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CONTINUOUS NOWHERE DIFFERENTIABLE
FUNCTIONS AND ALGEBRAIC INTEGERS

VLADIMIR DROBOT

1. Introduction. Examples of continuous, nowhere differentiable
functions are well known [1] and go back to at least 1860, see [2, pp. 954-
956] for historical discussion. In most of these examples one considers
an infinite series Y f,(z), where each f, is small in some norm, but
“wiggles a lot.” We present a curious example of another construction,
based on some properties of algebraic numbers. The basic idea is as
follows. Let 8 > 1 be a fixed number, 8 not equal to a rational integer.
Every real number z € [0, 1] can be uniquely (in a sense defined below)
represented as & = -, €,(x)3 " (representation in base (). Let now
|a] > 1 be another number, and define a function

O fop(@) = 3 enl@)a ™

When o and 3 are chosen arbitrarily, the function f, 3 so defined is
generally not continuous. In some special cases, however, when o and
B are conjugate algebraic integers, the function f, s defined by (1)
turns out to be continuous, but nowhere differentiable. We should
remark that not every pair of conjugate algebraic integers leads to such
a function, but we will give a condition which allows one to construct
plenty of examples.

2. [-Expansions of real numbers. We recall here some basic
definitions and results, most of which can be found in A. Renyi [4] and
W. Parry [3]. We change the notation slightly and modify some of the
results from these two sources in order to suit our specific needs.

Let 8 > 1, 8 not equal to a rational integer, be fixed. For every z,
0 < z < 1, define a sequence of integer “digits” €, (z) and “remainders”
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rn(z) by the following recursive formulas:

ei(z) = Bz, ri(x) = {Bz}

@ i@ = Bra@)],  ram(e) = Bral@)},  n=12,....

Here |.| is the “floor” or the greatest integer function, and {.} is the
fractional part. Thus, for all ¢’s, ¢ = |¢] 4+ {t}. One easily verifies by
induction that for each n

n

3) ra(e) = B (a: -y B(ﬂ”))

j=1

(@) p=d ol

®

and the integers ¢, (x) are called the digits of z in base 8. We denote
(4) by

(5) [117],8 = (81,82,83,...).

Definition 1. Let 8 > 1, 8 not equal to an integer, be fixed. A
number z € [0,1] is called B-terminating if the expansion (5) is finite,
ie., if e,(z) = O for large n. A number z is called S-periodic if it is
not [-terminating and the expansion (5) is eventually periodic. The
number [ is called simple if 1 is a S-terminating number. The number
0 is called semisimple if 1 is B-periodic.

Definition 2. Let C = (c1,c2,...) be a bounded sequence of
nonnegative integers (finite or not). Define

C(ﬁ):(cl,cz,---)(ﬁ):%4—%4_..._

A sequence C is said to be canonical, if C = [z]g for some z € [0, 1),
i.e., if C is the sequence of digits in 3-expansion of some z € [0, 1).
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It is obvious that a necessary condition for C = (cq,ca,...) to be
canonical is that each ¢; < . This is not, however, sufficient. For
example, if 8 = (1++/5)/2, then a sequence of 0’s and 1’s is canonical
if and only if it does not contain two successive 1’s, see [4]. We will
shortly give the necessary and sufficient conditions for a sequence C to
be canonical.

Definition 3. Let C = (c1,¢2,...) and D = (dy,ds,...) be two
sequences. We say that C < D if C # D and ¢; < d; for the first
subscript @ for which ¢; # d;. We apply this definition of inequality to
sequences that are finite or infinite. In case one or both sequences are
finite, we pad the shorter sequence with 0’s at the end, if necessary.
Thus, for example, (1,2) < (1,2, 3), since (1,2,0) < (1,2, 3).

