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DIMENSION ¢ OF ORBITS AND
CONTINUITY OF TRANSLATION FOR SEMIGROUPS

H.A.M. DZINOTYIWEYI AND COLIN C. GRAHAM

ABSTRACT. Let S be a semi-topological semigroup and
® a Banach space on which S acts as a semigroup of linear
isometries. Let Zu denote the effect of £ € S on p € ®. In
many cases, we have that either the orbit {Zp : * € S} is
nonseparable, or  — Ty is norm-continuous. We investigate
when “nonseparable” can be replaced with “spans a closed
subspace of topological dimension at least c.” We thus extend
results known for the case that S is a group. We given
examples and related results.

0. Introduction. Let S be a locally compact group, ¢ a Banach
space, and © — Tu, up € ®, © € S a representation of S that is lower
semicontinuous. Then for each p € ®, © — ZTp is either continuous,
or {Zp : ¢ € U} = O(p,U) is nonseparable for each open U; in fact,
O(u,U) spans a subspace of topological dimension at least ¢ [1, 3].

A semigroup with a topology S is a “semi-topological” semigroup if
the semigroup operation is continuous in each variable separately; it
is a “topological” semigroup if the semigroup operation is continuous
in both variables simultaneously. All semigroup topologies will be
assumed to be locally compact.

When S is a topological semigroup, ¢ — Zu can be discontinuous
and O(p,S) separable: we give examples. In this paper we identify
conditions under which O(y,S) is nonseparable when = +— Zu is not
continuous, apply them to the group case, and provide examples that
illustrate the limits of what is possible.

Most of our examples are inspired by what occurs in the case of
® = M(S), the space of all regular bounded Borel measures on the
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semi-topological semigroup S, or the space M.(S), the space of all
regular bounded continuous Borel measures on the semi-topological
semigroup S.

Let S be a semi-topological semigroup and ¢ a Banach space. Sup-
pose that S operates as a semigroup of linear isomorphisms of ®. We
say that S operates “blsc” (bi-lower semicontinuously) if for every e > 0
and every pu € @, the set

{(z,y) € Sx S:||lzZpn—gu|| > €}
is open in S x S. The action is “Isc” (lower semicontinuous) if
{reS:||zp—p|| >} isopenforall pe ®,e>0.

Let £ € ® and ¢ > 0. We say that ¢ — Zp is “c-uniformly
discontinuous” (“c-u.d.”) on a subset X of S if for all z € X,

limsup ||Zp — gu|| > e.
Xoy—ax

We say © — zu is “weak e-u.d.” on X if for all z € X
limsup ||y — Zpl| > €
yA)I

where the limsup is taken over y € S (as opposed to y € X).

Graham, Lau, and Leinert [3, 2.4] show that if S is a locally compact
group acting lower semicontinuously as a group of isometries of the
Banach space ®, and p € @, then either x — Zu is continuous or
there exists a set C of cardinality ¢ and ¢ > 0 such that z,y € C' and
x # y imply ||Zu — Gu|| > e. We extend that result by relaxing the
requirement that S be a group, at the cost of adding the hypotheses of
blsc and e-u.d. (which always hold in the group case). Our main result
appears as Theorem 1.1. Section 1 is devoted to the proof of Theorem
1.1.

In Section 2 we apply Theorem 1.1 to cancellative semigroups, par-
ticularly to translation in M (S), thus generalizing [1, 3].

Section 3 contains the application of Theorem 1.1 to groups.

In Section 4 we give examples that show that the hypotheses of
Theorem 1.1 are necessary and that illustrate other aspects of Theorem



DIMENSION ¢ OF ORBITS 1355

1.1. Example 4.1 shows also that a measure can fail to translate
continuously in a commutative cancellative semigroup and still generate
a separable subspace. Thus, the result of [3, 2.4] does not extend in
full generality to commutative cancellative semigroups.

Finally, in Section 5 we give some open questions.
1. The main result.

Theorem 1.1. Let S be a semi-topological semigroup, X a compact
subset of S, € > 0, ® a Banach space on which S acts as a semigroup
of linear operators. Let yu € ® be such that x — Zp is e-u.d. on X.

