps C continuously onto I and is one-to-one on R(X). Moreover,
go fyo(R(X))Ngo fy,(C — R(X)) = ¢ because of the selection of fy,.

Hence (by the remarks following 2.2) I = Cl,x(yX — X) for some
compactification yX of X and I — R(X) is a remainder of X. This
completes the proof. O

R. Chandler and F. Tzung have shown in [4] that (0, 1] is a remainder
of X when X is realcompact and R(X) = {p} is a singleton contained
in a set of countable character. However, Theorem 3.1 can yield (0, 1] as
a remainder of X when X is not real compact. Clearly, the Chandler-
Tzung theorem also applies when 3.1 does not.

Ezample 3.2. Let D be any countable set in C. Then C' — D is dense
in C. Take X = I x I — {(C — D) x {0}}. Evidently X satisfies the
conditions of Theorem 3.1 so that I — D is a remainder of X when D is
a copy of D = R(X). We note that D can be a singleton here in which
case I — {p} is a remainder of X for some p € I.

Also, if [0,w;) is the space of all countable ordinals, where w; is the
first uncountable ordinal, then Y = [0,w1] x I — ({w1} X (C' — D)) is a
pseudocompact space which satisfies the conditions of (3.1) but which
is not covered in [4].
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