The following theorem is basic to what follows. Major portions of this
theorem were proved in [3]; we extend the results from there slightly
and give a somewhat different proof:

Theorem 1. Let 8 > 1, B not equal to an integer. The following
are necessary and sufficient conditions for a sequence C = (cy,¢a,...)
to be canonical:

i) Assume B is not simple and let [1]g = B = (b1,b2,...). Then
a sequence C = (c1,ca,...) of nonnegative integers is canonical if and
only if
(6) (Cn,Cn+1,Cn+2,...) <B:(b1,b2,...)
foralln=1,23,....

i)  Assume B is simple, let [1]g = (b1,b2,...,by), and let B =
(b1,ba,...) be the sequence defined by:
(7) 5, — by, zfn #0 (mod q)

b, —1 fn=0 (mod q).
A sequence C = (c1,¢3,...) of nonnegative integers is canonical if and
only if
(8) (Cn,Cn+1,...)<E:(i)1,52,...)

foralln=1,2,....
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Notice that since 3 is not an integer, ¢ > 1 in part ii), and that B is
an infinite sequence.

For the proof we need several simple lemmas.

Lemma 1. Suppose C = (c1,¢2,...) is canonical. Then (ca,cs,...)
is also canonical. This applies whether C is finite or not.

Proof. Suppose C is canonical. Let & = C(8) = (c1,...)(8). Then, by
the definition of S-expansion and (3), (cg,cs,...) is the S-expansion of
ri(z) = B(z — ¢1/B) < 1. Thus, (c2,c3,...) is canonical. o

Lemma 2. Suppose B is not simple and C is a sequence of nonneg-
ative integers for which (6) holds. Then C(8) = (c1,c¢2,¢3,...)(8) <1
and the inequality is strict.

Proof. Since (8 is not simple, b, > 0 for infinitely many n’s. We first

prove the lemma in case C = (c1,c¢2,...,¢p) is finite. If p = 1, (6)
means ¢; < by so C(B) = ¢1/B8 < b1/B < 1. Suppose the assertion is
proved for all sequences of length p < P, and let C = (e1,¢3,...,cp)

be a sequence for which (6) holds. There are two cases: i) ¢; < by and

ii) ¢y = by. In case i), ¢; < by — 1 and (6) holds for n =2,3,..., P, so
by the inductive hypothesis, (ca,cs,...,cp)(8) < 1. Then
C1 1
(017027 v 7CP)(B) =+ _(027 v 7CP)(B)
BB
by 1 1
< I 4Z<l
B B B

In case ii), let j be the smallest index for which ¢; # b; so that
0 < ¢; < bj—1, in particular b; > 0. If j > P, then C(8) <
(b1,ba,...,bp)(B) < 1 since B is not simple. If j = P, then C(8) <
(bi,b2,...,bp)(B) —1/BF < 1 also. If 1 < j < P, the condition (6)
holds for m =j+1,...,P,so (¢jt1,...,cp)(B) <1 and

(c15-.5ep)(B) = (c1,- -5 ci-1)(B) + % + (¢jt1- -, cp)(B)
< (bl,... ,b]_l)(ﬁ)+b—J—i+i <1
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because [ is not simple. Hence the Lemma is true for all finite
sequences. If C is an infinite sequence for which (6) holds, then by
continuity C(8) < 1. To show that the inequality is strict, let j be the
first subscript for which c¢; # b; so that ¢c; < b; — 1. We have

(cryc2,...)(B) = (b1,--- ,bj-1)(B)

o1
+ 5%'+_BF(01+1v~')(5)'

Since (¢j41, ... ) also satisfies (6), (¢jt+1,¢j+2,.-.)(8) < 1, and it follows
from (10) that

(10)

b 1 1
amg@w”m@+é_w+w<l

because (3 is not simple. ]

Lemma 3. Suppose 3 is simple, let 3 = [1]g = (b1, b2, ... ,by), and
let B = (b1,b2,...) be the sequence given by (7). If C = (c1,...,¢p) is
a finite sequence such that

(Cny.-.rcp) < (b1,b2,... ,bg) foralln=1,2,...,p,
then C(B) < 1. If C is an infinite sequence such that
(CnyCnits---) < (b1,bay...) foralln=1,2,...,

then C(B) < 1. In addition,

(11) B(B) = (b1,bs, ... )(8) = 1.