Then the following hold:

(i) There exists a set C C X of cardinality at least c such that
z,y € C and x # y imply

|Zp — gul| > /2

and

(ii) The set {Zp:z € X} spans a subspace of dimension at least c.

Proof. This is a typical Cantor set construction. Since x — Zp is
e-u.d. on X, there exist z1 1,12 € X such that

|1Z11m — Zrop|] > €/2.
Because x — zp is blsc, there exist compact neighborhoods U, ; of z1 ;,
j = 1,2, such that
[y, 1pp — Tr 2| > €/2
for all u; ; € Uy 4, j =1,2. We may assume that U, 1 NU; 2 = @.

Suppose that n > 1 and that we have found z, ; € X and compact
neighborhoods U, ; of z,; for 1 < j < 2" such that u; € U,,,
1< j<2m, imply

[|ajn — Gppl| >e/2 for 1 <j#k<2™
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Because z — Zp is e-u.d. on X, for each 1 < 7 < 2" there exists
Tnt1,2j € XNUy, j such that ||Z, jpu—Zni1,2jp|| > €/2. Set Zpi1,2j-1 =
Tn,j. Since x +— Tp is blsc, we can find pairwise disjoint compact
neighborhoods Uy41,; of #py1,5, 1 < j < 27+ guch that u; € Unqa,j,
1< j <2 imply

||@jp — dppl|| >e/2 for 1< j+#k <2t

Let C; = N9, U?’;l Un,j- Let z,y € C1, x # y, be such that there exist
distinct sequences {j,}, {l,} where 1 < j,, l,, < 2", x € NU,, ;, and
y € NUp . It follows from the construction that ||Zp — gu|| > /2.

Since there exist ¢ distinct sequences {j,}, we can choose C C C}
having the appropriate cardinality (that uses the axiom of choice). The
assertion (ii) follows immediately without the use of the axiom of choice.
mi

2. Applications to cancellative semigroups.

Lemma 2.1. Let S be a cancellative semi-topological semigroup and
x € S. Suppose that ® = M(S) and that the representation of S on
M(S) is by convolution: x +— §(z) * pu = Zu. Then ||w|| = ||Zw]| for all
we M(S).

Proof. This is the usual argument. Since S is cancellative, a collection
of sets E; C S, 1 < j <mn, is pairwise disjoint if and only if {zE;} is a
pairwise disjoint, which also implies that {z’lEj} is pairwise disjoint,
the preceding holding for all z € S. Hence

[lw]| > [|zw]|  (always) = sup Z|(Z * w)(Ej)|
{E;}

where the supremum is taken over all finite collections of pairwise
disjoint Borel sets £/; C S. Then

sup X|(Z * w)(E;)| = sup E|w(21Ej)|
> sup X|w(z'2F})|
{=F;}
= sup Slw(F))| = |jwl]|. O
{=F;}
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Lemma 2.2. Let S be a semi-topological semigroup. Then x — Ty,
p € M(S) is blsc. In fact, if x — Zf is continuous from S to a Banach
space X, then x — Zp is blsc for ¢ € X*.

Proof. Let f € Cy(S). Then

(uv) / F(uz) — f(v2)) du(z) = / F(2)d(ap — o)

is continuous in each variable simultaneously. (Even though z — f(uz)
may not be an element of Cy(S), the integral above is well-defined,
since p is a regular bounded Borel measure.) Therefore ||ap — vu|| is
the supremum of continuous functions on S x S, and therefore it is
lower semicontinuous on S x S. Therefore x — Zy is blsc. The proof
of the second assertion is identical to that of the first. o

Remarks. (i) Characterizations of semigroup actions that are blsc
remain to be found.

(ii) We would like to have been able to say that if S is a cancellative
semitopological semigroup and x — Zu is not continuous at z € S, then
x — ZTp is e-u.d. for some ¢ > 0 on some compact subset of S. That is
false, however (see Example 4.1). The difficulty is that the mapping is
weak e-u.d. but not e-u.d., and the conclusion of Theorem 1.1 is false.

(iii) We do not know when e-u.d. must occur. We do, however,
know that it must occur for some p’s if S is a topological cancellative
semigroup that contains a perfect subset. That is the content of 2.4
below. Only weak ¢-u.d. can be guaranteed in general.