Proof. The proof is entirely similar to the proof of Lemma 2, and
we omit it. In Lemma 2 we repeatedly used the fact that b, # 0 for

infinitely many n’s and B(8) = 1. In Lemma 3, by definition, b, # 0
for infinitely many n’s and then we use (11). O

We now proceed with the proof of Theorem 1. Assume first that
B is not simple, [1]g = B = (b1,b2,...). Suppose C = (c1,c2,...) is
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canonical, i.e., for some 0 < z < 1, [z]g = C, and we must show that (6)
holds. It is enough to show that (6) holds for n = 1, since then we can
repeatedly apply Lemma 1 to get the result for an arbitrary n. Let j be
the first index for which ¢; # b;. If j =1, then ¢; = [Bz] < [B-1] = by
so (6) holds. If j > 1, then

= 7“]',1(].).

Hence, ¢; = |frj_i(z)] < |Brj—1(1)] = bj, ie. ¢; < bj, so that (6)
holds also. Conversely, suppose that C = (¢, ¢a,...) is a sequence of
nonnegative integers for which (6) holds. Let z = C(8); we want to
show that [z]s = C. By Lemma 2, z < 1 and S8z = ¢; + (c2, ¢3, .- .)(8).
Since (co,cs,...) also satisfies (6), (c2,c3,...)(8) < 1 and so £1(z) =
|Bz| = ¢1 and ri(x) = (c2,c3,-..)(8). Applying the same reasoning
to r1(z) we get £1(r1(z)) = e2(z) = c2. Continuing in this way we get

[z]g =C.

Suppose now that g is simple; let [1], = B = (b1,ba,...,bq), b1
and b, are both not equal to 0. Let C = (c1,c¢2,...) be a sequence
of nonnegative integers for which (8) holds. Put z = C(8). Again,
by Lemma 3, z < 1 and Bz = ¢; + (¢2,¢5,...)(8). By Lemma 3,
e1(x) = ¢;. Continuing as in the case when 8 was not simple, we get
[z]g = C so that C is canonical. Conversely, let 0 < x < 1 and let
C = [z]g; we must show that (8) holds. Again, it is enough to show
this for n = 1 and then repeatedly apply Lemma 1. Since z < 1 and
B(B) =1, C # B, so let j be the first index for which ¢; # b;. We must
show that ¢; < b;. Let k be the integer such that kg < j < (k + 1)g.
By Lemma 1, C' = (Ckg+1,Chg+2,---) = (¢}, ¢h...) is also canonical
and ' = C'(8) < 1. Let i = j — kq. Since B is periodic with
period g, we have b; = b;, ¢, = ¢; and ¢, = b,, for 1 < m < i.

We must show that ¢, < b;. Suppose ¢, > b;. If i = 1, this means that
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¢, =|Bx'| >by =by = |B-1] so z’ > 1, a contradiction. If 1 < i < g,

)
<Bi‘1<1—

— >
— [m
= ’I'i_l(].).

If C; = LﬂTifl(.Z'l)J > l_)i = b = LBTifl(l)J, this would imply
ri—1(z') > r;—1(1), again a contradiction. Finally, if i = ¢, and ¢}, > by,
then ¢ > b, and z' = C'(B) > B(B8) = 1, also impossible. This proves
Theorem 1. O

ML
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We need one more additional result for later.

Lemma 4. IfC and D are two canonical sequences, then C < D if

and only if C(B) < D(B).

Proof. Let x = C(8) and y = D(B). Suppose first that C < D,
and let j be the first index such that ¢; # d;. If j = 1, then
¢ = |Bz]] < di = |By| implies z < y. If j > 1, then by (3)
rj—1(z) =r;_1(y) and again by (3)

o= o) = | (o= 52),

k=1

<dj = |Brj-1(y)] = Vj (y - :i %)J

which implies z < y since ¢ = dy for k =1,2,...,7 — 1. The proof of
the converse is entirely similar and we omit it.

3. Main results. Let 8 > 1, § not equal to an integer, be given.
For every « such that |a| > 1, define a function

(12) fa,ﬂ(x):Z% if 2] = (c1,c2,...).
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We now give conditions for o and § for f, g(x) to be a continuous,
nowhere differentiable function on [0, 1].

Definition 4. Suppose that 8 > 1 is simple, [l]z = B =
(b1,b2, ... ,by), by # 0. The characteristic equation of 5 is B(z) = 1, or

(13) 1=%+%+---+%

which can be rewritten as

(14) 27— (byz? ! + bz 2 4o+ by) =0,

Suppose that ( is semisimple, so that [l]g = B = (b1,b2,...,b,,
@1,Gz,...,0Gp), where the overline indicates the periodic part. The

characteristic equation of 3 is again B(z) = 1, or

b b 1 1 1
(15) l:—1+...+_1+_<ﬂ+...+a_p><1+_+T+...>,
T R AN P P xcp

which can be rewritten as

(16) (2 —1)(z% — (byz? '+ +b,)) —arx? P+ +a, =0.

Theorem 2. If3 > 1 is either simple or semisimple and « is another
root of the characteristic equation of B such that 1 < |a| < 3, then the
function fo g(x) is continuous, nowhere differentiable on [0,1]. If o is
not a root of the characteristic equation of B, then fq g(x) is not left
continuous at terminating points.

We prove Theorem 2 by a sequence of lemmas.

Definition 5. Let 8 > 1 be fixed, and let x be a terminating point,
ie., [z]g = (c1,¢2,... ,¢n), cn # 0. The number n is called the rank of
z and is denoted by p(z). If z is not S-terminating, we set p(z) = oo.

Lemma 5. Suppose x and y are two successive [(-terminating
numbers of rank at most n. This means that p(z) < n and p(y) < n,
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and if ¢ < t <y, then p(t) > n. Then, for all x < t <y, the first n
B-digits of x and t coincide: €;(x) =¢;(t), forj =1,2,... ,n.

Proof. Let [z]g = (c1,...¢n), [ylg = (d1,...,dn), and [t]g =
(e1,€2,...). Let j be the first index so that ¢; # e; and assume that

j < n. By Lemmas 2 and 3, the sequence (es,...,e;) is canonical
and (eq,...,e;)(B) is of rank at most n. If ¢; < e;, then by Lemma
4, z < (e1,...,€j)(B) <t <y, sox and y are not two successive [3-

terminating numbers of rank at most n. If e; < c;, then by ¢t < z by
Lemma 4, this is contrary to the hypothesis. O

Corollary 1. For any |a| > 1, f > 1, the function fop(x) is
continuous at every nonterminating x € [0,1] and is continuous from
the right at every z € [0,1).

Proof. Suppose that ¢ is not S-terminating. Let € > 0 be given. By
Lemmas 2 and 3, truncation of canonical sequences are canonical, hence
the set of S-terminating numbers is dense in [0,1]. Choose n so that
v =Y re, 28/|laff < e, and two successive S-terminating numbers x
and y of rank at least n such that z < t < y. If ¢ is another number
in the interval (z,y), then, by Lemma 5, the first n S-digits of ¢ and
t' are the same (they are the same as the digits of z). It follows that
|[fap(t) — fas(t')] < v < e. Suppose now that ¢ is S-terminating,
0 <t < 1. For a given € > 0, choose n and -y as before and let y be the
smallest S-terminating number of rank at least n which is greater than
t. Arguing as before, if t < ¢’ < y, then |fo g(t) — fa,g(t)| <e. O