Lemma 2.3. If S is cancellative and x — Zp is not continuous at
z, then for some € > 0, ¢ — Zu is weak e-u.d. on the ideal Sz.

Proof. Let ¢ = %hmsupyﬁz [lgp — Zp||. By Lemma 2.1, for each
zes

limsup ||gp — (22) " p|| > limsup ||(zy) " p — (z2) " pl|
y—z

y—cz

= limsup ||gu — Zu|| > ¢.
Yy—z
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Since S is semi-topological, lim,_,, Ty = zz. ]

Theorem 2.4. Let S be a cancellative topological semigroup and
suppose that S contains a compact perfect set. Then there exists
a compact perfect set F' and a set E with Card E > ¢ such that
' FNzF =& for all distinct xz,2’ € E.

Proof. This is a double Cantor set construction. Let Ey C S be
perfect. Let X,Y be disjoint perfect subsets of Fy. Let 11,212 € X
be distinct. Choose y1 1,412 € Y such that z1 jyi1 x # ®1,1y1,» except
where (j,k) = (I,r). That is possible because S is cancellative. Let
U4, V1; be compact neighborhoods of 1, y1;, respectively, such that

Uy jVie NUL Vi, = @ if (4,k) # (I,7).

That is possible because S is a topological semigroup. Let n > 1, and
suppose that we have compact sets U, ; C X, V,; CY, 1 <35 <27,
each with nonempty (relative) interior, such that

(2.1) UpiVose VUn Vs =@ if (4, k) # (1, ).

By the cancellative property of S, there exist Tni1,2j-1,%n+1,2j €
Un,jayn+1,2j—layn+1,2j S Van, 1< _] < 2™ such that

Tn4+1,7Yn+1,k # Tn=1,rYn+1,s if (]a k) # (7'7 3)-

Since the multiplication in S is continuous, there are compact relative
neighborhoods Un 11,5, Vat1,5 of Znt1,j, Ynt1,5, respectively, such that
(2.1) holds with n + 1 in place of n.

Let FF =N,U; V, ;. Let By =N, U;U, ;. Asin the proof of Theorem
1.1, but here using (2.1), if z,y € Ey have z € NU,j,,, y € NUy,, and
{jn} # {ln}, then zF NyF = &. Using the axiom of choice, we find
E C FE as in the proof of Theorem 1.1. m|

The set of translates of a discrete measure typically generates a
subspace of dimension at least ¢. For many continuous measures the
same is true, as the following corollary asserts.

Corollary 2.5. Let S be a cancellative topological semigroup with a
perfect compact subset. Then the following hold.
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(i) There exists p € M.(S) such that {s5u: s € S} spans a space of
dimension at least c; and

(ii) {sp:s € S} is not separable for at least ¢ continuous measures
on S.

Proof. (i) Let E, F be given by Theorem 2.4. Let u be a continuous
measure concentrated on E. Such a measure exists because E is perfect
and compact. By the conclusion of Theorem 2.4, Ty and Z'p have
disjoint supports for all z, z’ distinct in F. Since cardinality of F' is at
least ¢, (i) follows.

(ii) The compact perfect set E supports a family of ¢ mutually
singular continuous measures. (E contains a subset that has a metriz-
able quotient set W that is perfect, metrizable, and totally discon-
nected.) The set W is homeomorphic to (Z2)*, so M.(W) has dimen-
sion ¢. From that follows the assertion about M.(E).) The argument
of (i) applied to each of the measures in that family now applies, and
(ii) follows. u]

Remark . Example 4.1 shows that there exists a (necessarily) can-
cellative sub-semigroup S of the plane and p € M(S) such that s — su
discontinuously, but {5u : s € S} is nevertheless separable.

3. Applications to locally compact groups. We show in this
section that the hypotheses of Theorem 1.1 are satisfied when S is
a locally compact topological group and @ is any Banach space on
which S acts isometrically and lower semicontinuously (these are the
hypotheses of [3]). The result [3, 2.4] follows immediately, which we
restate as Corollary 3.2.

In this section S will always be a locally compact group.

Lemma 3.1. Suppose that S acts as a group of isometries on the
Banach space .