Lemma 6. Suppose that t is a [B-terminating number, [t|z =
€1,¢2,...,¢n), ey # 0. If B is not simple, [1]g = B = (b1,b2,...),
n 7# 0 for infinitely many n’s, then for every integer r the sequence
= (c1,¢2,... ,¢N—1,¢N — 1,b1,ba,...,b.) is canonical, and t, =
(B) 1Tt asr — oo. If B is simple and B = (b1, b, ...) is defined by
), then again, for every r the sequence T, = (c1,C2,--- ,CN_1,CN —
,b1,ba, ..., b.) is canonical and t. =T .(B8) Tt as t — oco.

SEARREEC)

[y

Proof. First of all, it is clear that both ¢, and ¢, are increasing,
and an easy calculation shows that both sequences converge to t as



1348 V. DROBOT

r — co. We must show that 7, satisfies condition (6) and T, satisfies
(8). We present the arguemnt for the sequence 7, only, the other case
is completely analogous. Let

7;‘ = (617627'-' 7CN_176N_17b17b27"' 7b7‘)
= (d17d27"' 7dN+T)7

let m be fixed, and let D = (dm,dmt1,---,dnsr) = (dy,db, ...,
dyir_my1)- We must show that D' < B. If m > N, we are done,
since in that case D’ is just a finite portion of the sequence B, hence
it is canonical and (6) holds by Theorem 1. We may thus assume that
1 < m < N. This means that

r_ g 7
D _( 182000 N+r7m+1)
= (dmadm+17"' 7dN+T)
= (Cmacm+la-" yCN—-1,CN — lab17b27"' abr)-

Let j be the first subscript for which d;- # bj.  We claim that
d; is among the c’s, i.e., j < N —m + 1. Indeed, if ¢, = by,

Cm+1 = ba,...,cN—1 = by_m, and ¢y — 1 = by_p41, then ey >
bN—m+1 80 (Cmy---,eN-1,¢n) > (b1,ba,...), contradicting the fact
that (c1,ca,...,cn) is canonical. Thus, dj is among the c’s. Since

(Cmy---sen—1,¢n) < (b1,b2,...), (6) holds for the sequence D’. o

Lemma 7. Suppose [ is either simple or semisimple, and t is (-
terminating. If a is another root of the characteristic equation of [,
|| > 1, then the function fopg(x) is continuous at t. If |a] > 1 is
not a root of the characteristic equation of 3, then fo g(x) is not left
continuous at t.

Proof. Let [t]jg = C = (c1,¢2,-.-,¢n), ey > 0, and let D, =
(d1,da,...,d;) be equal to (b1,bs,...,b.) if B is semisimple, or
(b1, b2, ... ,b,)if B is simple. In either case, D,(z) 1+ B(z) as r — co. By
Lemma 6, the sequence F,. = (c1,¢2,... ,¢N—1,¢N — L,d1,da,...,d;)
is canonical, so t, = F,.(8) is B-terminating of rank at most N + r. If
o is not a root of B(z) = 1, then

Fas 1) = fup(ts) = (1 =Dy (@) =~ (1~ B(a) £0.
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Hence, f. g is not left continuous at ¢. Suppose now that o is a root
of the characteristic equation. We claim that if s is a S-terminating
number of rank at most N + r, s # t,t., then s lies outside the
interval [t.,t]. Suppose to the contrary that ¢, < s < t, and let
L= [s]g = (s1,82,-..,5p), p < N+ 7. By Lemma 4, F. < £ < C.
Let j be the first index for which s; # ¢;. If 1 < 7 < N — 1, then
sj < ¢j, 80 L < F, which, by Lemma 4, implies that s < ¢,, contrary to
assumption. If j > N, then clearly s > ¢. Assume then that j = N and
sy <cy —1. By Lemma 2 and Theorem 1, G = (Sn+1,5N+2,--- ,Sp)
is also canonical, and G < B or B, depending on whether §3 is simple or
semisimple. Since the length of G is at most r, G < D,.. This implies