(i) If z — Zu is not continuous at xy € S, then for some € > 0,
T — T is e-ud.

(ii) If the action is lsc, then it s blsc.
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Proof. (i) Suppose that

limsup ||gu — Zopl| =€ > 0.

Yy—To

Then for each z € S, we have

limsup [|gp — Zu|| = limsup |[zoz~typ — Zopl| = .
y—z zoz~ly—xo

(ii) Since the action is lsc,

{z: ||zp — pl| > €}

is open, for every € > 0, and p € ®. But then, by the continuity of
multiplication in S,

{(z,y) € Sx S+ ||(y~a)u — pll > €}

is open. Since S acts isometrically, ||[(y—tz)p — p|| = ||Zp — yp|| and
(ii) follows. u]

Corollary 3.2. Let S be a locally compact group. If p € ® and
x — Tp is not continuous, then {Tp : x € S} spans a subspace of
dimension > c.

Proof. Immediate from Lemma 3.1 and Theorem 1.1. ]

Remarks. Corollary 3.2 also holds for left cancellative stips. See [2]
for the definition of a stip.

Corollary 3.2 does not hold for noncancellative stips. Indeed, let S =
{0,1/2,1/3,...} be the commutative semigroup with multiplication
given by taking the maximum. Then the unit point mass u = 0 at 0
operates discontinuously at 0 and {Zu € S} spans a separable subspace.

4. Three examples.

4.1. Weak e-u.d. is not enough. Let T = [3,4] x {0,1/2,1/4,1/8, ...}
and let S be the subsemigroup of R? generated by T. Let u denote
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the product y = X[34ymr x §(0) of Lebesgue measure on [3,4] with the
unit point mass at 0. Then the orbit of x in M(S) (under the usual
translation) is separable. For X; = [3,4] x {0},  — Zp is weak e-u.d.
but for no £ > 0 and no compact perfect X C S is x — ZTu e-u.d.

4.2.  Cardinalities may vary. Let e, f be any cardinalities > ¢,
and let G, H be compact abelian groups having cardinalities e, f,
respectively. Let u = mg x 6(0) denote the product of Haar measure
on G with the unit point mass at the identity of H. Then = — Zu
(usual translation) is e-ud. on S = G x H for 0 < ¢ < 2. But
max Card{C : z,y € C,z # y = ||Zp — yp|| > €} = f. Thus c is
not the maximum cardinality we can hope for, in general, in Theorem
1.1 and Corollary 3.2.

4.3. Many translators with separable orbits. Define M(S), = {p €
M(S) : © — Zup is continuous}. Define £ to be the set of u €
M(S) N M(S)}+ such that  — Zp is not continuous but {Zu : z € S}
is separable. It is not necessarily the case that £ is contained in L'(w)
for some o-finite w. Indeed, let S = {0,1}*, where A is uncountable
and {0,1} has the maximum operation. Let Sy denote the elements of
S such that {i € A : f(i) = 0} is countable infinite, finite, or empty.
Then S is a compact semigroup with an identity. Let 7 = {g: g € S¢}.
Then F C € and there is no o-finite measure w with F C L'(w). The
required conclusion follows from [2, 3.10(a)], which states that for a
compact semigroup S, xS U Sz is finite if and only if T translates
continuously.

5. Questions. Example 4.1 shows that {54 : s € S} can
be separable without s — 5u being continuous, even when u is a
continuous measure. (Recall that a measure g is continuous if it
vanishes on all singletons.) That suggests the following questions.

Question 5.1. When does {3y : s € S} separable for all continuous p
imply S is countable?

That was addressed in Theorem 2.4, but Theorem 2.4 did not cover
all cases. By the “nonseparability-continuous dichotomy for an open
set” we mean: either x — Zpu is such that z — Zp is continuous for
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all x € U, an open set, or {Zu : « € U} spans a subspace which is
nonseparable.

Question 5.2. For which S, U, ® does that dichotomy hold?

Question 5.3. For which actions of S on ® does Isc imply blsc?

Question 5.4. Can 2.3 be extended beyond cancellative topological
semigroups?

Question 5.5. Does 2.4 hold for semi-topological semigroups?
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