5= L(8) < C(8) + B%(—l +D,(8)) =,

contradicting the hypothesis that ¢, < s. Let now ¢ > 0 be given.
Choose r such that

m=N+r+1

By Lemma 5, for any ¢, < s < t, the first N 4+ r 4 1 digits of s coincide
with those of ¢,.. Thus,

fa,ms)—fa,ﬁ(m=ﬁ<—1+ma>+ T i)

o™
m=N+r+1
=0, <e.

This shows that f, g(z) is left continuous on ¢ and proves Lemma 7.
]

Lemma 8. If 1 < |a| < B, then fqop(x) is not differentiable on
[0,1].

Proof. Let t € [0,1] be fixed. Assume first that ¢ is nonterminating,
and let [t]g = C = (c1, c2, - - . ) so there are infinitely many subscripts i;
for which ¢;; > 0. Let C; be the sequence obtained from C by replacing

ci; with ¢;; — 1. Clearly, C; is canonical and t; = C;(3) — t. But
a,8(t) — fa,8(t; t .
(17) f’e(i f’B(J)zé — 00 since 5> a.
—t; a
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Suppose next that ¢ is terminating, t < 1, and [t|s = C = (c1,c2,... ,¢r).
We claim that one can choose a sequence of integers r < i; < iz < ...
such that each of the sequences C; = (c1,¢2,...,¢,,0,0,...,0,1) is

canonical (1 stands in the 7;th position). This will certainly show that
fa,p(x) is not differentiable at ¢, since with t; = C;(8), the relation
(17) holds again. Such a sequence i; can be chosen fairly arbitrarily,
provided only that 4;.1 > ¢; + r and that ¢ —r > r. A moment of
reflection will show that if that is done, the sequence C; satisfies (6) or
(8) (depending on the nature of 3), hence it is canonical. The only case
not covered yet is t = 1 and t is terminating, i.e., 8 is simple. In this
case C = B = (b1,b2,...,by) = [l]g. If v is not a root of the charac-
teristic equation B(x) = 1, the function f, g(x) is not left continuous
at 1 (Lemma 7), let alone differentiable. We may thus assume that «

is a root of B(z) = 1. Let B = (by, by, ... ,by) be the sequence defined

by (7), and put B; = (b1, b2, .. ,bjq). By Theorem 1, B, is canonical,
and by direct computation we have for every z:

1 1 1 1 1
Bj(x):<1_E>+E(1_E)+ﬁ(l_ﬁ)

_ 1
=1-—5
SO
tj = B](/B) =1- B_]qa
fap(1)=B(a) =1, and
fop(tj) = Bj(a) =1—a""
Thus, '
1) — . q]
Fas () = Fust) | 8"
1-— tj «
This finishes the proofs of Lemma 8 and Theorem 2. ]

4. Explicit examples. In this section we briefly indicate how
to construct plenty of explicit examples of functions such as those
described in Theorem 2. The construction is based on the following
result from W. Parry [3]:
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Theorem 3. If B = (b1,bs,...,b5), ¢ > 1 is a sequence of
nonnegative integers such that (bn,bpi1,...,by) < B for each n =
2,3,...,q, then the unique solution 8 > 1 of B(z) = 1 is simple and
[l]g = B. Moreover, all the other solutions o of this equation satisfy
la| < 2.

Thus it is enough to find a finite sequence B such that B(2) > 1,
B(—1) > 1, and B(—2) < 1 and for which the condition of Theorem 3
holds. For example, B = (3,2,0,2,0,2) fits the bill: B(2) = 2.15625,
B(~1) = 3, B(~2) = —0.84375 giving § = 3.601448365..., and
a = —1.14028814... .
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